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ABSTRACT: A square-cell configuration (“square animal”) is a subgraph of the square
lattice in which all inner faces are 4-cycles. We determine explicit expressions for the sum
(W) of the (topological) distances between all pairs of vertices of a square-cell
configuration, as well as for the related average distance SW. Such expressions are deduced
for several families of symmetric square-cell configurations. For instance, if O(n) stands for
the octagonal square-cell configuration with n circular levels, then
W(O(n)) = (211/5)n5 − (181/3)n4 + (109/3)n3 − (35/3)n2 + (22/15)n and
W(O(n)) = 2[(7n2 − 10n+ 4)(7n2 − 10n+ 3)]−1W(O(n)). c© 2000 John Wiley & Sons, Inc. Int J
Quant Chem 76: 611–617, 2000

Key words: square-cell configuration; square lattice; distance (in square-cell
configuration); lattice animals; square animals

Introduction

T he square lattice and its finite subgraphs (de-
fined below and called square-cell configu-

rations) are frequently encountered in statistical
physics, where they are used for construction of
mathematical theories—so-called lattice models—
of a variety of phenomena, such as magnetization,
phase transition, random walks, percolation, fractal
growth, surface phenomena, and characterization
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(see, for instance, [1 – 11] and the references cited
therein). Therefore, the properties of the square
lattice and the square-cell configurations have at-
tracted considerable attention. In this work, we ex-
amine one such property, namely, the average topo-
logical distance between the vertices of a square-cell
configuration. This quantity is a convenient and in-
tuitively plausible measure of the compactness of
the respective square-cell configuration and may be
useful whenever random walks on it are considered
(see, in particular, section 5.4 in [2]).

Let S be a square-cell configuration, and V(S), its
vertex set. Let |V(S)| = N. The distance d(x, y|S)
between two vertices x and y of S is equal to the
smallest number of steps in which one can get
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from x to y (or vice versa). The sum of all such dis-
tances will be denoted by W =W(S):

W(S) =
∑

{x,y}⊆V(S)

d(x, y|S)

and the average (or mean) distance in S by W =
W(S):

W(S) = W(S)(N
2

) = 2W(S)
N(N − 1)

. (1)

At this point, it is worth mentioning that W is
just the same as the Wiener index (for a recent re-
view, see [12, 13]), a structure-descriptor defined
on molecular graphs, the first time used 50 years
ago by Wiener for predicting physicochemical prop-
erties of alkanes [14]. Mathematicians have inde-
pendently examined the same quantity, calling it
graph distance [15] or graph admittance [16], but were
not concerned with square-cell configurations. The
(closely related) average distance of a graph has also
been much studied in the mathematical literature
[17 – 19]. To the authors’ knowledge, Peter John’s ar-
ticle [20] is the only published work dealing with the
calculation of W of square-cell configurations.

Square-cell Configurations: Definition
and Basic Properties

A complete grid (also called mesh [11, 21]) is the
Cartesian product of two paths. It can also be de-
scribed as a rectangular (sub)lattice. A grid graph
is a subgraph of a complete grid. A square-cell con-
figuration is a grid graph having the property that,
when embedded in the plane, all its inner faces
are 4-cycles. In this article, we concentrate on some
families of symmetric and compact square-cell con-
figurations.

Recall that the names square animal or square lattice
animal [3, 11, 21, 22] and polyomino [23] are syn-
onymous to what here is called as a square-cell
configuration.

It has been shown in [24] that any grid graph is
a median graph and thus a partial binary Hamming
graph as well. For the purpose of this work, it is not
necessary to specify median and Hamming graphs,
and we refer to [25] for definitions and additional
information.

So, square-cell configurations are partial binary
Hamming graphs. For these graphs, an important
relation2was introduced by Djoković [26] (see also
[25, 27 – 29]). Let G be a connected graph with ver-
tex set V(G) and edge set E(G). If e = xy ∈ E(G) and

f = uv ∈ E(G), then e2f holds if d(x, u) + d(y, v) 6=
d(x, v)+ d(y, u). The relation 2 is reflexive and sym-
metric, yet it needs not be transitive. We denote its
transitive closure by 2∗ and call the equivalence
classes of 2∗ the cuts of G. Hence, the cuts of G
are pairwise disjoint subsets of E(G). Winkler [27]
proved that a connected graph is a partial binary
Hamming graph if and only if it is bipartite and
2∗ = 2.

As we already mentioned, our square-cell config-
urations are embedded into the plane (in the natural
way). From this point of view, there are two kinds
of cuts: those embracing horizontal edges and those
with vertical edges. We call the cuts with vertical
edges C1-cuts, whereas those with horizontal edges
will be referred to as C2-cuts. In Figure 1, a square-
cell configuration is shown possessing five C1-cuts
and seven C2-cuts. The five C1-cuts are indicated by
parallel lines.

If G is a partial binary Hamming graph, then it
is well known that the graph obtained from G by
removing all edges of an arbitrary cut has exactly
two connected components. With this in mind, we
formulate the following proposition from [30]:

Proposition 1. Let G be a partial binary Hamming
graph on N vertices and with k cuts. For i = 1,
2, . . . , k, let Ni be the number of vertices of G in one
of the components of the graph obtained from G by
removing the i’th cut. Then,

W(G) =
k∑

i= 1

Ni(N −Ni).

Proposition 1 provides a simple method for the
calculation of the sum of distances and average dis-
tances of partial binary Hamming graphs, which is
particularly suitable for the chemically very impor-
tant class of hexagonal systems. This was elaborated
in more detail in [31] and several explicit expres-
sions are given in [32].

FIGURE 1. A square-cell configuration and its C1-cuts.
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The main purpose of this article was to demon-
strate that this approach is also quite simple to apply
to other partial binary Hamming graphs, for in-
stance, to square-cell configurations. We show this
by computing general expressions for W for several
families of these graphs. We think that for additional
square-cell configurations or other partial binary
Hamming graphs of interest to the readers it will
not be difficult to obtain the corresponding formulas
for W along the same lines.

In what follows, N will denote the number of ver-
tices of the square-cell configuration considered. In
addition, expressions of the form∑

i

[(
i(2n+ 2)− 1

)(
N − (i(2n+ 2)− 1

))]
will be written as∑

i

[(
i(2n+ 2)− 1

)
(N − F )

]
,

that is, F will stand for the value of the “first
bracket.” Moreover, for a square-cell configura-
tion S, we will use W1 and W2 to denote the partial
sums from Proposition 1, corresponding to the C1-
cuts and C2-cuts, respectively. Hence, W(S) = W1 +
W2.

Rectangulars, Octagons, and Hexagons

We begin our computations with three relatively
simple representatives of square-cell configurations:
rectangular square-cell configurations, octagonal
square-cell configurations, and hexagonal square-
cell configurations.

RECTANGULARS

For n ≥ 1 and 1 ≤ k ≤ n, let R(n, k) be the rec-
tangular square-cell configuration. The definition
of R(n, k) should be clear from the example R(8, 5)
shown in Figure 2.

For R(n, k), we have

N = (n+ 1)(k+ 1)

W1 =
k∑

i= 1

[(
i(n+ 1)

)
(N − F )

]
W2 =

n∑
i= 1

[(
i(k+ 1)

)
(N − F )

]
.

The sum of distances of R(n, k) is equal to W1 +W2,
and simplifying the expression, we obtain

FIGURE 2. The rectangular square-cell configuration
R(8, 5).

Proposition 2. For any n ≥ 1 and 1 ≤ k ≤ n, we
have

W
(
R(n, k)

) = 1
6

(k+ 1)(k+ n+ 2)(n+ 1)
[
k(n+ 1)+ n

]
W
(
R(n, k)

) = 1
3

(k+ n+ 2).

By setting n = r − 1 and k = s − 1, where r ≥ 2,
s ≥ 2, the above formulas reduce to

W
(
R(r− 1, s− 1)

) = 1
6

(rs)(r+ s)(rs− 1) (2)

W
(
R(r− 1, s− 1)

) = 1
3

(r+ s).

These are the well-known formulas for the Wiener
number of the Cartesian product of two paths on r
and s vertices, respectively; cf. [33 – 35].

OCTAGONS

For n ≥ 2, let O(n) be the octagonal square-cell
configuration. For instance, the octagonal square-
cell configuration O(3) is depicted in Figure 3.

FIGURE 3. The octagonal square-cell configuration
O(3).
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For O(n), we have

N = 7n2 − 4n+ 1.

For the first n and the last n cuts of C1, we have

W′1 = 2
n∑

i = 1

[(
i(n+ i)

)
(N− F )

]
,

whereas for the middle n− 2 cuts from C1,

W′′1 =
n−2∑
i= 1

[(
2n2 + i(3n− 1)

)
(N − F )

]
.

Clearly, W1 =W′1+W′′1 , and, by symmetry, W2 =W1.
Simplifying the expression 2(W′1+W′′1 ), we arrive at

Proposition 3. For any n ≥ 2,

W
(
O(n)

) = 211n5

5
− 181n4

3
+ 109n3

3
− 35n2

3
+ 22n

15

W
(
O(n)

) = 2W(O(n))
(7n2 − 4n+ 1)(7n2 − 4n)

.

HEXAGONS

For n ≥ 2, let H(n) be the hexagonal square-cell
configuration. The definition of H(n) should be clear
from the example H(4) which is shown in Figure 4.

For H(n), we have N = 4n2. For the first (n − 1)
and the last (n− 1) cuts from C1, we have

W′1 = 2
n−1∑
i= 1

[(
i(i+ 1)

)
(N − F )

]
,

FIGURE 4. The hexagonal square-cell configuration
H(4).

whereas for the middle n cuts from C1,

W′′1 = 2
n∑

i= 1

[(
n(n− 1)+ i(2n)

)
(N − F )

]
.

Clearly, W1 =W′1+W′′1 . Now, for the first (n−1) and
the last (n− 1) cuts from C2, we have

W′2 = 2
n−1∑
i= 1

[(
i(n+ i)

)
(N − F )

]
.

Since W2 =W′2 + (N/2)2, we finally get

Proposition 4. For any n ≥ 2,

W
(
H(n)

) = 158n5

15
− 7n3

3
− n

5

W
(
H(n)

) = 79n3

30
− 7n

12
− 1

20n
.

Rectangular Trapeziums
and Trapeziums

In this section, we obtain the formulas for
the average distance number of certain slightly
more involved square-cell configurations: rectangu-
lar trapeziums and trapeziums. The same results
can also be obtained as special cases of the bitrapez-
iums, which are outlined in the subsequent section.
We, nevertheless, deem that it is worth considering
these special cases separately, in order to demon-
strate how the computations are quite simple.

In what follows, we give only expressions for
W(S) and N = N(S) and skip the respective formula
for W(S). The latter is readily obtained using Eq. (1).

RECTANGULAR TRAPEZIUMS

Let n ≥ 1. Then, for 1 ≤ k ≤ n, let RT(n, k) denote
the rectangular trapezium square-cell configuration.
For instance, RT(8, 6) is shown in Figure 5.

For RT(n, k), we have

N = (k+ 1)(n− k+ 1)+ k
2

(k+ 3).

For C1-cuts (from the bottom), we have

W1 =
k∑

i= 1

[(
i(n+ 1)− 1

2
(i− 1)(i− 2)

)
(N − F )

]
.

Now, for the first n − k cuts (from the left) from C2,
we have

W′2 =
n−k∑
i= 1

[(
i(k+ 1)

)
(N − F )

]
,
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FIGURE 5. The rectangular trapezium square-cell
configuration RT(8, 6).

whereas for the last k cuts from C2,

W′′2 =
k∑

i= 1

[(
i
2

(i+ 3)
)

(N − F )
]

.

As W2 =W′2 +W′′2 , simplifying the expression W1 +
2(W′2 +W′′2 ), we obtain

Proposition 5. For any n ≥ 1 and 1 ≤ k ≤ n,

W
(
RT(n, k)

)
= n3(k2 + 2k+ 1)

6
− n2(k+ 1)(k2 − 13k− 6)

12

− n(k+ 1)(5k2 − 21k− 4)
12

− k(k4 + 5k3 + 5k2 − 35k− 36)
60

.

For instance, for k = 1, the above formula reduces
to

W
(
RT(n, 1)

) = 1
3
(
2n3 + 9n2 + 10n+ 3

)
. (3)

Clearly, the latter formula can also be obtained
from Eq. (2) by substituting r = n + 1 and s =
k+ 1 = 2.

Moreover, for k = n, the above expression for
W(RT(n, k)) reduces to the formula for the sum of
distances of rectangular–triangle square-cell con-
figurations. Thus, if for n ≥ 1, T(n) denotes the
rectangular–triangle square-cell configuration, then
we have

Corollary 5.1. For any n ≥ 1,

W
(
T(n)

) = n(2n4 + 25n3 + 90n2 + 95n+ 28)
30

.

FIGURE 6. The trapezium square-cell configuration
T(11, 5).

TRAPEZIUMS

For n ≥ 1 and 1 ≤ k ≤ dn/2e, let T(n, k) stand
for the trapezium square-cell configuration. The de-
finition of T(n, k) should be clear from the example
T(11, 5), shown in Figure 6.

For T(n, k), we have

N = (n+ 1)(k+ 1)− k(k− 1)

W1 =
k∑

i= 1

[(
i(n+ 1)− (i− 1)(i− 2)

)
(N − F )

]

W2 = 2
k∑

i= 1

[(
i
2

(i+ 3)
)

(N − F )
]

+
n−2k∑
i= 1

[(
k
2

(k+ 3)+ i(k+ 1)
)

(N − F )
]

.

As W(T(n, k)) = W1 +W2, by simplifying the above
expressions, we arrive at

Proposition 6. For any n ≥ 1 and 1 ≤ k ≤ dn/2e,
W
(
T(n, k)

)
= n3(k2 + 2k+ 1)

6
− n2(2k3 − 6k2 − 11k− 3)

6

+ n(3k4 − 20k3 + 19k2 + 34k+ 4)
12

− k(4k4 − 10k3 + 35k2 − 35k− 24)
30

.

For instance, for k = 1, the above formula, as
previously, reduces to Eq. (3).

BITRAPEZIUMS

In this section, we generalize Proposition 6 to bi-
trapeziums. A similar generalization is also possible
for rectangular trapeziums from Proposition 5, but
we leave it to the reader.
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FIGURE 7. The bitrapezium square-cell configuration
BT(13, 3, 4).

Denote a bitrapezium system as BT(n, k1, k2),
where 0 ≤ k1 ≤ dn/2e − 1 and 0 ≤ k1 ≤ dn/2e − 1.
For instance, BT(13, 3, 4) is shown in Figure 7.

For BT(n, k1, k2), we have

N = k1(n− k1)+ k2(n− k2)+ 2(n+ 1).

Let N1 and N2 denote the number of vertices of the
upper trapezium, lying above the middle cut, and
the number of vertices of the lower trapezium, lying
below the middle cut, respectively. Then,

N1 = k1(n− k1)+ (n+ 1)

and

N2 = k2(n− k2)+ (n+ 1).

Then, for the first k1 cuts from the set C1, lying in the
upper trapezium, we have

W′1 =
k1−1∑
i = 0

[(
N1 − (i+ 1)(n+ 1)+

i∑
j= 0

2j

)
(n− F )

]
.

For the next k2 cuts from the set C1, lying in the
lower trapezium,

W′′1 =
k2−1∑
i= 0

[(
N2 − (i+ 1)(n+ 1)+

i∑
j= 0

2j

)
(n− F )

]
.

Clearly, W1 =W′1 +W′′1 +N1N2.
Now, for the first k1 + 1 cuts from the set C2 that

are on the leftmost part of the trapezium (by the
symmetry on the right most part), we have

W′2 =
k1+1∑
i= 1

[(
i(i+ 1)

)
(N − F )

]
.

Without loss of generality, it may be assumed that
k1 ≤ k2. Then, for the next (k2 − k1) cuts from C2

(starting from k1 + 2 to k2 + 1),

W′′2 =
k2−k1∑
i= 1

[(
(k1 + 1)(k1 + 2)

+ 2i(k1 + 1)
i
2

(i+ 1)
)

(N − F )
]

.

It remains to consider the next n−2(k2+1) cuts from
the set of elementary cuts C2. For these cuts,

W′′′2 =
n−2(k2+1)∑

i= 1

[(
(k1 + 1)(k1 + 2)

+ 1
2

(k2 − k1)(3k1 + k2 + 5)

+ i(k1 + k2 + 2)
)

(N − F )
]

.

By symmetry, W2 = 2W′2 + 2W′′2 + W′′′2 . Clearly,
W(BT(n, k1, k2)) = W1 +W2 and by simplifying we
get

Proposition 7. For any n ≥ 1 and 0 ≤ k1 ≤ dn/2e −
1, and 0 ≤ k1 ≤ dn/2e − 1, where k1 ≤ k2, the sum of
distances of BT(n, k1, k2) is equal to

n3 (k1 + k2 + 2)2

6

− n2 2k3
1 − k1(12k2 + 17)+ 2k3

2 − 17k2 − 18
6

+ n
3k4

1 − 4k3
1(k2 + 2)− k2

1(6k2
2 + 24k2 + 23)

12

− 2k1(2k3
2 + 12k2

2 + k2 − 12)
12

+ n
3k4

2 − 8k3
2 − 23k2

2 + 24k2 + 40
12

− 5k5
1 + 10k4

1 + 10k3
1(3− k2

2)
30

+ 5k2
1(4k3

2 + 12k2
2 − k2 − 10)− 5k1(k4

2 − 2k2
2 − 1)

30

− 4k5
2 + 10k4

2 + 35k3
2 + 50k2

2 − 9k2 − 30
30

.

Trapeziums can be described as T(n, k) =
BT(n, 0, k− 1). Hence, we can use the formula for W
of bitrapezium systems obtained above, in order
to obtain the expression for the trapeziums from
Proposition 6:

W
(
BT(n, 0, k− 1)

)
= n3(k2 + 2k+ 1)

6
− n2(2k3 − 6k2 − 11k− 3)

6
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+ n(3k4 − 20k3 + 19k2 + 34k+ 4)
12

− k(4k4 − 10k3 + 35k2 − 35k− 24)
30

.

Notice that due to our assumption (k1 ≤ k2) we may
only set k1 = 0, k2 = k − 1 (k ≥ 1) in the above
expression to get the desired equation for W of the
trapeziums. If we also set k2 = 0, then the above
formula reduces to the previous Eq. (3).

In conclusion, we mention two additional special
cases: If n is even, then for k1 = k2 = n/2− 1, we ob-
tain the formula for even symmetric bitrapeziums,
that is,

Corollary 7.1. For any even n ≥ 2,

W
(
BT(n, n/2− 1, n/2− 1)

)
= n(7n4 + 70n3 + 190n2 + 80n− 92)

120
.

Finally, if n is odd, we set k1 = k2 = (n − 1)/2 to
obtain W of odd symmetric bitrapeziums:

Corollary 7.2. For any odd n ≥ 1,

W
(
BT(n, (n− 1)/2, (n− 1)/2)

)
= (7n5 + 70n4 + 250n3 + 380n2 + 223n+ 30)

120
.
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