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Abstract 

Motivated by a dynamic location problem for graphs, Chung, Graham and Saks introduced a 
graph parameter called windex. Graphs of windex 2 turned out to be, in graph-theoretic language, 
retracts of hypercubes. These graphs are also known as median graphs and can be characterized 
as partial binary Hamming graphs satisfying a convexity condition. In this paper an O(n3/’ log n) 

algorithm is presented to recognize these graphs. As a by-product we are also able to isometrically 
embed median graphs in hypercubes in O(m log n) time. @ 1999-Elsevier Science B.V. All 
rights reserved 

1. Introduction 

To any three vertices U, v, w in a tree there exists a vertex x which lies on shortest 

paths between any two of them. Such a vertex is called a median of U,U and w. It is 

easily seen that medians are unique in trees. In general, we call a graph a median graph 

if any triple of vertices has a unique median. Trees and hypercubes are median graphs, 

but not nonbipartite graphs. In this paper we focus on a fast recognition algorithm for 

this class of graphs. Of course, our methods are based on previous results. 

Pioneering work on median graphs was done by Avann [3] and Nebesky [22]. More 

extensive investigations (see the reference list) of these graphs followed by Mulder and 

Bandelt. In fact, Mulder independently introduced the notion of median graphs. He and 

his co-workers obtained many interesting results on this class of graphs, see [6, 18-211. 

Mulder showed among other results that median graphs are precisely those graphs that 

can be obtained from a one-vertex graph by the so-called convex expansion procedure 
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[ 18, 191. Mulder also observed that median graphs are closely related to distributive 

lattices and graph retracts; see [3,4,9]. 

Median graphs are of considerable relevance in optimization theory. For recent ap- 

plications we refer to [ 171 and references therein. 

Motivated by a dynamic location problem for graphs, Chung et al. [7,8] introduced 

a graph parameter called win&ex. In their context, median graphs appear as graphs 

of windex 2. It is natural to ask for an efficient algorithm for the recognition of 

median graphs. As a by-product of their investigation, Chung et al. [7] proposed an 

0(n4) algorithm. Jha and Slutzki [ 15, 161 followed with two different approaches, each 

yielding an 0(n2 logn) algorithm. In [ 1.51 they adapted Bandelt’s approach [4] using 

retracts and in [16] Mulder’s convex expansion method. A simple algorithm of the 

same complexity was recently proposed by Imrich and Klaviar [ 141. 

Median graphs can be characterized as retracts of hypercubes (see [4]). Thus, they 

are isometric subgraphs of hypercubes. Isometric subgraphs of hypercubes are also 

known as partial binary Hamming graphs and algorithms for recognizing them are of 

interest for the problem of recognizing median graphs. Also, for all these graphs the 

number m of edges is at most IZ log n. This implies O(mn) = O(n* log n), which is the 

complexity of the above-mentioned algorithm of Jha and Slutzki. The O(mn) bound 

is also achieved by algorithms for recognizing partial (binary) Hamming graphs; see 

[ 1,2, 10, 121 for particular results and [ 131 for a recent survey. So far, no algorithm with 

subquadratic time bound is known for recognizing partial (binary) Hamming graphs or 

median graphs. The main contribution of this paper is an 0(n3!2 logn) algorithm for 

recognizing median graphs (alias graphs of windex 2). 2 The method used also yields 

an algorithm which isometrically embeds a given median graph into a hypercube in 

O(m log n) time. 

The paper is organized as follows: In Section 2 all results needed for the algorithm 

are collected or proved. In Section 3 the algorithm is presented and its correctness 

shown. The time complexity is established in Section 4. 

2. Preliminaries 

All graphs considered in this paper are finite undirected graphs without loops and 

multiple edges. Throughout the paper, for a given graph G, let n and m stand for the 

number of its vertices and edges, respectively. For u E V(G) let N(u) be the set of all 

vertices adjacent to u and let d(u) = IN(u)/ be the degree of U. For X C Y(G), (X) 

denotes the subgraph induced by X. For u, v E V(G), dc(u, v) or d(u, u), if G is un- 

derstood, denotes the length of a shortest path in G from u to U. For XC V(G) and 

v E V(G), d(v,X) denotes the distance from the vertex v to X and is defined by 

d(v,X) = minuEX d(v, u). 

2 Recently the authors discovered connections with the problem of recognizing tringle-free graphs which 

make it plausible that the bound is optimal. 
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Let G be a graph and let U, u E V(G). Then 

I(u, u) = (w E V(G) / w lies on a shortest u-u path} 

is called an interval of G between u and u. A subgraph H of G is convex if for any 

U, ZI E V(H), I(u, u) G V(H). A median of a set of three vertices U, v and w is a 

vertex that lies in I(u, u) n I(u, W) n Z(v, w). Alternatively, x is a median of U, L‘ and 

w if 

d(u,x) + d(x, v) = d(u, v), 

d(v,x) + d(x,w) = d(v, w), 

d(u,x)+d(x,w)=d(u,w). 

A connected graph G is a median graph if every triple of its vertices has a unique 

median. 

As we already mentioned in the introduction, trees and hypercubes are median 

graphs. Hypercubes are also known as n-cubes. The vertex set of an n-cube con- 

sists of all binary words of length n, two such words being adjacent if they differ in 

exactly one place. Thus, 001 and 011 are adjacent in the 3-cube but not 001 and 100. 

Let G be a connected graph and let ab E E(G). The following sets will play an 

important role: 

W, := {WE Vjd(w,a)<d(w,b)}, 

W, := {WE V\d(w,b)<d(w,a)), 

V, := {u E W, / u is adjacent to a vertex in Wh}, 

O;, := {u E Wt, 1 u is adjacent to a vertex in W,}, 

F := [&, &,] = (uv / u E t&v E ‘!_&}. 

Sometimes we shall also write Fat, to indicate the set F. Note that Y = W, U Wb for 

bipartite graphs. 

A subgraph H of a graph G is an isometric subgraph if dn(u, u) =dc(u, v) for all 

U, v E V(H). If H’ is a graph which is isomorphic to an isometric subgraph H of G 

we say that H’ can be isometrically embedded into G. 

In the next theorem we summarize important structural properties of median graphs. 

Theorem 2.1 (Mulder [18, 191 and Nebeskjr [22]). Let G be a median graph and kt 

ab E E(G). Then 

(i) G is bipartite and contains no K2,3 as an induced subgraph; 

(ii) G can be isometrically embedded in a hypercube; 

(iii) (u,), (ub), (K) and ( wb) are convex subgraphs of’ G; 

(iv) F is a matching on U,, ub that defines an isomorphism between (Ua) and (Uh). 

The next theorem is the basis for our algorithm. 
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Theorem 2.2. Let G be a connected bipartite graph, and let ab E E(G). Suppose the 
following properties hold 

(i) F is a matching that defines an isomorphism between (Ua) and (Ub); 

(ii) for any u E U, and v E I_&, I(u,a) 2 LJa and I(v, b) C Q,, respectively; 

(iii) for any u E W,\U, and v E Wb\Ut,, IN(u)n U,l6 1 and IN(v) n LJt,l< 1. 

Then G is a median graph if and only if (K) and (Wb) are median graphs. 

Before giving the proof we first show three lemmas. The first one is due to Bandelt 

(personal communication to Jha and Slutzki in [16]). For a graph G call a subgraph H 
of G 2-convex if for any two vertices u and v of H with da(u, v) = 2 every common 

neighbor of u and v belongs to H. 

Lemma 2.3. Let G be a connected bipartite graph in which every triple of vertices 
has a median. Then a subgraph H of G is convex tf and only tf H is a 2-convex, 

isometric subgraph of G. 

In fact, it is possible to replace “isometric” by “connected” in the formulation of 

Lemma 2.3, cf. [13]. 

Lemma 2.4. Let G be a median graph and let H be a convex subgraph of G. Then 

for any v E G there exists a unique u E H such that d(v, H) = d(v, u). 

Proof. Clearly, the statement holds for v E H. Assume v E G but o +?‘H and that d(v, 

H) = d(v, u) = d(v, w) for some U, w E H, u # w. Let y be the median in G of the triple 

v, u, w. By our assumption this median exists and is unique. Since H is convex, y EH. 

But then wfu implies either d(v,H)<d(v, y)<d(v,u) or d(v,H)<d(v, y)<d(v,w), 

a contradiction. 0 

Lemma 2.5. Let G be a median graph and let H be a convex subgraph of G. For 

any v E G and for any w E H, d(v, w) = d(v, u) + d(u, w), where u E H is the unique 
vertex satisfying d(v, H) = d(v, u). 

Proof. If u = v or u = w the lemma holds. For u # v and u # w, note that v # w, and let 

y be the median of the triple u, v, w. Hence d(v, u) = d(v, y) + d(y, u). By convexity, 

y E H and therefore either y = u or d(v, y) <d( v, u), a contradiction. Thus, we have 

y=u and d(v,w)=d(v,u)+d(u,w). 0 

Proof of Theorem 2.2. If G is a median graph, then by Theorem 2.1 (iii) W, and wb 

are convex subgraphs of G. It is easy to see that a convex subgraph of a median graph 

is itself a median graph. 

For the converse note first that by Lemma 2.3, (ii) and (iii) imply that (Ua) and 

(ub) are convex in W, and wb, respectively. But it is also easy to see this directly. 

Therefore, Lemmas 2.4 and 2.5 can be applied. We must show that for any triple 

vi, v2 and v there is a unique median in G. If vi, vz and v all belong to W, or to Wb 
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little has to be proved: only that no vertex of Wb can be a median for three vertices 

of W,, and similarly for triples of vertices in wb. Hence, we may assume, without 

loss of generality, that ~1, 02 E wb and u E W,. Let u be the vertex in U, such that 

d(v, U,) = d(u, u), let UU’ be the matching edge, where U’ E ub, and let y be the unique 

median of the triple vi, ~2, U’ in wb. By the fact that any shortest path from ui or 212 

to u must contain a matching edge and by Lemma 2.5 the following holds: 

4~1,~)=4~l,Y) + d(y,y’) + d(y’,u’) + d(u’,u) + d(u,u), 

4u2> u> = 4V2, Y) + 4Y, y’) + d(y’,u’) + d(u’, u) + d(u, u), 

where y’EUb satisfies d(y, ub) =d(y, y’). (Note that this holds, in particular, when 

u1 or u2 is equal to u’ since then y = y’=u’.) Thus, y is a median for VI,V~,U. To 

demonstrate that no other vertex y* can be a median for ~1, ~2, u, note that y* would 

have to belong to wb since it would lie on a shortest path between vi and 212; also 

note that y* would be a median in wb for ui, v2 and u’. Since wb is a median graph, 

y*=y. 0 

3. The algorithm 

The main idea of our algorithm is to decompose a graph into two parts, check if 

the conditions of Theorem 2.2 are fulfilled and recursively repeat the procedure until 

we end up with a single vertex graph. Jha and Slutzki [ 161 used a similar idea, but 

instead of decomposing a graph into two parts they contracted it along F. 

To improve the running time of the algorithm we introduce the following sets: 

CU, := {U E U, 1 there is a path in ( Ua) from a to u}, 

Cub := { 24 E ub 1 there is a path in (ub) from b to u}, 

CW, := {U E W,\U, 1 there is an edge ux, x E CU,}, 

CWb := {u E Wb\Ub 1 there is an edge UX, X E cub}, 

CF := [CU,, CUbI = {UV 1 U E cu,, V EC&,}. 

Our algorithm tries to identify these sets without necessarily processing the entire 

graph. We call the sets identified by the algorithm CCU,, CCUb, CCW,, CCWb and CCF. 

In the case that G is a median graph the sets computed by the algorithm will be the 

same as defined above. The sets CCub and CC& will be dynamically defined by 

the algorithm. Initially, CCub = {b} and CCwb = 8. If G is a median graph, then at 

termination CU,, CUb and CF must equal U,, Ub and F, respectively. If any of these 

equalities does not hold, then G will be rejected by our algorithm. 

In case that G is not a median graph and U, and ub are not connected the equalities 

do not hold. For the case when G is not a median graph but U, and ub are connected, 

see the remark after Lemma 3.3. 
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If G is a median graph, then our algorithm will disconnect the graph into two 

connected components, ( Wa) and ( Wb), both of which must be median graphs since 

they are convex. Then we apply the same procedure to both components separately. 

We first describe how to compute the sets Cr/,, CUb and CF efficiently. Let a E 

V(G). Call a directed edge UD an up-edge (with respect to a) if d(u, a) < d(v, a) and a 

down-edge otherwise. In the following procedure with the parameter directed edge ab, 

up- and down-edges refer to a. We call the edge ab a separation edge. 

It is important to note that our final algorithm will start with a vertex vo of largest 

degree and that all edges of the graph are directed with respect to this vertex ug. 

Since we only have to consider bipartite graphs, every edge uv is either an up-edge 

(if u is closer to 00 than v) or a down-edge. This orientation is achieved by a breadth 

first search (BFS). The algorithm is structured such that we do not have to alter 

these directions when we switch to another reference vertex with respect to which we 

consider up- and down-edges. Moreover, distances from a new reference vertex (say a) 

are obtained by the equality d(a,x) =d(vo,x) - d(uo, a). 

Thus, the following procedure assumes that a is a root of G with respect to which all 

edges have been oriented as up- and down-edges and that all distances to a are known. 

The steps of the procedure are justified later, in particular see Lemma 3.4 for Step 2.2.3. 

PROCEDURE FINDSETS (ab) 

1. CCUb := {b}; CCW, :=&X := 8; 

2. while there are unscanned vertices in CCub do 

2.1 let v E CCub be the next vertex in BFS-order; 

2.2 for all up-edges vu of u do one of the following 

2.2.1 if u E CCub then do nothing; 

{u has been correctly classljied before} 

2.2.2 if u has no down-edge but uv then CCW, := CCWb U {u}; 

{ if u were in Ub, it would huve a down-edge in F } 

2.2.3 if u has more than one down-edge we choose one, say uw, w#v, and fix it. 

For this down-edge do 

if W E ccwb then CCwb := CCwb u {U} 

else CCub := CCub u {U}; 

2.3 mark zi as scanned and put all u such that uu is a down-edge into X; 

3. 3.1 CCU, :=x\CC&,; 

3.2 CCF:=(UV~UECCU,, vtCCU,); 

We wish to remark that CU,, Cub, etc., are defined combinatorially but CCU,, CCUb, 

etc., algorithmically. Thus, u E CU,, etc., stand for the usual set inclusion but u E CCU,, 

etc., means that u has been classified as being in CCU,, etc., by the algorithm. 

Lemma 3.1. If G is a median graph, then at the conclusion of procedure 

FINDSETS (ab), CCU, = U,, CCUh = Ub and CCF = F. 
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Proof. We first claim that CCUb CI ub. Suppose, on the contrary, that when we scan 

the up-edges of a vertex u, a vertex u has been classified as being in CGub but is 

not in ub. We may assume that u is the first such wrongly classified vertex. Then this 

could only happen in Step 2.2.3 of FINDSETS. This means that u has a down-edge 

uw, where w $Z CCWb. Since u # ub we have w E wb. Consider the median x of the 

triple w, v, b. As d(v, w) = 2, x is adjacent to both v and w. Moreover, the up-edge 

xw has been considered before in the BFS order, hence w was correctly classified as 

w E CCwh, a contradiction. 

We now list several observations which are true for median graphs. In addition to 

these facts, the correctness of the algorithm is also based on the order in which the 

vertices u are selected by the algorithm in Step 2.2. 

Let G be a median graph. Then we have: 

Observation 1: If uq and uvz are down-edges and VI, v2 E Vt, then, by convexity of 

u,, U is in ub. 

Observation 2: If uv1 and uvz are down-edges and vi E Vb and v2 6 Cwb then again 

we have u E ub. This is true because either 2)~ E ub or v2 E U,; in both cases only 

u E ub posseses this property. 

Observation 3: If uvr and uu2 are down-edges and vr E ub and 2)~ E Cwb then 

u E Cwb. Clearly, u is either in ub or in Cwb. However, ii E ub would violate the 

convexity of ub as v2 lies on a shortest path from b to u. 

Observation 4: If uv is the only down-edge of u and v E ub then u is in Cwh, 

because in median graphs only vertices in Cwb have this property. 

These observations exhaust the possible cases for down-edges of u, where vu is an 

up-edge of some v E ub. The first three are accounted for in Step 2.2.3, the fourth in 

Step 2.2.2. 

For the rest of the proof, the order in which the vertices u are chosen in Step 2.2 is 

important. Let 241,. . . , uk be the order in which the vertices in Step 2.2 are selected. Let 

ui be the first vertex that is not correctly classified. Obviously, ui # b and ui E Cwh or 

Ui E ub, because v has been correctly classified as being in ub. Two cases may occur. 

Case 1: u; E ub and Ui E ccwb. If Ui has only one down-edge (Step 2.2.2) then G 

is not a median graph, because in a median graph all vertices in ub except b have at 

least two down-edges. If Ui has a down-edge uw and w E CCwb and if this edge was 

chosen in Step 2.2.3 leading to the classification Ui E CCwb, then w E Cwb, because w 

is classified before u and hence is correctly classified. But then Ui E ub implies that Ui 

has a down-edge UiW where w E Cwb, which is impossible for a median graph. 

Case 2: Ui E CWb and Ui E CcUb. In this case Ui is classified in Step 2.2.3 and Ui 

has two down-edges UiU and uiw where w $Z’ CCwh. The vertex v is correctly classified 

in CCub. If w is in Cwb then w has one down-edge WV’ where v’ E ub. Then vertex r’ 

is closer to a than v is, so v’ is closer to b than u is, and hence U’ f GCub. Therefore, 

v’ is scanned before v in the algorithm and, hence, w is classified as being in CCWh. 

Since this is not the case we conclude that w @ Cwb. Therefore, u, has two down- 

edges uiu and u;w and it holds that v E ub and w 6 Cwh. By Observation 2, Ui E ub, a 

contradiction. 
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We conclude that CCUb = ub. Obviously it follows that CCU, = U, and CCF = F, 

completing the proof. 0 

With procedure FlNDSETS our algorithm reads as follows: 

Algorithm MEDIAN (a) 

If G is not a one-vertex graph then 

1. choose an edge ab of G such that b has maximal degree among all vertices 

adjacent to a; 

2. obtain the sets CCU,, CCUb and CCF by calling procedure FINDSETS; 

3. verify that 

3.1. CCF is a matching that defines an isomorphism between (CCU,) and 

(ccub); 

3.2. for any u E CCU, (resp. CCub) and any down-edge uw, uw $Z CCF, w is in 

CCU, (resp. CCub); 

3.3. each vertex u E CCU, U ccub\{a} has at least one down-edge; 

3.4. every vertex in X := {w 1 uw M(G), u E CCU, (resp. CCUb), w $? CCU, u 

CCUb) has exactly one neighbor in CCU, (resp. CCub) and no neighbor in 

CCub (resp. CCU,). 

if any one of the foregoing conditions is not fulfilled, then REJECT; 

4. obtain a graph G’ from G by removing the edges of G that are in CCF; 

5. MEDIAN (b); MEDIAN (a). 

We call the algorithm correct if it accepts median graphs and rejects all nonmedian 

graphs. We shall see from the proof of Theorem 3.5 that Step 1 of MEDIAN is 

not essential for the correctness of the algorithm. However, Step 1 is crucial for the 

reduction of the complexity from O(mn) to O(mfi). 

We start with an arbitrary vertex ~0, and let ut be a vertex adjacent to us with the 

largest degree. We set noat to be the first separation edge. Then in the recursive steps, 

edges ulwt and vows will be separation edges, where wt and wo are neighbors of ut 

and ~0, respectively, with the largest degree. The order of the choice of the separation 

edges is implicitly given by Steps 1 and 5 of MEDIAN. As we have already indicated, 

Step 1 is crucial for the complexity, but Step 5 is also crucial for the correctness. 

MEDIAN is started with vertex 00, but first some preprocessing has to be done. 

It must be tested whether G is bipartite. We partition the edges into up- and down- 

edges with respect to us. We point out that this is fixed for all recursive calls. We 

must also check if m d cn log n, where c is a fixed small constant (this bound holds 

for any subgraph of a hypercube, as proved by Graham [ 111). 

There are two major questions concerning the correctness of the algorithm. First, if 

ab is a parameter of FINDSETS, the procedure is only correct if up- and down-edges 

refer to the vertex a. But the edges are partitioned into up- and down-edges with 

respect to a fixed vertex us. Secondly, if CCU, # U, or CCub # ub then G is not a 

median graph, but is this recognized by the algorithm? 

The following lemma answers the first question. 
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Lemma 3.2. Let G be a median graph and let G’ be the input graph when ab is the 
separation edge. Then uv E E(G’) is an up-edge or down-edge with respect to a if 

and only if it is an up-edge or down-edge, respectively, with respect to VO. 

Proof. The statement is clearly true if a = VO. When MEDIAN is called again with 

parameter a, it is still correct. When MEDIAN is called with parameter b then (Wb) 

is the input graph because G is a median graph. We remark that G\CCF may be 

connected if G is not a median graph. Let u E wb. Each shortest path in (wb) from u 

to b extends to a shortest path from u to a in G. It follows that an up- or down-edge 

with respect to a is an up- or down-edge with respect to b. To complete the proof we 

use this argument inductively for the recursive calls. q 

Lemma 3.3. If for some separation edge ab removing the edges CCF does not dis- 

connect the graph, then the algorithm rejects and G is not a median graph. 

Proof. By Lemma 3.1 G is not a median graph. 

If the graph is not disconnected by removing the edges of CCF then there is an 

edge Z&V E E(G) such that u E ub, w E U, and u # CCub or w $! CCU,. Observe that at 

the time when ab is the separation edge the vertex a has no down-edge. 

By the recursive call of the algorithm MEDIAN all successors (with respect to up- 

edges) will be scanned first. Note that the notion up-edge always refers to the same 

start vertex. Thus, in the course of the algorithm the vertex u will be classified as 

being in CCUaf or CC&,! for some separation edge a’b’. In Step 3.2 of the algorithm 

all down-edges of u are scanned and w must be found either in CCUQ, or in CC&. 

Then all down-edges of w are scanned until finally the vertex a is either in CCU,, or 

in CCubl. If not earlier, at this stage the algorithm rejects because a has no down-edge 

and afa’. 0 

We wish to remark that this case can also occur if U, and c’, are both con- 

nected. To see this, consider a 3-cube and remove one vertex. Add at least one 

pendant edge to a vertex of degree two and start the algorithm with it. The CCF does 

not disconnect. 

Lemma 3.4. If for some separation edge ab, CCUb # CUb or CCU, # CU, then the 
algorithm rejects and G is not a median graph. 

Proof. It follows by Lemma 3.1 that G is not a median graph. We may, without loss 

of generality, assume that ab is the first separation edge such that CCub # Cub or 

CCU, # CU,. Assume, furthermore, that u is the first vertex that is classified such that 

CCub # Cub or CCu, # Cu,. 



132 J. Hquurr et ul. I Theoretical Compuler Science 21.5 (1999) 123-136 

Case 1: CCUb # CUh. We distinguish two subcases. 

Case 1.1: u E CCUh and u $Z ClJb. In this subcase u E CWb. But then there is no 

down-edge uw such that w E CCU, and the graph does not pass the isomorphism test. 

Case 1.2: u E CU, and u # CCU,. In this case u E CCwb. Clearly uw # CCF. Thus, 

there is a down-edge uw E E(G) such that w E U,. Removing CCF does not disconnect 

the graph, because b.. . uw.. . a is a path in G\CCF. By Lemma 3.3 the algorithm 

rejects. 

Case 2: CCub = Cub and CCU, # CU,. In this case the isomorphism test fails and 

the algorithm rejects. 0 

Theorem 3.5. MEDIAN correctly recognizes median graphs. In other words, it ac- 

cepts median graphs and rejects all nonmedian graphs. 

Proof. For all graphs accepted we have CCub = Cub and CCU, = CU, by Lemma 

3.4. Thus, for accepted graphs we have CCub C ub and CCU, 2 U,. If CCub # U,, 

then CCF would not disconnect, but such graphs are rejected by Lemma 3.3. Thus, 

CCub = ub, and since CCF disconnects it has to be equal to F and CCU, must be 

equal to U,. 

Therefore, the only graphs accepted satisfy CCub = ub, CCU, = U, and CCF = F 

for all separation edges ah. 

In other words, for all accepted graphs condition (i) of Theorem 2.2 holds. More- 

over, conditions (ii) and (iii) of the same theorem are verified in Steps 3.2 and 3.4, 

respectively, of MEDIAN. 

Hence, a graph accepted by the algorithm satisfies the conditions of Theorem 2.2, 

i.e. it is a median graph. 

Conversely, let G be a median graph. Then by Lemma 3.1 CCub = ub, CCU, = U, 

and CCF = F. Thus, conditions 3.1, 3.2 and 3.4 of MEDIAN hold for median graphs 

by conditions (i)-(iii) of Theorem 2.2. Condition 3.3 of MEDIAN holds for median 

graphs by Lemma 3.4. 0 

If one deletes Step 3.4 of the algorithm a class of graphs is accepted that contains 

all median graphs. We can actually extend the algorithm to obtain an embedding of 

a given median graph in a hypercube. To this end, we observe that the edges of an 

n-cube can be canonically colored by n colors by coloring any edge whose end-vertices 

differ in the ith bit with color i. (E.g. the edge [OOllOl, OOlOlO] of the &cube would 

be given color 4). Then it is easy to see that all edges in sets Fub have to have the 

same color and that edges of U, and ub which are matched by Fat, have to have the 

same color too. Thus, first we color all &,. Since every edge is in exactly one &,, this 

colors all edges uniquely. Now we consider all pairs e, f of edges matched by some 

&, (there are at most m logn such pairs) and if e and f do not have the same color 

yet, we merge colors. Thus, we obtain a coloring of the given median graph which 

defines an isometric embedding into a hypercube. 
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4. Analysis of the algorithm 

In this section we are going to show that MEDIAN runs in 0(n3’2 logn) time. 

Lemma 4.1. Let G be u median graph and let v E V(G) have k down-edges with 

respect to a vertex vg. Then ICI 32k. 

Proof. By Theorem 2.l(ii), G can be isometrically embedded in a hypercube Qs for 

some s > 1. Let / be a corresponding labeling, i.e., for any U, v E V(G), dc(u, v) = 

H(t(u),f(v)), where H(x, y) denotes the Hamming distance of the binary strings x 

and y. We may assume that [(us) = 00.. . 0. 

As v has k down-edges with respect to vg, d(v) differs from [(us) in at least k bits. 

(Note that k <s.) Therefore, e(v) contains at least k nonzero components and we may, 

without loss of generality, assume that the first k bits of e(v) equal 1. Let UUi, 1 <i< k, 

be down-edges of v (with respect to VO), where the ith bit of e(u,) is 0. 

To complete the proof we claim that for each binary string x that agrees with e(v) 

on the components k + 1, k + 2,. . . , s, there is a vertex u E V(G) with d(u) =x. Let t 

be the number of zero’s in the first k components of x. The claim will be proved by 

induction on t. For t = 0 and 1 the claim clearly holds. Let x be a string with zeros in 

the components il, i2, . . . , it, 2 d t < k, it <k. By the induction hypothesis, there exists 

a vertex w E V(G) such that e(w) has zeros in the components il, i2, . . . , it_, . Consider 

the vertices us, w and u;,. Their unique median has the label in which a component is 

obtained as a majority over the corresponding components in [(us), e(w) and e(u;, ) 

(cf. [19,8]). We conclude that x is the median of /(vo), Z!‘(W) and [(u,,), which proves 

the claim. 0 

Note that the proof of Lemma 4.1 implies that the hypercube Qk is a subgraph of 

the interval Z(v, us). 

Corollary 4.2. Let G be a median graph. Then no vertex has more than logn down- 

edges with respect to any vertex. 

As mentioned in Section 3, the calculation of up- and down-edges with respect to 

the vertex us must be done before MEDlAN is called. For the desired complexity of 

our algorithm, additional preprocessing has to be done: a check that the condition of 

Corollary 4.2 holds. We are now ready to analyze the time complexity of the algorithm 

MEDIAN. 

We first analyze the time complexity of the procedure FINDSETS. Observe that only 

edges adjacent to vertices in CCU, are scanned. By Step 2.2 exactly one down-edge 

of every up-neighbor u of v E CCUb is considered. Therefore the time complexity of 

one call of FINDSETS is in O(c ,Eccsd(v)). Observe, furthermore, that whenever a 

vertex v is in CClJb then a down-edge of this vertex is removed. Since each vertex has 

at most logn down-edges, a vertex v can be in CCub at most logn times for a fixed 

vertex b. Therefore, the overall complexity of the procedure FrNDSETS is O(m log n). 
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Now consider the complexity of the algorithm MEDIAN. Assuming a careful imple- 

mentation, Steps 3.1-3.3 can be done in time linear in the number of edges. With the 

same argument as above the overall complexity of these steps is O(m log n). To test 

Step 3.4 for CCUb, one has to go through the adjacency list of vertices in CCUb and 

mark vertices that are not in CCub or CCU,. If such a vertex is marked more than 

once the test fails and REJECT is called. Again, with the argument from above this 

takes O(m log n) time. 

The most time-consuming part is Step 3.4 for CCU,. Each call can be done in time 

O(C vEccu,d(u)). However, we cannot use Lemma 4.1 because whenever a vertex is 

in CCU, an up-edge is removed, but not a down-edge. A vertex might have O(n) 

up-edges. We wish to show that a vertex v can be in CCU, at most fi times. 

Let G be a graph and consider the separation edges chosen by the algorithm 

MEDIAN. These edges define a spanning tree which we call Tree of Separation Edges 

(TSE). If G is a median graph, then TSE is a spanning tree of G. We call a vertex u’ 

the (unique) predecessor of a vertex v if U’D is a separation edge. For a vertex v let 

f(v) := k if there are exactly k separation edges ab, a # v, such that v E CCU,. 

Lemma 4.3. Let VE V(G) and let f(v)=k. Then IV(G)I>i. (i). 

Proof. Observe first that whenever v E CCU,, an edge adjacent to v is removed. There- 

fore d(v) 2 k. Let v’ be the predecessor of v and let f (u’) = k’. 

Claim. d(v’) >k and v’ is adjacent to at least k - k’ vertices of degree at least k. 

Proof. The claim clearly holds for k = k’. Assume next k’ <k and consider the situa- 

tion when for the first time a separation edge ab is chosen such that a = v’. Observe 

that from that point on, v’ no longer occurs in CCU,t for some separation edge a’b’. 

Furthermore, at that time u has occurred at most k’ times in CCU,l for some separa- 

tion edge a’b’, because Step 3.2 of MEDIAN implies that whenever v E CCU,! then 

v’ E CCU,t. Whenever v occurs from now on in CCU, for some separation edge ab, we 

have a’ = u’ and b # u. This implies, by the design of our algorithm, that d(b) > d(v). 

Therefore, u’ must have at least k - k’ adjacent vertices of degree at least d(u). Thus, 

the claim holds. 0 

So far we have encountered at least (k - k') . k 3 Cf=,, i edges. Applying our Claim 

inductively along the unique path from v to u. in TSE and using the fact that f (vg) = 0 

we obtain I_!?(G)1 >Cf=, i= (i). 
To obtain a similar bound for the number of vertices, consider the vertex v’ and 

its k - k’ adjacent vertices ~1,242,. . . , uk _ k’. By the claim, d(ui) >k, i = 1,2,. . . , k - k’. 

Furthermore, a vertex (different from u’) has at most two adjacent vertices in (~1, ~2,. . . , 

u&k’}, because otherwise we encounter an induced K 2,3. Thus, there are at least ik(k- 

k’) different vertices adjacent to the vertices ui. By summing up the number of vertices 

along the path from v to uo and observing that each vertex is counted at most twice 

we get IV(G)I (i). q 
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Corollary 4.4. For any vertex v E V(G), f(v) E O(h). 

For a fixed vertex v each time d(v) edges have to be considered in Step 3.4 for CCU,. 

Therefore, Corollary 4.4 implies that the overall complexity is O(mfi) = O(n3i2 log n), 

which is then also the complexity of MEDIAN. 

Theorem 4.5. MEDIAN runs in 0(n3’* logn) time. 

We have seen that only Step 3.4 of the algorithm is of complexity O(m&) while 

all the other steps are of complexity O(m log n). Furthermore, if we run the algorithm 

without Step 3.4 then the algorithm attempts to embed a given graph G isometrically 

into a hypercube. It properly embeds every median graph. (As it rejects some embed- 

dable ones it cannot be used as a recognition algorithm for partial binary Hamming 

graphs.) These observations give us: 

Theorem 4.6. A median graph can be isometrically embedded into a hypercube in 

O(m log n) time. 

We conclude the paper by showing that the choice in which separation edges are 

selected is essential for the running time of our algorithm. In fact, an arbitrary sequence 

of separation edges would lead to an O(n2 log n) algorithm - the complexity of the 

algorithms due to Jha and Slutzki [ 15, 161. 

Let Gk be a graph with the vertex set 

and edges 

E(Gk) = {UV} U {uq, vq, uivi 1 i = 1,2,. . . ,k}. 

The graph Gs is shown on Fig. 1. 

If U= us and the edge uv is scanned at the end, then f‘(v) = k. The first time one 

has to go through k - 1 edges, then k - 2, and so on. As 1 V(Gk)/ = n = 2(k + l), (1;‘) 

edges are scanned in the convexity test (Step 3.4 of MEDIAN). However, if uv were 

chosen as the first separation edge, only O(n) edges are scanned. 

Fig. 1. The graph G5 
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