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Abstract

Isometric subgraphs of hypercubes, or partial cubes as they are also called, are a rich class
of graphs that include median graphs, subdivision graphs of complete graphs, and classes of
graphs arising in mathematical chemistry and biology. In general, one can recognize whether a
graph on n vertices and m edges is a partial cube in O(mn) steps, faster recognition algorithms
are only known for median graphs. This paper exhibits classes of partial cubes that are not
median graphs but can be recognized in O(m log n) steps. On the way relevant decomposition
theorems for partial cubes are derived, one of them correcting an error in a previous paper (Eur.
J. Combin. 19 (1998) 677).
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The structure of isometric subgraphs of hypercubes, or partial cubes, as they are also
known, is well understood; see the classical papers of Djokovi<c [9], Winkler [23], and
Chepoi [5]. Interestingly, they were ?rst introduced in computer science [10,11], where
a nice characterizing property of partial cubes was used, namely, vertices of a partial
cube can be labeled by words of a ?xed length using two symbols in such a way
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that the shortest path distance between any two vertices coincides with the Hamming
distance of their labels.
Here we are concerned with the fundamental problem of determining the recognition

complexities for such classes of graphs. The fastest general recognition algorithm for
partial cubes on n vertices and m edges has complexity O(mn). The ?rst such algorithm
is due to Aurenhammer and Hagauer [1]. It is direct but diGcult. For more transparent
algorithms see [13,16]. Unfortunately only the trivial lower bound I(m) is known for
the recognition of partial cubes.
Median graphs [16,19–21] are presumably the most important subclass of partial

cubes, they include trees, hypercubes, and can also be characterized as the class of
retracts of hypercubes. An O(mn) recognition algorithm for median graphs is given
in [18], while a simple algorithm of the same complexity can be found in [14]. In
[12] the complexity was reduced to O(m

√
n). Currently the recognition complexity is

O((m log n)1:41); see [16]. Because of a connection with triangle-free graphs there is
strong evidence that median graphs cannot be recognized much faster; cf. [17].
In order to narrow the gap between I(m) and O(mn) for the recognition complexity

of partial cubes several classes of graphs have been introduced, notably semi-median
graphs and almost-median graphs [14]. Although these graphs can be isometrically em-
bedded into hypercubes in O(m log n) time once they have been recognized [16, Lemma
7.10], their recognition complexity is still O(mn). Here, we show that prism-free
almost-median graphs and many related classes can be recognized in O(m log n) time.
These classes are the ?rst examples of easily describable classes of partial cubes that
are not median graphs but can be recognized faster than median graphs.
Expansion theorems and related expansion procedures are fundamental tools in de-

signing recognition algorithms for partial cubes and their subclasses. The expansion
theorem for median graphs is due to Mulder [20,21] and the expansion theorem for
partial cubes to Chepoi [5]; cf. also [22]. In Section 3, we prove two expansion theo-
rems, one for semi-median graphs and one for almost-median graphs. The ?rst theorem
corrects the corresponding expansion result from [14]. In Section 4 we then present
an algorithm of complexity O(m log n) that recognizes partial cubes in which cer-
tain sets Uab induce isometric trees; such graphs can also be described as prism-free,
almost-median graphs. We conclude with generalizations of this result to larger classes
of almost-median graphs.

2. Preliminaries

For a graph G, the distance dG(u; v), or brieKy d(u; v), between vertices u and v is
de?ned as the number of edges on a shortest u; v-path. A subgraph H of G is called
isometric if dH (u; v) = dG(u; v) for all u; v∈V (H). A subgraph H of G is convex, if
for any u; v∈V (H), all shortest u; v-paths belong to H .
The Cartesian product G H of graphs G and H is the graph with vertex set

V (G) × V (H) in which the vertex (a; x) is adjacent to the vertex (b; y) whenever
ab∈E(G) and x = y, or a = b and xy∈E(H). The graphs K2 Cn, n¿ 3, are called
prisms, and the graphs K2 Pn ladders. The Cartesian product of k copies of K2 is a
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hypercube or k-cube Qk . Isometric subgraphs of hypercubes are called partial cubes.
An important subclass of partial cubes are median graphs. These are the graphs G in
which there exists a unique vertex x to every triple of vertices u, v, and w such that x
lies simultaneously on a shortest u; v-path, a shortest u; w-path, and a shortest w; v-path.
For partial cubes, the following vertex sets play a crucial role. Let ab be an edge

of a connected, bipartite graph G = (V; E). Then

Wab = {w∈V |dG(a; w)¡dG(b; w)};
Uab = {w∈Wab |w has a neighbor in Wba};
Fab = {e∈E | e is an edge between Wab and Wba}:

By abuse of language we shall use the same notation for the sets Wab, Uab and the
subgraphs induced by them.
Clearly, Wab and Wba are disjoint. Moreover, as all graphs considered are bipartite,

V =Wab ∪Wba. Djokovi<c [9] proved that a graph G is a partial cube if and only if it
is bipartite and if for any edge ab of G the subgraph Wab is convex. It follows from
results in [3] that median graphs are precisely the bipartite graphs in which all Uab’s
are convex. By this result, the following de?nitions make sense.
A bipartite graph is a semi-median graph if it is a partial cube in which for any

edge ab the subgraph induced by Uab is connected. Similarly, a bipartite graph is an
almost-median graph if it is a partial cube such that for any edge ab the subgraph
induced by Uab is isometric.
Two edges e=xy and f=uv of G are in the Djokovi<c–Winkler [9,23] relation � if

dG(x; u) + dG(y; v) �= dG(x; v) + dG(y; u):

Clearly, � is reKexive and symmetric. Winkler [23] proved that a bipartite graph is a
partial cube if and only if �=�∗, where �∗ denotes the transitive closure of �. We
will need the following basic property of �; see [13]:

Lemma 1. Suppose P is a walk connecting the endpoints of an edge e. Then P con-
tains an edge f with e�f.

Another relevant relation de?ned on the edge set of a graph is �. We say an edge
e is in relation � to an edge f if e and f are opposite edges of a 4-cycle without
diagonals in G or if e = f. Clearly � is reKexive and symmetric. Moreover, it is
contained in �. Thus its transitive closure �∗ is contained in �∗. In [14] it is shown
that a bipartite graph is a semi-median graph if and only if � = �∗, in analogy to
Winkler’s characterization of partial cubes.
Let G be a connected graph. A proper cover of G consists of two isometric subgraphs

G1 and G2 with union G and nonempty intersection. In symbols, G = G1 ∪ G2 and
G0 =G1∩G2 �= ∅. G0 is called the intersection of the cover. The expansion of G with
respect to G1, G2 is the graph H obtained by the following procedures:

(i) Replacement of each vertex v∈G1 ∩ G2 by vertices v1, v2 and insertion of the
edge v1v2.
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(ii) Insertion of edges between v1 and the neighbors of v in G1\G2 as well as between
v2 and the neighbors of v in G2 \ G1.

(iii) Insertion of the edges v1u1 and v2u2 whenever v; u∈G1 ∩ G2 are adjacent in G.

(We refer to [4,5,14,16,20–22] for various types of expansions.) Suppose e=e1�e2� : : :
�ek = f is a sequence of edges by virtue of which e and f are in relation �∗. If, in
addition, the endpoints of these edges induce two isometric paths, then the union of the
squares that contain ei, ei+1 for i=1; 2; : : : ; k − 1 forms a ladder, that is, the Cartesian
product of a path of length k − 1 by an edge. In such a case we shall frequently use
the expression that two edges e, f in relation �∗ are connected by a “ladder”.

Note that there is a natural projection of H onto G. In this projection the edges intro-
duced by (i) are all contracted into single vertices. We call this mapping a contraction;
it is the inverse of the expansion.
Clearly the edges introduced by (i) form a �-class in H . We call it the new �-class

of H . All the other edges of H are in relation �H if and only if their preimages are
in relation �G; cf. the proof of Theorem 2.
If G0 is connected, isometric, or convex in G, we speak of a connected, isometric,

or convex expansion, respectively. If H can be obtained from the one-vertex graph K1

by a sequence of expansions of a given type, then we say that H is obtainable by an
expansion procedure of that type.

3. Decomposing semi-median and almost-median graphs

In this section we prove two expansion theorems; one for semi-median graphs and
one for almost-median graphs.
In [14] it is asserted that a graph is a semi-median graph if and only if it can be

obtained by a connected expansion procedure. However, Chepoi [6] showed that this
condition is not suGcient. To see this, take the semi-median graph Q−

3 (that is, the
3-cube minus a vertex) and expand it with respect to its isometric 6-cycle and with
respect to the subgraph induced by the vertices of Q−

3 minus a vertex of degree 2.
This is a connected expansion but the obtained graph is not semi-median; cf. Fig. 1.
We can correct this result by imposing an additional condition on the expansion

steps.

Theorem 2. A graph H is semi-median if and only if it can be obtained by a connected
expansion procedure with the following property:
(P) If two edges e∈G1, f∈G2 are in relation � and if each one of them has a

vertex outside G0 =G1 ∩G2, then there exists an edge g∈G0 with e�∗G1
g and f�∗G2

g.

Proof. Let H be a semi-median graph. We already know that it can be obtained
by a connected expansion procedure. We have to prove that all expansions in the
sequence satisfy property (P). Suppose, on the contrary, that one of the expansions in
the sequence does not satisfy (P). Since every contraction of a semi-median graph is
semi-median, we can assume without loss of generality that this happens in the last
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Fig. 1. Connected expansion yielding a non semi-median graph.

expansion step by which we obtain H from a graph G. Thus G is semi-median. Let
G1; G2 be the corresponding proper cover of G. Since the proper cover does not satisfy
property (P), there exist edges e∈E(G1) and f∈E(G2) with e�f, but no edge g in
G0 with e�∗G1

g and f�∗G2
g. Then we still have e�Hf, yet e and f clearly cannot be

in relation �∗H . Hence H is not semi-median.
For the converse, let G be a semi-median graph, and G1; G2 be a proper cover that

satis?es the conditions of the theorem. We need to prove that the graph H obtained by
the expansion is semi-median, that is �∗H =�H . Clearly, if xy and uv are edges of the
new �-class, say Fab, then xy�∗uv, because the expansion is connected. So let xy and
uv be the edges of G that correspond to edges xy and uv of H . As we already noted,
xy�Huv holds precisely when the corresponding edges are in relation �G. Indeed, if xy
and uv are both edges of Wab or of Wba then the distances between endvertices are not
changed by the expansion; otherwise, the distances between endvertices increase by one.
Suppose now that xy�Huv. Since G is semi-median, xy�∗Guv and G contains a ladder

from xy to uv. In H we wish to use the same ladder to show the validity of xy�∗Huv.
This is possible unless it contains two consecutive edges e∈G1 and f∈G2. In this
case we use property (P) to ?nd a ladder from e to f in H . Hence we also obtain
xy�∗Huv.
On the other hand, if xy and uv are not in relation �, then they are not in relation

�∗ in G, since G is semi-median. Thus xy and uv cannot be in relation �∗ in H .
We conclude that H is semi-median.

Note that property (P) of the above theorem holds when G0 is 2-isometric. (A
subgraph H of a graph G is called 2-isometric if any two vertices u, v∈H of distance
2 in G have distance 2 in H as well.) In particular this holds for median graphs as
all G0 are convex and thus 2-isometric. Moreover, this is also true for almost-median
graphs which can be obtained by an isometric expansion procedure.
The problem with an expansion theorem for almost-median graphs is that an iso-

metric expansion of an almost-median graph need not be almost-median. For instance,
the graph G13 of Fig. 2 is obtained by an isometric expansion from an almost-median
graph Q−

3 . (We expand the outer 6-cycle of Q−
3 .)
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Fig. 2. An isometric expansion of Q−
3 .

To obtain an expansion theorem for this class we recall the following well-known
property of median graphs: the covering sets in convex expansions of median graphs
are also median graphs. This observation leads to Theorem 4.
First a lemma. For a ?xed edge uv we will consider sets Uuv and Fuv with respect

to diSerent (sub)graphs H . We will hence use the notation Uuv(H) and Fuv(H) to
emphasize that Uuv or Fuv are considered with respect to H .

Lemma 3. Let ab be an edge of a partial cube G. If uv is an edge from Wab then
Uuv(Wab) = Uuv(G) ∩Wab.

Proof. Note that Fuv = Fu′v′ for any u′v′ ∈Fuv by the transitivity of �. Since Wab

is convex in G, � with respect to Wab coincides with � with respect to G. Hence
Fuv(Wab) ⊆ Fuv(G). Clearly this implies Fuv(Wab) = Fuv(G) ∩ Wab, which yields the
desired result.

Theorem 4. A graph is almost-median if and only if it can be obtained by an isometric
expansion procedure whose covering sets induce almost-median graphs.

Proof. Let H be an almost-median graph. We need to prove that both Wab and
Wba induce almost-median graphs (since then H can be obtained from a smaller
almost-median graph G with covering sets isomorphic to Wab and Wba).

For the proof that Wab is almost-median we ?rst note that Wab is a partial cube. So
we need to prove that for any uv∈Wab the set Uuv(Wab) is isometric. Because Wab

is convex, any shortest path between vertices x; y of Uuv(Wab) is in Wab. By Lemma
3, Uuv(Wab) = Uuv(G) ∩Wab. Hence, as Uuv(G) is isometric in G, there is a shortest
x; y-path that lies in Uuv(Wab).
For the converse let H be a graph obtained by an isometric expansion procedure in

which covering sets induce almost-median graphs. Let H be obtained by such an expan-
sion from G with covering sets G1 and G2. Let uv be any edge of H and assume without
loss of generality that uv is not in the new �-class obtained by the expansion. Let ab
be a representative of this new class. Let x and y be vertices of Uuv. By Lemma 3
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we have Uuv(Wab)=Uuv(G)∩Wab and Uuv(Wba)=Uuv(G)∩Wba. Hence, if x and y lie
either both in Wab or both in Wba, then Uuv already contains a shortest x; y-path of G
since G is almost-median. Finally, let x∈Wab and y∈Wba. The proof is completed by
the observation that the length of any shortest x; y-path increases by one with respect
to such paths in G. So we can use the isometry of Uuv in G again.

4. Partial cubes whose Uab’s are isometric trees

In this section, we present an algorithm of complexity O(m log n) that recognizes
partial cubes in which the sets Uab induce isometric trees.

Lemma 5. A graph G is a partial cube in which the sets Uab induce isometric trees
if and only if G is a prism-free almost-median graph.

Proof. Let G be a partial cube in which the sets Uab induce isometric trees and assume
that G contains X =K2 C2r as an induced subgraph. Since the Uab’s are isometric (and
thus connected), G is a semi-median graph. Thus �∗ =�. It follows that the edges of
X corresponding to the factor K2 belong to the same �-class. This in turn implies that
the corresponding Uab’s contain cycles.

The converse is clear.

The class of prism-free almost median graphs includes all cube-free median graphs
and arbitrary Cartesian products of two trees. As the second example shows they are
not planar, in general, but they may be viewed as a kind of two-dimensional almost
median graphs.
Partial cubes whose Uab’s are isometric trees can also be characterized as almost-

median graphs whose Uab’s are trees. To recognize such graphs we ?rst check whether
they are bipartite with not too many edges. Then we determine �∗, construct the U ∗

ab’s,
check whether they induce trees, no two edges of which are in the same �∗ class, and
whether an F∗

ab induces an isomorphism between Uab and Uba. Finally, it suGces to
show that �= �∗, because then � is transitive.
We proceed as follows. Let E∗

1 ; : : : ; E
∗
k be the equivalence classes of �∗, which we

also call color classes with respect to �∗. We ?rst construct G by joining these classes
one by one, checking certain properties which necessarily have to hold if � = �∗. If
they are not satis?ed, G cannot be a semi-median graph and is rejected.

Algorithm A. Input: A connected, bipartite graph G with m6 n log n.
Output: TRUE if G is a prism-free almost-median graph, FALSE otherwise.

1. Determine all squares, compute �∗ and the U ∗
ab’s. Let E

∗
1 ; : : : ; E

∗
k be the equivalence

classes of �∗.
2. For each edge ab check if U ∗

ab and U ∗
ba induce distinct, isometric trees that are

isomorphic. If not, then return FALSE and stop.
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3. Let G0 = (V (G); ∅). For i = 1; : : : ; n let Gi = Gi−1 ∪ E∗
i . If an edge of E∗

i has both
endpoints in the same component of Gi−1, then return FALSE and stop.

4. Return TRUE.

Lemma 6. Every prism-free almost-median graph is accepted by Algorithm A.

Proof. Let G be a prism-free almost-median graph. Then G is a partial cube and
�∗ = �∗ = �. Therefore F∗

uv = Fuv and U ∗
uv = Uuv, and so G clearly passes Step 2.

Concerning Step 2 we infer that if there exists an edge e of E∗
i that has both endpoints

in the same component of Gi−1, then e is in relation �=�∗ to an edge of the component
of Gi−1 by Lemma 3.2 of [13]. Since this is not possible, a semi-median graph passes
Step 3.

Lemma 7. Let G be a graph accepted by Algorithm A. Then �∗ =�.

Proof. Suppose this is not the case, then there are two edges e; f that are either in
relation � or in �∗, but not in both. Let e; f be such a pair with minimum distance
d in G and ‘ the smallest index such that both e and f are in one and the same
component of G‘, we denote it by Ce;f

‘ .

Claim. Every shortest path from e to f is in Ce;f
‘ .

Proof. Let P be a shortest path from e to f. By Lemma 1 no two edges of P are in
relation �. Hence, by the minimality of d, we infer that they are also not in �∗.
If P were not in G‘, then it would contain edges in a class E∗

j with j¿‘. Let j′

be the largest such index. As all edges of P are in diSerent classes E∗
j , this implies

that we add an edge to the graph Gj′−1 of which both endpoints are in one and the
same component of Gj′−1, and so G is rejected by Step 3 of the algorithm.

We continue with the proof of Lemma 7.

Case 1: e�f. In this case there are shortest paths P, Q of length d in G‘ between
e and f such that C = e ∪ P ∪ f ∪ Q is a cycle. Note that neither e nor f can be in
relation �∗ with any of the edges of P or Q (because of the minimality of d).
Assume ?rst that no two edges of the cycle have the same color. Then the algorithm

rejects G in Step 3.
Thus, suppose g�∗h, where g∈P and h∈Q. Clearly the distance between g and h

is at most d. Let R be one side of the ladder between g and h. As any two edges of
it are in diSerent �∗-classes, we derive by the same argument as in the proof of the
claim that R is in G‘. Also R is the shortest path, since any shortest path between the
corresponding vertices must have the same colors as R by the very same argument. Let
R′ be the other side of the ladder, and let S be the part of C with the same endpoints
as R and S ′ the one with the same endpoints as R′. Again without loss of generality,
we may assume that the walk W = R ∪ S is not longer than the walk R′ ∪ S ′ and that
W contains e. Then the length of W is at most 2d. Clearly any two edges of W have
distance at most d− 1. Thus, by Lemma 1 and the minimality, there is an edge on R
that is in relation �∗ with e.



Bo-stjan Bre-sar et al. / Discrete Applied Mathematics 131 (2003) 51–61 59

Now we consider two subcases.
Subcase 1.1: |R|= d. Then S, R′ and S ′ also have length d. This implies that they

all have the same �∗-colors. Hence e must be in relation �∗ to an edge of S ′. Since
this edge can be on neither P nor Q, it must be f.
Subcase 1.2: |R|¡d. Then R′∪g∪S ∪h also has length at most 2d. Hence there is

an edge e′ in R′ with e�∗e′. Because of Step 3 we ?nd an edge e′′ on S ′ with e′�∗e′′.
By the transitivity of �∗ we have e′′ = f.
We have thus shown that e and f are in relation �∗ if they are in relation �.
Case 2: e�∗f. By the claim there is a shortest path P of length d between e and f,

no two edges of which have the same �∗-color. Consider a ladder between e and f.
As before, it must be in G‘ and its sides must be shortest paths in G. But then e�f.

Theorem 8. Algorithm A correctly recognizes prism-free almost-median graphs and
can be implemented to run in O(m log n) time. 2

Proof. By Lemma 6 prism-free almost-median graphs are accepted by the algorithm.
Suppose now that G is accepted. Then, by Lemma 7, � = �∗ which implies that for
any edge uv, U ∗

uv =Uuv. Since the U ∗
uv’s are checked for being isometric trees, G is a

prism-free almost-median graph.
It remains to determine the algorithm’s complexity.
With the algorithm of [7] we ?rst construct all quadrangles of G. The complexity

of the algorithm is O(ma(G)), where a(G) denotes the arboricity of G, that is, the
minimum number of disjoint spanning forests into which G can be decomposed. It
considers every edge uv and all edges incident with an endpoint of uv of degree
min {dG(u); dG(v)}. Since∑

uv∈E(G)
min {dG(u); dG(v)}6 2a(G)m

and a(G)6 log n for partial cubes, we can stop the algorithm if
∑

uv∈E(G)
min{dG(u); dG(v)}¿m log n:

It follows that �∗ can be determined in O(m log n) time; cf. Proposition 7.6 (ii) of
[16].
We observe next that

∑

uv∈E(G)
|U�∗

uv |=
k∑

j=1

|E∗
j |= m:

Now to Step 2. By standard MAKE-SET, UNION and FIND-SET operations we can check
in O(m log n) time whether for each edge ab, U ∗

ab and U ∗
ba induce distinct trees that are

isomorphic. To check if the U ∗
ab’s are isometric, we only need to check if the edges of a

U ∗
ab have pairwise diSerent colors. Indeed, if a graph G is accepted, then U ∗

ab=Uab, and
�∗ =�, so pairwise diSerent colors of the edges of Uab imply isometry by Lemma 1.

2 As one of the referees asked, the factor log n can be removed. See the last paragraph of the paper.
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In Step 2 we have to perform two FIND-SET operations and possibly one UNION for
every one of the m edges in the graph. It is well known that these operations can be
executed within time complexity O(m log n), cf. [8].

5. Concluding remarks

1. Algorithm A thus recognizes prism-free almost-median graphs. Let us brieKy call
them AM (T ) graphs, as they can be characterized as almost-median graphs whose Uab’s
are trees. One of the main properties of trees T that are isometrically embedded in a
partial cube G is that removal of a �-class of G decomposes T into two isometrically
embedded trees. We say the class of isometrically embedded trees is invariant under
removal of �-classes. If we replace the class of trees in AM (T ) by a class S of partial
cubes that is invariant under removal of �-classes, then we obtain a new class of
almost-median graphs which we denote by AM (S). This class can be obtained by iso-
metric expansion procedures whose covering sets G1, G2 are almost-median and whose
intersection G1∩G2 are in S. Let S(m; n) denote the recognition complexity of AM (S).

By the same arguments as in the proof of Theorem 8 their recognition complexity
is the maximum of S(m; n) and O(m log n). For example, S could be the set C of all
cycles and all trees or the class H of hypercubes. Since their recognition complexities
are linear, AM (C) and AM (H) have recognition complexities O(m log n). Both classes
contain non-median graphs and the latter all acyclic cubical complexes; cf. [2,15].
2. It was remarked by one of the referees that the number of edges m of prism-free

almost median graphs might be linear in n. A positive answer would support the con-
jecture that these graphs can be recognized in linear time, which is the second question.
The answer to the ?rst question is easy. For, consider a contraction procedure of

such a graph. Let ni be the number of vertices that are contracted in the ith step. Then
these vertices induce a tree, and hence at most 2ni− 1 edges collapse. Thus m=O(n).
The answer to the second question is also positive but requires some arguments that

will be included elsewhere.
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