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The �2-Conjecture for L(2; 1)-Labelings is True for
Direct and Strong Products of Graphs

Sandi Klavzar and Simon Spacapan

Abstract—A variation of the channel-assignment problem is
naturally modeled by (2 1)-labelings of graphs. An (2 1)-la-
beling of a graph is an assignment of labels from 0 1 . . .
to the vertices of such that vertices at distance two get different
labels and adjacent vertices get labels that are at least two apart
and the -number ( ) of is the minimum value such that

admits an (2 1)-labeling. The �2-conjecture asserts that
for any graph its -number is at most the square of its largest
degree. In this paper it is shown that the conjecture holds for
graphs that are direct or strong products of nontrivial graphs.
Explicit labelings of such graphs are also constructed.

Index Terms— (2 1)-labeling, channel assignment, graph di-
rect product, graph strong product.

I. INTRODUCTION

AN -labeling of a graph is an assignment of labels
from to the vertices of such that vertices

at distance two get different labels and adjacent vertices get la-
bels that are at least two apart. The -number of is the
minimum value such that admits an -labeling. For
instance, in the complete graph on vertices every pair of
different vertices must receive labels that differ by at least two,
hence for .

The -labeling concept grew up from the problem of
assigning frequencies to radio transmitters at various nodes in a
territory. To avoid interferences, transmitters that are close must
receive frequencies that are sufficiently apart. Since frequencies
are quantized in practice, there is no loss of generality in as-
suming that they admit integer values. The problem with the
objective of minimizing the span of frequencies was first pro-
posed in 1980 by Hale [9]. Later Griggs and Yeh [8] formulated
the above-defined -labelings. Soon after the topic (and
it generalization to the -labelings) became an extensive
area of research, see the survey [2] with 114 references and re-
cent papers [4], [5], [7], [15], [18].

One of the central problems in the area is the -conjecture
of Griggs and Yeh from [8] which asserts that for any graph ,

, where is the largest degree of . The authors
originally proved that . The bound has been
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improved to by Chang and Kuo [3] and further
to by Král andŠkrekovski [17].

For the proof of the bound Chang and Kuo [3] intro-
duced an algorithm to be described in Section II. Recently Shao
and Yeh [20] proved that this approach can be used to estab-
lish the -conjecture for graphs that are nontrivial Cartesian
or lexicographic products of graphs. These two graph products,
together with the direct product and the strong product, form the
four standard graph products [10]. In this paper, we prove that
the -conjecture holds for direct products and strong products
as well. We note that -labelings of direct and strong prod-
ucts have been studied before in [12], [13], [16] —mostly direct
products and strong products of cycles have been considered.

In Section II, we describe the above-mentioned algorithm and
introduce the two graph products of interest. Using the algo-
rithm we then prove in Section III the -conjecture for direct
products and strong products. In this way the results of [20]
are rounded up—the conjecture holds (with some minor excep-
tions) for all the four standard graph products. In the last section
we also give two explicit labelings, one for the direct and one
for the strong product.

II. PRELIMINARIES

In this section, we introduce the three central concepts (be-
sides the -labelings) of this paper: Algorithm A, the di-
rect product of graphs, and the strong product of graphs.

Let be a graph, then a vertex subset is a 2-stable set if
for any vertices we have , where
denotes the usual shortest path distance in the graph . Chang
and Kuo [3] proposed the following labeling procedure for a
graph , let us call it Algorithm A. In the beginning of the
algorithm, no vertex of is labeled.

• Set and .
• Repeat

.
Let be the set of all vertices of that are not yet
labeled and are at distance at least two from any vertex
of .
Select a maximal 2-stable subset of , denote it .
Label the vertices of with

until all vertices of are labeled.
Let be the largest label obtained by Algorithm A and let be
a vertex with label . Define the following sets.

• and for some
.

• and for some
.
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Fig. 1. Direct product P � P .

• and for all .
Then, Chang and Kuo showed that

(1)

which in turn immediately implies the bound .
For graphs and , the direct product of and
is defined as follows: and

and
. See Fig. 1 where the direct product of the path on five

vertices with itself is shown. The direct product is commutative
and associative in a natural way, hence we may also consider
higher powers of the product. The direct product of graphs has
several appealing properties, for instance, low diameter, high
independence number and high odd girth, cf. [10], [11]. The di-
rect product offers several applications in engineering, computer
science and related disciplines. For example, the diagonal mesh
studied by Tang and Padubirdi [21] with respect to multipro-
cessor network is representable as the direct product of two odd
cycles while Ramirez and Melhem [19] present a fault-tolerant
computational array whose underlying graph is isomorphic to a
connected component of .

The strong product is closely related to the direct one and is
defined as follows. Let and be graphs, then their strong
product is the graph with vertex set and

whenever and ,
or and , or and .
Note that the edge set of the strong product is the union of the
edge set of the direct product and the Cartesian product (of the
same factor graphs), cf. Fig. 2 with the strong product of the path
on five vertices with itself. Among applications of the strong
product let us mention it central role in the Shannon capacity of
a graph, cf. [1], [10] and in the strong isometric dimension of a
graph [6].

Let and be arbitrary graphs. Let be the direct product
or the strong product . Then, for the

rest of this paper, we adopt the following convention. Let ,
, and be the largest degrees in , , and , respectively.

Note that

in the case and

when .
Finally, in the studies of the -labeling problem we may

clearly restrict to connected graphs, hence all factor graphs of

Fig. 2. Strong product P P .

products will be connected in this paper. Recall, however, that
the direct product of two connected bipartite graphs consists of
two connected components, cf. Fig. 1.

III. -CONJECTURE FOR DIRECT AND STRONG PRODUCT

In this section, we prove that the -conjecture holds for
any graphs that are nontrivial direct or strong products. We first
apply inequality (1) to prove the following result.

Theorem 1: Let and be nontrivial graphs. Then

Proof: Let be the largest label obtained by the Algorithm
A (after running this algorithm on the graph ) and

a vertex of with label . Let be the
neighbors of in and be the neighbors of in

. Let for and
for . Then, the number of vertices on distance 2
from is less or equal to

To see this note that is equal to the degree of , hence
the sum counts all neighbors of the neighbors
of (counted with their multiplicities). The number is sub-
tracted since we have times counted and

is subtracted since for any and any
the vertices and have

common neighbors (different from ), namely ,
where is a neighbor of . Thus, we have

and, therefore

(2)

Analogously, we get

(3)
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Now define

We shall see that for any fixed , is an increasing func-
tion (as a function of ). Suppose , then

where the last inequality follows since and for
.

Hence is increasing for . With a similar calculation we
prove that is an increasing function for , hence the expres-
sions (2) will be maximal if and .

Analogously we prove that (3) is maximal if and
. Therefore, consider the expressions

(4)

and

(5)

Since

and since

we find that (4) will be maximal if and for
all , . Similarly (5) will be maximal if and
for all , . Thus, we have

and

hence the result follows.
Theorem 1 implies the -conjecture holds for all the direct

product graphs with factors on at least three vertices.
Corollary 2: Let and be graphs with and

. Then .
Proof: Suppose first that and . Then,

. Observe that will be maximal
if is a vertex with maximal degree and all the neighbors of

have maximal degree. Hence, the graph is locally
isomorphic to , cf. Fig. 1. Clearly ,
hence .

Suppose next that and , and not both of them
are equal 2. Then

hence Theorem 1 implies .
Corollary 2 assumes that both and have at least three

vertices. Removing this assumption one would in particular
prove that the -conjecture holds for any bipartite graph. In-
deed, if is an arbitrary bipartite graph, then consists
of two connected components both isomorphic to , see [14].

By arguments similar to those used in the proof of Theorem
1 one can also prove the -conjecture for the strong product
of graphs. The obtained bound is

(6)

which clearly implies that

We skip the proof of (6) since a better upper bound will be given
in Section IV.

IV. EXPLICIT LABELINGS

In the previous section we have shown that the -conjec-
ture holds for the direct and the strong products of graphs. The
approach was based on inequality (1) that in turn follows from
Algorithm A. Note that labelings obtained by Algorithm A are
not uniquely defined and are computationally difficult to con-
struct. From the practical point of view, we would like to have
explicit labelings as well. In this section we give such explicit
labelings. In the strong product case the proposed labeling in
particular implies the -conjecture. Moreover, the bound ob-
tained here is better than (6).

We begin with the direct product as follows.
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Proposition 3: Let and be nontrivial graphs with
and . Then .

Proof: Let and
. Consider the following labeling of the vertex

set of :

if is even
if is odd.

It is straightforward to verify that is an -labeling of
and that the span of the labels is .

The explicit labeling of Proposition 3 implies the -conjec-
ture as soon as the degrees in factors are not very small. More-
over, it can also yield exact -numbers. We formulate this in the
next corollaries.

Corollary 4: Let and be nontrivial graphs with
and . Then .

Proof: By Proposition 3,
.

Corollary 5: For any , .
Proof: By Proposition 3, . Note

that the diameter of is 2. Hence, in any -la-
beling of no two distinct vertices of get
the same label, thus .

Let and be -la-
belings of and , respectively. Let

and

and let

and

Then, we have the following.
Theorem 6: Let and be nontrivial graphs and , ,
, , , as above. For and let

Then, is an -labeling of and

Proof: Suppose that and

Then, and , hence
or and thus or
. It follows from the definition of that
. Suppose that

Then, and , hence
and . Let ,

, and . Then,
and . Since

and we find that
.

For the next corollary, we use the bound
of Král andŠkrekovski [17] that holds for any graph with the
largest degree at least two.

Corollary 7: For any graphs and with and

Proof: By the bound of Král andŠkrekovski there exist
labelings and of and , such that
and . Therefore

Note that Corollary 7 immediately implies that for any graphs
and with and , .
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