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Abstract

This paper concerns finite, edge-transitive direct and strong products, as well
as infinite weak Cartesian products. We prove that the direct product of two
connected, non-bipartite graphs is edge-transitive if and only if both factors are
edge-transitive and at least one is arc-transitive, or one factor is edge-transitive and
the other is a complete graph with loops at each vertex. Also, a strong product
is edge-transitive if and only if all factors are complete graphs. In addition, a
connected, infinite non-trivial Cartesian product graph G is edge-transitive if and
only if it is vertex-transitive and ifG is a finite weak Cartesian power of a connected,
edge- and vertex-transitive graph H, or if G is the weak Cartesian power of a
connected, bipartite, edge-transitive graph H that is not vertex-transitive.

Keywords: edge-transitive graphs; vertex-transitive graphs; graph products

AMS Subj. Class.: 05C76, 05C25

1 Introduction

A graph G is vertex-transitive (resp. edge-transitive) if its automorphism group Aut(G)
acts transitively on the vertex set V (G) (resp. on the edge set E(G)). The vertex-
transitivity of the four standard associative products of graphs (the Cartesian prod-
uct, the direct product, the strong product, and the lexicographic product) is well-
understood. If ∗ denotes any of the four standard products and G and H are arbitrary
finite graphs, then G ∗ H has transitive automorphism group if and only if G and H

∗Dedicated to Chris Godsil on the occasion of his 65th birthday
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have transitive automorphism groups, see [6, Theorems 6.16, 7.19, 8.19, 10.14]. These
classical results were proved about half a century ago, cf. [2, 8, 16, 17], hence it is
surprising that not much can be found in the literature about the edge-transitivity of
graph products, especially because edge-transitivity has been an active research topic
since then, cf. the recent papers [4, 11, 13] and references therein.

The very recent article [10] characterizes finite edge-transitive Cartesian and lexi-
cographic products. (That paper was in part motivated by a false, but related result
from [12].) In this recent article it is shown that a Cartesian product is edge-transitive
if and only if it is a Cartesian power of some vertex- and edge-transitive graph. For
the lexicographic product it proves, if G is connected and not complete, then G ◦ H
is edge-transitive if and only if G is edge-transitive and H is edgeless. Moreover, if G
is complete, and G ◦ H is edge-transitive, then there is a complete graph K and an
edgeless graph D for which G ◦H = K ◦D.

Here we continue these investigations. In Section 2 we consider and characterize
edge-transitive, finite, non-bipartite direct products, while in Section 3 finite, edge-
transitive strong products are characterized. In this way we round off the edge-
transitivity of the standard graph products with the sole exception of bipartite di-
rect products. For this remaining case we provide a sufficient condition for the direct
product to be edge-transitive (Proposition 2.5) and conjecture that it is also necessary.

In the second part of the paper we turn to infinite graphs, more precisely to infinite
(weak) Cartesian product graphs. As already mentioned, finite Cartesian products are
vertex-transitive if and only if every factor is vertex-transitive. For the weak Cartesian
product the situation is more complex. If all factors are vertex-transitive, then any
of their weak Cartesian products is also vertex-transitive. However, a connected weak
Cartesian product can be vertex-transitive, even when all factors are asymmetric. This
was first observed in [9]. In Section 4 we also round off this story by characterizing
vertex-transitive weak Cartesian products, and then characterize edge-transitive weak
Cartesian products.

In the rest of this section we define the standard graph products and discuss several
other concepts. The Cartesian product G2H, the direct product G × H, the strong
product G � H, and the lexicographic product G ◦ H, each has as its vertex set the
Cartesian product V (G)× V (H). Edges are as follows:

E(G2H) =
{

(x, u)(y, v) | xy ∈ E(G) and u = v, or, x = y and uv ∈ E(H)
}
,

E(G×H) =
{

(x, u)(y, v) | xy ∈ E(G) and uv ∈ E(H)
}
,

E(G�H) = E(G2H) ∪ E(G×H) ,
E(G ◦H) =

{
(x, u)(y, v) | xy ∈ E(G), or, x = y and uv ∈ E(H)

}
.

The notions of arc-transitive and half-transitive graphs will arise several times. A
graph is arc-transitive if for any two edges xy and uv there is an automorphism mapping
x 7→ u and y 7→ v, and another mapping x 7→ v and y 7→ u. (In other words,
the automorphism group acts transitively on the graph’s arcs.) Clearly, arc-transitive
graphs are both vertex-transitive and edge-transitive. A graph is half-transitive if it
is vertex-transitive and edge-transitive, but not arc-transitive. For such a graph, the
automorphisms mapping an edge xy to uv are either always x 7→ u and y 7→ v, or
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always x 7→ v and y 7→ u. See [1] for further properties and examples of half-transitive
graphs.

If a graph G is edge-transitive, then it need not be vertex-transitive. In that case it
must be bipartite, as proved in [18, Proposition 2.2] under certain finiteness conditions.
See also Lemma 3.2.1 in the classical book of Godsil and Royle [5] which is a fine source
for general properties of vertex-, edge-, and arc-transitive graphs. In general we have
the following.

Lemma 1.1 A graph with no isolated vertices that is edge-transitive but not vertex-
transitive is bipartite.

Proof. Such a graph G must be non-trivial and every vertex must be incident to an
edge. For a vertex x, let Aut(G)(x) denote the Aut(G)-orbit of x. Take an edge xy and
note that Aut(G)(x) ∪ Aut(G)(y) = V (G). If Aut(G)(x) ∩ Aut(G)(y) is non-empty,
then G is vertex-transitive. Hence Aut(G)(x) and Aut(G)(y) form a partition of V (G).
Furthermore, by edge-transitivity, any edge of G joins Aut(G)(x) to Aut(G)(y). �

Note that a connected bipartite graph that is edge-transitive is also arc-transitive
if and only if it admits an automorphism that reverses the bipartition of one of its
components.

Consequently, a connected edge-transitive graph can be arc-transitive, or half-
transitive, or neither. If it is neither, then it is bipartite and the partite sets are
distinguishable in the sense that there is no automorphism mapping one to the other.

2 Finite direct products

This section’s goal is to characterize edge-transitivity of direct products. Our main
result is Theorem 2.3, below, stating that any connected non-bipartite direct product
is edge-transitive if and only if both factors are edge-transitive and one is not half-
transitive, or one factor is edge-transitive and the other is a complete graph with a loop
at each vertex. We prepare for this by recalling some standard notions and results.

Denote by K∗n the complete graph on n vertices with loops at each vertex and its
complement by K∗n. Notice that K∗n is completely disconnected, that is, it has n vertices
and no edges.

Discussions of the direct product are often simplified with a certain equivalence
relation R on the vertex set of a graph. Two vertices x and y of a graph are said to
be in relation R if their open neighborhoods are identical, that is, if N(x) = N(y).
Clearly an R-equivalence class (an R-class) of vertices in a graph G induces either a
K∗n or a K∗n. Also, for any two R-classes X and Y , either every vertex of X is adjacent
to every vertex of Y , or no vertex of X is adjacent to any vertex of Y . For details, see
Section 8.2 of [6], where it is also proved that any R-class of the direct product of two
graphs is the Cartesian product of R-classes of the factors.

A connected edge-transitive graph G with more than one vertex cannot have any
loops, because no automorphism can move a loop to a non-loop edge; therefore all

3



R-classes induce completely disconnected subgraphs. Consider an edge xy of an edge-
transitive graph G, and say x (respectively y) belongs to the R-class X (respectively Y ).
Because any automorphism α of G sends R-classes to R-classes, the R-class containing
α(x) has |X| elements, and the R-class containing α(y) has |Y | elements. By edge-
transitivity, any R-class of G has size either |X| or |Y |, and any edge joins an R-class
of size |X| to one of size |Y |. In particular, this means that if G has a odd cycle (or if
it is arc-transitive) then all its R-classes have the same size. If G is bipartite, then any
two R-classes in the same partite set have the same size.

Given a graph G, the quotient G/R is the graph whose vertices are the R-classes
of G, with two classes being adjacent precisely if there is an edge in G between them.
Any automorphism α : G → G induces an automorphism G/R → G/R sending any
R-class X to α(X). Conversely, if all R-classes of G have the same size, then we can
lift any automorphism α : G/R→ G/R to an automorphism of G by simply declaring
that each R-class X is mapped to α(X) via an arbitrary bijection. Moreover, if xy and
x′y′ are two edges of G joining R-classes X and Y , then the transposition of x with
x′, and y with y′ is an automorphism of G interchanging xy with x′y′. This implies a
lemma.

Lemma 2.1 If a graph G is edge-transitive, then G/R is edge-transitive. Conversely,
if G/R is edge-transitive and non-trivial, and all R-classes of G have the same size,
then G is edge-transitive.

We call a graph R-thin if each R-class contains exactly one vertex. Clearly G/R is
always R-thin. We remark also that (A×B)/R ∼= A/R×B/R (Section 8.2 of [6]).

Note that G×K∗1 ∼= G, so K∗1 is a unit for the direct product. A non-trivial graph
is prime (over ×) if it cannot be expressed as a direct product of two graphs, neither of
which is K∗1 . It is well-known that in the class of graphs where loops are allowed, con-
nected non-bipartite graphs factor uniquely over the direct product into prime graphs.
Moreover in the class of R-thin graphs, automorphisms have a particularly rigid struc-
ture.

Theorem 2.2 [6, Theorem 8.18] Suppose ϕ is an automorphism of a connected nonbi-
partite R-thin graph G that has a prime factorization G = G1×G2×· · ·×Gk. Then there
exists a permutation π of {1, 2, . . . , k}, together with isomorphisms ϕi : Gπ(i) → Gi,
such that ϕ(x1, x2, . . . , xk) = (ϕ1(xπ(1)), ϕ2(xπ(2)), . . . , ϕk(xπ(k))).

Now our main theorem’s foundation is laid.

Theorem 2.3 Suppose A×B is connected and non-bipartite. Then it is edge-transitive
if and only if both factors are edge-transitive and at least one is arc-transitive, or one
factor is edge-transitive (and non-trivial) and the other is a K∗n.

Proof. Note that A and B are connected and non-bipartite because their product is.
Say A and B are edge-transitive and A is arc-transitive. Take edges (a1, b1)(a′1, b

′
1)

and (a2, b2)(a′2, b
′
2) of A × B. We construct an automorphism of A × B carrying the

first edge to the second. Begin with an automorphism β of B sending edge b1b′1 to b2b′2.
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Case 1. Suppose β(b1) = b2 and β(b′1) = b′2. Let α be an automorphism of A for which
α(a1) = a2 and α(a′1) = a′2. Then (a, b) 7→ (α(a), β(b)) is the desired automorphism.

Case 2. Suppose β(b1) = b′2 and β(b′1) = b2. Let α be an automorphism of A for which
α(a1) = a′2 and α(a′1) = a2. Then (a, b) 7→ (α(a), β(b)) is the desired automorphism.

On the other hand, suppose that A is non-trivial and edge-transitive, and B = K∗n.
By this section’s preliminary remarks (having in mind that A is non-bipartite), all R-
classes of A have the same size and induce a K∗m. Note that the R-classes of A×B are
X ×V (K∗n), where X is an R-class of A, and thus all R-classes of A×B have the same
size mn. Also, (A × B)/R ∼= A/R × K∗n/R ∼= A/R × K∗1 ∼= A/R, and A/R is edge-
transitive by Lemma 2.1. So we have established that (A × B)/R is edge-transitive;
another application of Lemma 2.1 reveals that A×B is edge-transitive.

Conversely, suppose A × B is edge-transitive. Assume first that A × B is R-thin.
Because each R-class of A × B is the Cartesian product of R-classes in A and B, it
follows that A and B are R-thin too. Let X be the product of the prime factors (over ×)
of A that are also prime factors of B. Thus A = A′ ×X and B = X × B′, where A′

and B′ have no prime factors in common. By Theorem 2.2, any automorphism ϕ of
A×B = A′ ×X ×X ×B′ has form

ϕ(a, x, x′, b) =
(
α(a), γA(x, x′), γB(x, x′), β(b)

)
(1)

for isomorphisms α : A′ → A′, and β : B′ → B′ and homomorphisms γA, γB : X×X →
X. Now we argue that A is edge-transitive. In A = A′ × X, fix two arbitrary edges
(a1, x1)(a′1, x

′
1) and (a2, x2)(a′2, x

′
2). Then A×B has edges (a1, x1, x1, b1)(a′1, x

′
1, x
′
1, b
′
1)

and (a2, x2, x2, b2)(a′2, x
′
2, x
′
2, b
′
2), and an automorphism (1) for which

ϕ(a1, x1, x1, b1) = (a2, x2, x2, b2) and ϕ(a′1, x
′
1, x
′
1, b
′
1) = (a′2, x

′
2, x
′
2, b
′
2).

(Note that if it happened that ϕ(a1, x1, x1, b1) = (a′2, x
′
2, x
′
2, b
′
2), then we could attain

the above by relabeling (a2, x2) as (a′2, x
′
2) and vice versa, and b with b′.) From this,

(a, x) 7→
(
α(a), γA(x, x)

)
(2)

is an automorphism of A carrying (a1, x1) to (a2, x2), and (a′1, x
′
1) to (a′2, x

′
2). This

means A is edge-transitive. Similarly

(x, b) 7→
(
γB(x, x), β(b)

)
is an automorphism of B carrying edge (x1, b1)(x′1, b

′
1) to edge (x2, b2)(x′2, b

′
2), mapping

endpoints as (x1, b1) 7→ (x2, b2), and (x′1, b
′
1) 7→ (x′2, b

′
2). (In particular this implies B

is edge-transitive.)
Now assume B is not arc-transitive (i.e., it is half-transitive); we show that A is

arc-transitive. By the above paragraph no automorphism of B maps (x1, b1) 7→ (x′2, b
′
2)

and (x′1, b
′
1) 7→ (x2, b2). Select an automorphism ϕ′ ∈ Aut(A × B) sending the edge

(a1, x1, x1, b1)(a′1, x
′
1, x
′
1, b
′
1) to the edge (a′2, x

′
2, x2, b2)(a2, x2, x

′
2, b
′
2), and having form

ϕ′(a, x, x′, b) =
(
α′(a), γ′A(x, x′), γ′B(x, x′), β′(b)

)
.
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Then it must be the case that

ϕ′(a1, x1, x1, b1) = (a′2, x
′
2, x2, b2) and ϕ(a′1, x

′
1, x
′
1, b
′
1) = (a2, x2, x

′
2, b
′
2),

because otherwise (x, b) 7→
(
γ′B(x, x), β′(b)

)
would be an automorphism of B with

(x1, b1) 7→ (x′2, b
′
2) and (x′1, b

′
1) 7→ (x2, b2), which we have remarked is impossible. As

a consequence, the automorphism (a, x) 7→
(
α′(a), γ′A(x, x)

)
of A sends (a1, x1) to

(a′2, x
′
2), and (a′1, x

′
1) to (a2, x2). Comparing this to the automorphism (2), we see that

A is arc-transitive.

Summary: If A×B is R-thin and edge-transitive, then A and B are edge-transitive,
and at least one of them is arc-transitive.

Now consider the case in which A×B is not necessarily R-thin. Then (A×B)/R ∼=
A/R×B/R, so A/R×B/R is edge-transitive by Lemma 2.1. Also, A/R and B/R are
R-thin; the previous paragraph implies both A/R and B/R are edge-transitive, and at
least one of them is arc-transitive. The following cases finish the proof.

Case 1. Suppose both A/R and B/R have loops. Because they are connected edge-
transitive graphs, the only possibility is that A/R = K∗1 = B/R. But then each of A
and B is a K∗n, and thus so is A × B. But it is also edge-transitive, so A × B = K∗1 .
Thus A = K∗1 = B, so both factors are (trivially) edge-transitive and arc-transitive.

Case 2. Suppose one of A/R and B/R (say B/R) has a loop but the other does not.
Then as in the previous case, B/R = K∗1 and so B = K∗n. Turning our attention to A,
we note that A/R is nontrivial (for otherwise A has no edges and hence neither does
A×B). All R-classes of A×B have form X×V (K∗n), where X is an R-class of A. But
also we have noted that all R-classes of A×B are of the same size |X| · n, whence all
R-classes of A have the same size. Then A is edge-transitive by Lemma 2.1. We have
now established that A is non-trivial and edge-transitive, and B is a K∗n.

Case 3. Suppose neither A/R nor B/R has loops. Now, each is non-trivial because if
one had no edges then neither would A× B. Because all R-classes of A× B have the
same size, and each is the Cartesian product of R-classes of A and B, it follows that
all R-classes of A have the same size, and the same for B. Now Lemma 2.1 says that
each of A and B is edge-transitive.

To finish Case 3, it remains to show that one of A or B is arc-transitive. As all
R-classes of A have the same size, it is immediate that A is arc-transitive if and only
if A/R is, and similarly for B. But we remarked above that one of A/R and B/R is
arc-transitive. �

Notice that in Lemma 2.1, every occurrence of the phrase “edge-transitive” can be
replaced with either “half-transitive” or “arc-transitive,” and the statement remains
true. In Theorem 2.3 all graphs are non-bipartite, and in this context “edge-transitive”
means either “half-transitive” or “arc-transitive.” We can therefore focus the statement
of the theorem by replacing all occurrences of “edge-transitive” with “half-transitive”
(in the proof as well as the theorem). The proof goes through the same. Similarly, we
can replace “edge-transitive” with “arc-transitive” with only the slightest modification
of the proof. Following the consequences of this gives a corollary.
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Corollary 2.4 Every connected, non-trivial, edge-transitive non-bipartite graph G has
form G = K∗n × H (possibly with n = 1), where H is non-trivial, has no factor K∗n,
and at most one half-transitive (prime) factor, while all other (prime) factors, if any,
are arc-transitive. Furthermore, G is half-transitive if H has a half-transitive factor.
Otherwise G is arc-transitive.

We now contemplate bipartite direct products. In what follows, suppose A and B
are connected, A has an odd cycle, and B is bipartite. In such a case A×B is connected
and bipartite. (If A were also bipartite, A×B would be disconnected; this result goes
back to Weichsel [19], see also [6, Theorem 5.9].)

If A and B are edge-transitive and one is arc-transitive, then A×B is edge-transitive.
This was established in the first part of the proof of Theorem 2.3, which did not use
non-bipartiteness of the factors. However, this is a sufficient but not necessary condition
for A×B to be edge-transitive. For example, consider the graphs in Figure 1. In each
case A×K2 is the (edge-transitive) cube Q3, but not all of the A are edge-transitive.

Figure 1: Three graphs A for which A×K2 = Q3 is edge-transitive.

We might call a graph A (such as those in Figure 1) quasi-edge-transitive if A×K2

is edge-transitive, and regard this as a “weak” form of edge-transitivity. Observe that
edge-transitive graphs are quasi-edge-transitive, but not conversely. For example, K∗n
is quasi-edge-transitive because K∗n ×K2 = Kn,n is edge-transitive.

Proposition 2.5 Suppose A has an odd cycle and B is bipartite. If both A×K2 and
B are edge-transitive and one is arc-transitive, then A×B is edge-transitive.

Proof. Notice that (A×K2)×B ∼= K2× (A×B) is the disjoint union of two copies of
A×B. But also, as A×K2 and B are both edge-transitive, and one is arc-transitive,
(A×K2)×B is edge-transitive. We have thus established that a disjoint union of two
copies of A×B is edge-transitive. Certainly, then, one copy is edge-transitive too. �

We conjecture that the converse holds.

3 Finite strong products

In treating the strong product we use an equivalence relation S on a graph’s vertices.
Recall that the closed neighborhood N [x] of a vertex x ∈ V (G) is the set containing
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x and its neighbors in G. Then for two vertices x and y, we say xSy provided that
N [x] = N [y]. See Chapter 7 of [6] for details. In particular recall that S-classes of
A � B are characterized as Cartesian products X × Y of S-classes of the factors. A
graph is called S-thin if each of its S-equivalence classes is a single vertex.

It is immediate that any S-equivalence class induces a complete graph. It follows
that a connected graph with two S-classes, at least one of which is non-trivial, cannot
be edge transitive, because an edge with endpoints in a non-trivial S-class cannot be
moved to an edge joining two different S-classes.

The article [7] (also Chapter 7 of [6]) defines a so-called Cartesian skeleton S[G] of
a graph G having the following properties: If G is connected then S[G] is a connected,
spanning subgraph of G. Moreover if A and B are S-thin, then S[A�B] = S[A] 2S[B].
And, regardless of S-thinness, any isomorphism G → H restricts to an isomorphism
S[G]→ S[H]. (See [3] for a related construction of a Cartesian skeleton.)

Theorem 3.1 The strong product G = A � B of two connected, non-trivial graphs is
edge-transitive if and only if both factors are complete.

Proof. If both factors are complete, then A�B is complete, so it is edge-transitive.
Conversely, suppose that G = A � B is edge-transitive. Our strategy is to show

that G has only one S-class. Then G is complete and hence also are A and B.
Indeed, by the above remarks, if G had several S-classes, they would all be single

vertices. As the S-classes of G are products of the S-classes of A and B, the S-classes
of A and B are single vertices, and both A and B are S-thin. Then any automorphism
of A � B restricts to an automorphism of S[A � B] = S[A]2S[B]. Because A and B
are both nontrivial, it is immediate that S[A] 2S[B] = S[A�B] is a proper nontrivial
subgraph of A�B. But then no automorphism can move an edge of this subgraph to
an edge not on it, contradicting our assumption that G is edge-transitive. Then G has
only one S-equivalence class and is thus complete. �

4 Weak Cartesian products

Having dealt with the edge-transitivity of finite product graphs, we now turn to infinite
Cartesian products. In [10] it was shown that a finite, connected Cartesian product
graph is edge-transitive if and only if it is the Cartesian power of a connected, edge-
and vertex-transitive graph. Here we characterize connected, edge-transitive Carte-
sian product graphs of arbitrary cardinality. In addition, we do the same for vertex-
transitivity. The key is that every connected graph is a weak Cartesian product of
prime graphs, unique up to isomorphisms of the factors.

Let us first recall the definition of the Cartesian and the weak Cartesian product of
graphs Gι, for ι ∈ I.

The Cartesian product G = �ι∈I Gι is defined on the vertex set V (G) that consists
of all functions x : ι 7→ xι, with xι ∈ V (Gι). The xι are the coordinates of x, and two
vertices x and y are adjacent in G if there exist a κ ∈ I such that xκyκ ∈ E(Gκ) and
xι = yι for ι ∈ I \ κ.
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If I is finite, then G is connected if and only if all Gι are connected. But if I is
infinite and the Gι are non-trivial, that is, if they have at least two vertices, then G
cannot be connected, even if all factors Gι are. The reason is that in this case G has
at least two vertices x, y that differ in infinitely many coordinates, and they cannot be
connected by a path of finite length, as the endpoints of any edge differ in only one
coordinate.

This leads to the definition of the weak Cartesian product. A weak Cartesian
product of graphs Gι, ι ∈ I, is a connected component of the Cartesian product of the
Gι. To identify the component it suffices to specify a vertex, say a ∈ V (G), that it
contains. We use the notation �a

ι∈I Gι or �ι∈I(Gι, aι) for the connected component
of �ι∈I Gι containing a.

Clearly V (�a
ι∈I Gι) consists of a and all vertices of �ι∈I Gι that differ from a in

only finitely many coordinates.
For finite I the weak Cartesian product of connected graphs coincides with the

Cartesian product. Notice that we did not order the factors in our definition of the
product. Sometimes this may be useful though, and so we recall that the Cartesian
product is commutative and associative with the trivial graph K1 as a unit. Further-
more, if J ⊂ I, then

�
ι∈I

(Gι, aι) ∼=
(
�
ι∈J

(Gι, aι)
)

�

(
�
ι∈I\J

(Gι, aι)

)
.

A special case is J = {κ}. Then

a

�
ι∈I

Gι ∼= Gκ �
a′

�
ι∈I\κ

Gι,

where a′ is the restriction of the function a : I →
⋃
ι∈I V (Gι) to I \ κ. We call a′ the

projection of a into V (�ι∈I\κ(Gι, aι)).
Non-trivial graphs that cannot be represented as a product of two graphs with at

least two vertices are called prime. It is well known (see [8, 14] or [6]) that any connected
graph can be represented as a Cartesian or weak Cartesian product of prime graphs.
The representation is unique up to isomorphisms of the factors, and if �a

ι∈I Gι =
�b

ι∈I Gι, then a and b differ in at most finitely many coordinates.

4.1 Vertex-transitive Cartesian products

In order to characterize weak Cartesian products that are vertex-transitive, we need
knowledge about the structure of the automorphism group of weak Cartesian products.
By [6, p. 413] or [8, 9, 15] the description for finitely or infinitely many factors is the
same, so we use [6, Theorem 6.10] although it was originally written for finitely many
factors:

Proposition 4.1 If G = �a
ι∈I Gι, then every ϕ ∈ Aut(G) is of the form

ϕ(x)ι = ϕι(xπ(ι)),

9



where π is a permutation of the index set I and ϕι ∈ Aut(Gι) for all ι ∈ I. Furthermore,
only finitely many ϕι move a coordinate of a in the sense that ϕ(a)ι 6= aι.

The condition that only finitely many ϕι move a coordinate of a ensures that ϕ
preserves the connected component of a in �ι∈I Gι.

Special cases occur when π consists of a transposition (κ, λ), and when all ϕι are
the identity automorphisms. We call such a mapping a transposition of factors. On
the other hand, if π is the identity and all ϕι are the identity mapping, with the sole
exception of ϕκ, then we write ϕ = (ϕκ) and say ϕ is induced by the automorphism
ϕκ of Gκ. For finite I one can say that all automorphisms of G are generated by
transpositions and automorphisms of the factors.

Notice that xλ = yλ for two vertices x and y if and only if ϕ(x)π−1(λ) = ϕ(y)π−1(λ).
This means that if two vertices differ only in the λ-coordinate, then their images under
ϕ differ only in the π−1(λ) coordinate.

Hence, the subgraph of G induced by all vertices that differ from a vertex a only in
the λ-coordinate is mapped into the subgraph of G induced by all vertices that differ
from ϕ(a) only in the π−1(λ) coordinate. Such a subgraph of G that is induced by all
vertices that differ from a vertex a only in the λ-coordinate is called the Gλ-layer of
G through a and denoted by Gaλ. Thus, ϕ maps the set of Gλ-layers into the set of
Gπ−1(λ)-layers. Notice that every Gλ-layer is an isomorphic copy of Gλ. Furthermore,
every edge ab joins two vertices that differ in exactly one coordinate. If this coordinate
is κ, then ab is in the κ-layer through a, and this is the only layer that contains ab.

Before stating our main theorem on vertex-transitivity of weak Cartesian products,
we give an example to put it in context. Consider the path P3 of length 2. It is
edge-transitive, but not vertex-transitive, and no finite Cartesian power of it is vertex-
transitive. However, if we take infinitely many copies of Gι = P3, where ι belongs to an
index set I of any infinite cardinality, then G = �a

ι∈I Gι is vertex-transitive whenever
infinitely many aι have degree 1 in Gι and infinitely many degree 2. To see this, we
just have to prove that for any vertex b of G with this property, and an adjacent vertex
c, some automorphism of G carries b to c. Indeed, relabel a subset of I with the index
set Z, so that b and c differ only in the coordinate 0, and bi has degree 1 if i > 0 and
degree 2 if i < 0. Then there is a series of isomorphisms

· · · → G−3 → G−2 → G−1 → G0 → G1 → G2 → G3 → · · ·

such that either this series or its reverse maps b to c, when we restrict them to the
indices Z ⊆ I. Now extend this to an automorphism ϕ of G by declaring that ϕ is the
identity on I \ Z. Then ϕ(b) = c, proving that G is vertex-transitive.

We will later show that this also ensures that G is edge-transitive, and that G
belongs to the interesting class of half-transitive graphs.

We continue with a result about the number of vertex-orbits in the powers of a
connected graph H with two orbits. In [10] it was shown that every finite power H i,
2 ≤ i < ℵ0, of such a graph H has at least three vertex-orbits. Here we extend it to
infinite powers.
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Lemma 4.2 Let H be a connected graph with two vertex-orbits and G be the weak
Cartesian product �a

ι∈I Gι, where Gι ∼= H and ℵ0 ≤ |I|. Then G has either only one
or infinitely many vertex-orbits.

Proof. Let V1 and V2 be the vertex-orbits of H. Recall that P3 from the above
example also has two orbits, one consisting of the vertices of degree 1, and the other of
the vertex of degree 2. We assumed that Gι = P3, where ι belongs to an index set I
of any infinite cardinality, and showed that G = �a

ι∈I Gι is vertex-transitive whenever
infinitely many aλ have degree 1 in Gλ and infinitely many degree 2. By practically
the same argument one sees that G is vertex-transitive if infinitely many components
aι of a are in the vertex-orbit of Hι that corresponds to V1 and infinitely many in the
one that corresponds to V2.

If only finitely many components aι of a are in the vertex-orbit of Hι that corre-
sponds to, say V1, then we can replace the root a in the definition of G by b, where all
components of bι of b are in the vertex-orbit of Hι that corresponds to V1.

We now choose a natural number n and a vertex v of G that has exactly n com-
ponents in the vertex-orbit of Hι that corresponds to V2. Then this also holds for all
vertices Aut(G)(v), that is, for all vertices in the orbit of v under the action of Aut(G).
Since there are infinitely many natural numbers, we can thus construct infinitely many
orbits. �

We are ready for our theorem on vertex-transitivity of weak Cartesian products.

Theorem 4.3 The weak Cartesian product G = �a
ι∈I Gι of connected, prime graphs

Gι is vertex-transitive under the following necessary and sufficient condition:
If v is a vertex of a Gκ that is not vertex-transitive, then there is an infinite set

K ⊆ I, and isomorphisms ϕλ,κ : Gλ → Gκ for every λ ∈ K, with ϕλ,κ(aλ) = v.

Proof. It is easy to see that the G is vertex-transitive if it satisfies the condition of the
theorem. We merely adapt the argument used in the above discussion involving the
product of copies of P3.

Conversely, assume that the condition is not met. Then there must be a factor
Gκ that has at least two vertex-orbits under the action of Aut(Gκ), say X and Y. Let
K ⊆ I be the set of indices λ such that Gλ is isomorphic to Gκ, say via an isomorphism
ϕλ,κ. For any vertex v ∈ V (G) let v(X) denote the number of coordinates vλ of v that
are in (ϕλ,κ)−1(X).

Clearly v(X) remains constant under automorphisms of G. However, if there is a v
for which v(X) is finite, there is a vertex w for which w(X) 6= v(X) that differs from v
only in the κ-coordinate. For, if vκ ∈ X, then we choose wκ ∈ Y . Otherwise, if vκ 6∈ X,
then we choose wκ ∈ X.

The observation that all v(X) are finite if the set K ⊆ I of indices to which there
are isomorphisms ϕλ,κ : Gλ → Gκ for every λ ∈ K, such that ϕλ,κ(aλ) ∈ Aut(Gκ)(v),
is finite completes the proof.

Notice that this is possible, even if there are infinitely many factors that are iso-
morphic to Gκ. �
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Corollary 4.4 If all Gι, ι ∈ I, are vertex-transitive, then G = �a
ι∈I Gι is also vertex

transitive.

Corollary 4.5 If I is finite, then G is vertex-transitive if and only if all Gι, ι ∈ I, are
vertex-transitive.

4.2 Edge-transitive Cartesian products

The article [10, Theorem 3.1 and Corollary 3.2] shows that a finite, connected Cartesian
product G is edge-transitive if and only if it is the power of a connected, edge- and
vertex-transitive prime graph H, and that G is half-transitive if and only if H is half-
transitive. Now we extend this result to infinite graphs. We begin with two lemmas.

Lemma 4.6 Let H be a connected, edge- and vertex-transitive graph and G = �a
ι∈I Hι,

where Hι
∼= H and 2 ≤ |I|. Then G is also edge- and vertex-transitive. Furthermore,

G is half-transitive if and only if H is half-transitive.

Proof. By Lemma 4.4 G is vertex transitive. Now, let uv, xy be arbitrary edges of G,
where uv is in the κ-layer Gvκ and xy in the λ-layer Gxλ. By Proposition 4.1 there is an
automorphism, say α, that maps Gvκ into Gxλ. Then α(u)α(v) ∈ E(Gxλ), and since H
is edge-transitive there is an automorphism βλ of Gλ ∼= H that maps α(u)λα(v)λ into
xλyλ. Let (βλ) denote the automorphism of G that is induced by βλ, then (βλ)α maps
uv into xy, and therefore G is edge-transitive.

Furthermore, if G is half-transitive, the the restriction of Aut(G) to any layer, say
to Gxλ, is also half-transitive, and if G is edge-transitive, but not half-transitive, the the
restriction is also not half-transitive. The observation that Gxλ ∼= Gλ ∼= H completes
the proof. �

Lemma 4.7 Let H be a connected, edge-transitive but not vertex-transitive graph, bi-
partitioned by its two vertex orbits V1 and V2. Let G = �a

ι∈I Hι, where Hι
∼= H,

2 ≤ |I|, and where infinitely many of the aι are in the vertex-orbit of Gι corresponding
to V1, and infinitely many in the vertex-orbit of Gι corresponding to V2. Then G is
edge-transitive (but only half-transitive) and vertex-transitive.

Proof. The edge-transitivity of G is shown as in the proof of Lemma 4.6. This means
that G can have only one or two vertex-orbits. By Lemma 4.2 it can only have one
or infinitely many vertex-orbits, hence it has only one and is vertex-transitive. If G
were not half-transitive, that is, if it were arc-transitive, then it would have to be arc-
transitive on every layer, and hence H would have to be arc-transitive, contrary to
assumption. Hence G is half-transitive. �

Theorem 4.8 Let G be a connected, edge-transitive graph that is not prime with respect
to the Cartesian product. Then G is the Cartesian or weak Cartesian power of a
connected, edge-transitive graph H.

For vertex-transitive H the structure of G is described by Lemma 4.6, otherwise by
Lemma 4.7. In both cases G is vertex-transitive.
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Proof. Let G be a connected, edge-transitive graph that is not prime with respect to
the Cartesian product, and �a

ι∈I Gι be its prime factorization. We show first that all
factors Gι must be isomorphic.

Take any two indices κ, λ ∈ I, and two arbitrary edges uv, xy of G, where uv is in
the κ-layer Gvκ and xy in the λ-layer Gxλ. Any automorphism that maps uv into xy has
to map Gvκ into Gxλ. Hence these layers, and thus Gκ and Gλ are isomorphic. Thus G
is the Cartesian power or weak Cartesian power of a connected graph H.

Also, H must be edge-transitive. To see this, consider any layer Gvι and two, not
necessarily distinct, edges uv and xy of that layer. The automorphism of G that maps
uv into xy has to preserve that layer and thus induces an automorphism of Gvι . Since uv
and xy were arbitrarily chosen in Gvι , this layer, and hence H, must be edge-transitive.

Thus G = �a
ι∈I Hι, where each Hι is isomorphic to an edge-transitive graph H.

Clearly H must be connected. We have to consider two cases.

Case 1. H is vertex-transitive. Clearly this implies that G is vertex-transitive, inde-
pendently of the choice of a, and whether I is finite or not. Half-transitivity is dealt
with as in Lemma 4.6.

Case 2. H is not vertex-transitive. As it is edge-transitive, it must be bipartite by
Lemma 1.1, and the bipartition is given by the vertex-orbits.

If I is finite, then this implies that G has a least three vertex-orbits by [10]. But,
since G is edge-transitive, it can have at most two vertex-orbits. So I must be infinite.

If I is infinite, then G has either one or infinitely many vertex-orbits by Lemma 4.2.
Hence G must be vertex-transitive and, again by Lemma 4.2, the root a must have
the structure described in Lemma 4.7. The arguments there also show that G is half-
transitive. �
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