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Let 퐺 be a graph and let 푚 , (퐺) ,  푖, 푗 ≥ 1 ,  be the number of edges 푢푣 
of 퐺 such that {푑 (G) ,  푑 (퐺)} = {푖, 푗} .  The 푀-polynomial of 퐺 is 
푀(퐺; 푥,푦) = ∑  푚 , (퐺)푥 푦  .  With 푀(퐺; 푥, 푦) in hands ,  numerous 
degree-based topological indices of 퐺 can be routinely computed .  In 
this note a formula for the 푀-polynomial of planar (chemical) graphs 
which have only vertices of degrees 2 and 3 is given that involves 
only invariants related to the degree 2 vertices and the number of 
faces .  The approach is applied on several families of chemical 
graphs .  In one of these families an error from the literature is 
corrected. 
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1. INTRODUCTION  

Let 퐺 = (푉(퐺) ,  퐸(퐺)) be a graph .  The degree of a vertex 푣 ∈ 푉(퐺) will be denoted by 
푑 (퐺) .  If 푚 , (퐺) ,  푖, 푗 ≥ 1 ,  denotes the number of edges 푢푣 of 퐺 such that 
{푑 (퐺) ,  푑 (퐺)} = {푖, 푗} ,  then the 푀-polynomial of 퐺 is defined as    

 푀(퐺; 푥,푦) = ∑  푚 , (퐺)푥 푦  . 
 This two-variable counting polynomial has been introduced in [5] with the main message 
that by using elementary calculus ,  numerous degree-based topological indices of 퐺 can be 
routinely calculated from 푀(퐺; 푥,푦) .  The technical details of the calculations using 
elementary calculus can be found in [5,6] and will not be repeated here .   

Among the degree-based topological indices one finds BID (bond incident degree) 
index ,  first Zagreb index ,  second Zagreb index ,  second modified Zagreb index ,  (general) 
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Randić index ,  symmetric division index ,  harmonic index ,  inverse sum index ,  augmented 
Zagreb index ,  and more .  We refer to [9] for a general treatment of degree-based topological 
indices and to [7] for the investigation of their structure-sensitivity which is important in 
chemistry .  See also [16, 17, 21] for recent investigations of extremal values of degree-
based topological indices and [1] for more on the symmetric division index .  Due to the 
wide applicability of the 푀-polynomial ,  it is not surprising that this polynomial has been 
used in many papers to derive formulas for different degree-based topological indices .  The 
papers [2, 3, 13, 14, 15, 18, 20] represent a small selection of such investigations .   

The main purpose of this note is to propose an approach how to determine the 푀-
polynomial of planar ,  (chemical) graphs in which 푑 (푣) ∈ {2,3} for each vertex 푣 of 
퐺 .  More precisely ,  we prove a formula for the 푀-polynomial of such graphs that involves 
only invariants related to the degree 2 vertices and the number of faces .  We believe that 
such a formula is very convenient since in many cases ,  especially for chemical graphs ,  the 
degree 2 vertices can be easily treated .  Moreover ,  many important families of chemical 
graphs such as benzenoid graphs ,  phenylenes ,  fluoranthenes ,  and fullerenes have only 
vertices of degrees 2 and 3 .  We demonstrate the approach on several families of chemical 
graphs where we obtain the 푀-polynomial as straightforward consequences of our main 
result .  One of these consequences also corrects an error from the literature .   

If 퐺 = (푉(퐺) ,  퐸(퐺)) is a graph ,  then we will use the notation 푛(퐺) = |푉(퐺)| and 
푚(퐺) = |퐸(퐺)| .  If 퐺 is planar ,  then the number of faces in its plane embedding will be 
denoted by 푓(퐺) . 
 
2. PLANAR GRAPHS WITH VERTICES OF DEGREES ퟐ AND 3 

Let 퐺 be a planar graph which has only vertices of degrees 2 and 3 .  We denote by 푣 (퐺) 
the number of vertices of degree 푗 ,  푗 ∈ {2,3} .  In case when 퐺 will be clear from the 
context ,  we may simplify the notation 푣 (퐺) to 푣  .  In such cases we may also simplify the 
notation 푚 , (퐺) to 푚 ,  .  

 The 푀-polynomial of a planar graph which has only vertices of degrees 2 and 3 can 
be expressed only in terms of the degree 2 vertices and the number of faces as follows .   
 
Theorem 2.1.  If 퐺 is a planar graph with vertices only of degrees 2 and 3 ,  then    

 푀(퐺; 푥,푦) = 푚 , 푥 푦  +  2(푣  −  푚 , )푥 푦  +  (3푓(퐺) −  푣  +  푚 ,  −  6)푥 푦  . 

Proof.   Note first that 2푚 ,  +  푚 , = 2푣  and 푚 ,  +  2푚 , = 3푣  ,  so that    
     3푣  −  2푚 , = 2푣  −  2푚 ,   .                                           (1) 
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Set 푓 = 푓(퐺) .  Euler’s formula gives 푣  +  푣  +  푓 −  푚 ,  −  푚 ,  −  푚 , = 2 .  Using 
푚 , = 2푣  −  2푚 ,  we get 푣  +  푣  +  푓 −  푚 ,  −  2푣  +  2푚 ,  −  푚 , = 2 ,  that is ,   

     푚 ,  −  푣 = 푓 +  푚 ,  −  푣  −  2  .                                     (2) 
  Multiplying (2) by 3 and adding it to (1) gives    

 푚 , = 3푓 +  푚 ,  −  푣  −  6 . 
 Since we already know that 푚 , = 2(푣  −  푚 , ) we have thus derived that 푀(퐺;푥,푦) =
푚 , 푥 푦  +  2(푣  −  푚 , )푥 푦  +  (3푓 −  푣  +  푚 ,  −  6)푥 푦  .                                            ■  

  Note that if 퐺 is a cubic graph (say a fullerene) ,  then of course 푚 , (퐺) = 푣 (퐺) =
0 and Theorem 2.1 reduces to the obvious fact that 푀(퐺;푥,푦) = (3푓(퐺) −  6)푥 푦  which 
follows directly from Euler’s formula 푛(퐺) −푚(퐺) + 푓(퐺) = 2 and the fact that 3푛(퐺) =
2푚(퐺) .  

 In a similar manner as Theorem 2.1 is proved ,  one can derive the following variants 
of it where the number of faces is replaced with the number of vertices and the number of 
edges of a graph ,  respectively .   

Theorem 2.2.   If 퐺 is a planar graph with vertices only of degrees 2 and 3 ,  then    

 푀(퐺; 푥,푦) = 푚 , 푥 푦  +  2(푣  −  푚 , )푥 푦  +  (3푛(퐺) −  5푣  +  2푚 , )푥 푦  . 

Theorem 2.3.  If 퐺 is a planar graph with vertices only of degrees 2 and 3 ,  then    

 푀(퐺; 푥,푦) = 푚 , 푥 푦  +  2(푣  −  푚 , )푥 푦  +  (푚(퐺) +  푚 ,  −  2푣 )푥 푦  . 

 The reader can thus select one formula from the ones given in Theorems 2.1-
2.3 .  Normally it would be the one from which it is easiest to determine the 푀-
polynomial ,  that is ,  depending which of the number of faces ,  the number of vertices ,  and 
the number of edges ,  is easiest to determine .  

 Consider now the family of graphs 퐺(ℎ, 푞, 푛) ,  where       
 ℎ is the number of hexagons in each hexagon segment ,   
 푞 is the number of squares connecting any two consecutive hexagon 

segments ,  and    
 푛 is the number of hexagon segments .   

 
The graph 퐺(3,5,4) is drawn in Figure 1; the reader can easily deduce the general 

definition from this example .   
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Figure 1. The linear generalized phenylene 퐺(3,5,4). 
  
 Before moving on we add that the graphs 퐺(ℎ,푞,푛) were named linear phenylenes 

in [8] .  However ,  the term phenylene is usually reserved for chemical graphs that are 
obtained from catacondensed benzenoid systems by adding a square between all pairs of 
adjacent hexagons ,  cf. [4, 19, 22] .  Hence a more suitable name for these graphs would be  
linear generalized phenylenes .   

The 푀-polynomial of linear generalized phenylenes 퐺(ℎ,푞,푛) was considered in 
[8] .  It was this study that motivated us for the present note in the first place .  Namely ,  the 
derivation of 푀(퐺(ℎ, 푞, 푛);푥, 푦) in [8] appears much complicated and the final result is 
clearly wrong because it does not depend on the number of squares connecting any two 
consecutive hexagon segments .  Theorem 2.1 enables us to deduce the formula for 
푀(퐺(ℎ,푞,푛);푥, 푦) in a straightforward manner .  One only needs to observe that for a given 
퐺(ℎ, 푞, 푛) we have :   

   푣 (퐺(ℎ,푞,푛)) = 2ℎ푛 +  4 ,   
   푚 , (퐺(ℎ,푞,푛)) = 6, 
   푓(퐺(ℎ, 푞, 푛)) = 1 +  푛ℎ +  (푛 −  1)푞 ,   

from which Theorem 2.1 gives :   
 
Corollary 2.4.  If ℎ ,  푞 ≥ 1 and 푛 ≥ 2 ,  then    

 푀(퐺(ℎ,푞,푛);푥, 푦) = 6푥 푦  +  4(ℎ푛 −  1)푥 푦  +  (ℎ푛 +  3푞푛 −  3푞 −  1)푥 푦  . 
    
3. TWO MORE EXAMPLES 

 In this section we give two more examples how our approach can be applied .  Consider first 
networks 퐵푅(푝, 푞) .  These networks and their 푀-polynomials were investigated in 
[20] .  The general definition of 퐵푅(푝,푞) should be clear from Figure 2 ,  where the network 
퐵푅(3,5) is drawn .   
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Figure 2. The network 퐵푅(3,5). 
  
It is straightforward to see that 푣 (퐵푅(푝, 푞)) = 8푝푞 +  4푝 +  4푞 and that 

푚 , (퐵푅(푝, 푞)) = 4푝 +  4푞 .  Moreover ,  with not much more effort we can deduce that 
푓(퐵푅(푝, 푞)) = 8푝푞 −  2푝 −  2푞 +  2 .  Plugging these values into Theorem 2.1 we get the 
following result proved in [20, Theorem 1] .   

 
Corollary 3.1. If 푝 ,  푞 ≥ 1 ,  then    

 푀(퐵푅(푝,푞);푥, 푦) = 4(푝 +  푞)푥 푦  +  16푝푞푥 푦  +  2(8푝푞 −  3푝 −  3푞)푥 푦  . 
 
 As the second example consider a family of fluoranthene-type benzenoid 

hydrocarbons 퐹(2푛) ,  see 퐹(4) (here 푛 = 2) in Figure 3 .  The parameter 푛 in general says 
that there are 2푛 hexagons in the bottom row .   

  

   
 

Figure 3. The fluoranthene 퐹(4). 
 

 The paper [10] that initiated a graph theoretical study of fluoranthene and its 
congeners had a great impact; in particular ,  different topological indices of these chemical 
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graphs have been studied .  Let us just point out the investigation of their degree-based 
topological indices in [11] and of their augmented Zagreb indices in [12] .  By the present 
example we just wish to point out an alternative simpler way .  For 푛 ≥ 2 we have 
푣 (퐹(2푛)) = 4푛 +  10 (8 vertices above the 5-gon ,  4 vertices on the sides of the bottom 
row ,  2푛 vertices in the bottom row ,  and 2(푛 − 1) vertices on the top of the bottom 
hexagons) ,  푚 (퐹(2푛)) = 11 ,  and 푓(퐹(2푛)) = 2푛 +  6 ,  so that we can immediately state :   

 
Corollary 3.2. If 푛 ≥ 2 ,  then    

 푀(퐹(2푛);푥, 푦) = 11푥 푦  +  (8푛 − 2)푥 푦  +  (2푛 + 13)푥 푦  . 
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