Characterizing r-perfect codes in direct products of two and three cycles

Janja Jerebic ${ }^{\text {a,** }}$, Sandi Klavžar ${ }^{\text {a,1 }}$, Simon Špacapan ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics and Computer Science, PEF, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
${ }^{\text {b }}$ University of Maribor, FME, Smetanova 17, 2000 Maribor, Slovenia

Received 14 May 2004; received in revised form 19 December 2004
Available online 18 January 2005
Communicated by L.A. Hemaspaandra

Abstract

An r-perfect code of a graph $G=(V, E)$ is a set $C \subseteq V$ such that the r-balls centered at vertices of C form a partition of V. It is proved that the direct product of C_{m} and $C_{n}(r \geqslant 1, m, n \geqslant 2 r+1)$ contains an r-perfect code if and only if m and n are each a multiple of $(r+1)^{2}+r^{2}$ and that the direct product of C_{m}, C_{n}, and $C_{\ell}(r \geqslant 1, m, n, \ell \geqslant 2 r+1)$ contains an r-perfect code if and only if m, n, and ℓ are each a multiple of $r^{3}+(r+1)^{3}$. The corresponding r-codes are essentially unique. Also, r-perfect codes in $C_{2 r} \times C_{n}(r \geqslant 2, n \geqslant 2 r)$ are characterized.

© 2005 Elsevier B.V. All rights reserved.
Keywords: Combinatorial problems; Perfect r-domination; Error-correcting codes; Direct products of graphs

1. Introduction

The problem of efficient resource placement in a computer network or in a communication network can be naturally formulated as a search for a (perfect) r-code in the corresponding underlying graph [13].

[^0]The problem has been considered in several network topologies, for instance, in hypercubes [2] and in 3D torus [4]. In [21], the authors studied a new network, the diagonal mesh network, and compared it with the well-known toroidal mesh networks as models for parallel computations. Diagonal mesh networks correspond to the direct product of cycles, while toroidal mesh networks can be represented as the Cartesian product of cycles. As it turns out, cf. [13,21], the diagonal mesh networks surpass the toroidal mesh networks in many respects. Jha $[12,13]$ studied partitions of the direct product of cycles into r-perfect codes and proved the following:

Theorem 1.

(i) [13] If $r \geqslant 1$ and m and n are each a multiple of $(r+1)^{2}+r^{2}$ then (each connected component of) $C_{m} \times C_{n}$ can be partitioned into r-perfect codes.
(ii) [12] If $r \geqslant 1$ and m, n, and ℓ are each a multiple of $(r+1)^{3}+r^{3}$ then (each connected component of) $C_{m} \times C_{n} \times C_{\ell}$ can be partitioned into r-perfect codes.
(Similar constructions as the one for proving Theorem 1 have been used elsewhere, for instance, in [5] in the case of perfect codes in the Lee metric and in [6] for tilings of integer lattices with spheres defined by the Manhattan metric.)

Here we complement Theorem 1 by showing that $C_{m} \times C_{n}(r \geqslant 1, m, n \geqslant 2 r+1)$ contains an r-perfect code if and only if m and n are each a multiple of $(r+1)^{2}+r^{2}$ and that $G=C_{m} \times C_{n} \times C_{\ell}(r \geqslant 1$, $m, n, \ell \geqslant 2 r+1$) contains an r-perfect code if and only if m, n, and ℓ are each a multiple of $r^{3}+(r+1)^{3}$. Moreover, in these cases codes are essentially unique. In addition, we also characterize r-perfect codes for $C_{2 r} \times C_{n}$, where $r \geqslant 2$ and $n \geqslant 2 r$. (For a related problem of determining the r-domination numbers of direct products of two paths see $[16,17]$.)

The direct product $G \times H$ of graphs G and H is the graph defined on the Cartesian product of the vertex sets of the factors, with two vertices $\left(u_{1}, u_{2}\right)$ and (v_{1}, v_{2}) adjacent if and only if $u_{1} v_{1} \in E(G)$ and $u_{2} v_{2} \in E(H)$. This product of graphs is commutative and associative in a natural way. Moreover, the direct product of two graphs is connected if and only if both factors are connected and at least one of them is not bipartite [22], cf. also [9]. If both factors are connected and bipartite, then their direct product consists of two connected components. In the special case when $G=C_{2 m} \times C_{2 n}$ it is in addition well known that the connected components of G are isomorphic. The direct product of graphs is one of the four standard graph products [9] and is known under many different names, for instance as the cardinal product, the Kronecker product and the categorical product. It is the product in the category of graphs [7] and has been considered from several points of view, cf. McKenzie [20] and Imrich [8].

For a graph $G=(V, E)$, the distance $d_{G}(u, v)$, or briefly $d(u, v)$, between vertices u and v, is defined
as the number of edges on a shortest u, v-path. For a vertex $v \in V$ let $B_{r}(v)=\{u \in V \mid d(u, v) \leqslant r\}$ be the r-ball centered at v. In particular, $N[v]=B_{1}(v)$ and $N(v)=N[v] \backslash\{v\}$. A set $C \subseteq V$ is an r-code in G if $B_{r}(u) \cap B_{r}(v)=\emptyset$ for any two distinct vertices $u, v \in C$. In addition, an r-code C is called an r-perfect code if $\left\{B_{r}(u) \mid u \in C\right\}$ forms a partition of V. For the results on codes in graphs up to 1991 see the monograph [18], while for some recent results see [3, 15]. Perfect codes in graphs arising from interconnection networks were studied in [19]. Since $C_{m} \times C_{n}$ is a 4-regular graph and $C_{m} \times C_{n} \times C_{\ell}$ is 8 -regular, it is worth to add that the 1-perfect code problem remains NP-complete on k-regular graphs (for any fixed $k \geqslant 3$) [18, Theorem 7.2.2].

Throughout the paper we will set $V\left(C_{n}\right)=\{0, \ldots$, $n-1\}$. Whenever applicable, the vertices of a cycle will be calculated modulo the number of its vertices. An explicit formula for the distance function in the direct product was first given by Kim in [14], but for our purposes the following approach from [1] is more useful.

Lemma 2. Let (a, x) and (b, y) be vertices of the direct product $X=G \times H$. Then $d_{X}((a, x),(b, y))$ is the smallest d such that there is an a, b-walk of length d in G and an x, y-walk of length d in H. In particular, if such walks do not exist, then (a, x) and (b, y) are in different connected components of X.

2. Products of two cycles

In this section we complement Theorem 1(i). For this sake, some preparation is needed.

Lemma 3. Let $r \geqslant 1$ and $n \geqslant m \geqslant 2 r+1$ and let P be an r-perfect code of a connected component of $C_{m} \times$ C_{n}. Assume that $(i, j) \in P$. Let $s=2 r+1$ and set

$$
\begin{aligned}
R_{1}=\{ & (i+s, j+1),(i-1, j+s), \\
& (i-s, j-1),(i+1, j-s)\}, \\
R_{2}=\{ & (i+1, j+s),(i-s, j+1), \\
& (i-1, j-s),(i+s, j-1)\} .
\end{aligned}
$$

If $P \cap R_{k} \neq \emptyset$, then $R_{k} \subseteq P(1 \leqslant k \leqslant 2)$.

Fig. 1. Vertices from $[i j]^{\bullet},{ }^{\bullet}[i j], ~ \bullet[i j],[i j] \bullet$ and (i, j) are marked black; R_{1} is denoted by circles and R_{2} by squares.

Proof. (The sets R_{1} and R_{2} are schematically shown on Fig. 1 for the case $r=2$.) By symmetry it suffices to prove the lemma for R_{1}. Using symmetry again we may assume that $(i+s, j+1) \in P$. Let

$$
\begin{aligned}
& {[i j]^{\bullet}=\{(i+s, j+1+2 k),(i+s-2 k, j+s) ;} \\
& 0 \leqslant k \leqslant(s-1) / 2\}, \\
& \cdot{ }^{\cdot}[i j]=\{(i-1-2 k, j+s),(i-s, j+s-2 k) \text {; } \\
& 0 \leqslant k \leqslant(s-1) / 2\} \text {, } \\
& \text { • } \cdot[i j]=\{(i-s, j-1-2 k),(i-s+2 k, j-s) \text {; } \\
& 0 \leqslant k \leqslant(s-1) / 2\}, \\
& {[i j]_{\bullet}=\{(i+1+2 k, j-s),(i+s, j-s+2 k) ;} \\
& 0 \leqslant k \leqslant(s-1) / 2\},
\end{aligned}
$$

cf. Fig. 1. Since $(i, j) \in P, P$ does not contain any vertex of $B_{2 r}(i, j)$, hence the vertices $(i \pm(r+1)$, $j \pm(r+1))$ are not in P. As these vertices do not belong to $B_{r}(i, j), P$ must contain exactly one vertex of each of the sets $[i j]^{\bullet},{ }^{\bullet}[i j],{ }^{\circ}[i j]$ and $[i j]$. Since $(i+s, j+1) \in[i j]^{\bullet}, P$ does not contain any other vertex of $[i j]^{\bullet}$. Consider now the vertex $(i+r-1$, $j+r+1)$. This vertex can only lie in $B_{r}(i-1, j+s)$, where $(i-1, j+s) \in{ }^{\bullet}[i j]$. Hence $(i-1, j+s) \in$ P. If we repeat analogous arguments for the vertices $(i-r-1, j+r-1)$ and $(i-r+1, j-r-1)$, we get $(i-s, j-1) \in P$ and $(i+1, j-s) \in P$. We conclude that $R_{1} \subseteq P$.

Lemma 4. Under the assumptions of Lemma 3, either $R_{1} \subseteq P$ and $R_{2} \cap P=\emptyset$, or $R_{2} \subseteq P$ and $R_{1} \cap P=\emptyset$.

Proof. Suppose that $R_{1} \cap P \neq \emptyset$ and $R_{2} \cap P \neq \emptyset$. Then by Lemma 3, $R_{1} \subseteq P$ and $R_{2} \subseteq P$. But since $R_{1} \cup R_{2}$ contains vertices at distance two, this in not possible.

Suppose now that $R_{2} \cap P=\emptyset$. Then $(i+s, j-1) \notin$ P and the vertex $(i+r+1, j+r-1)$ must lie in one of the r-balls $B_{r}(i+s, j+1+2 k), 0 \leqslant k \leqslant(s-3) / 2$. If we consider the vertex $(i+r-1, j+r+1)$ as in the proof of Lemma 3, we get that $(i-1, j+s) \in P$. By the same lemma, $R_{1} \subseteq P$. The second assertion can be shown analogously.

Lemma 5. The assumptions of Lemma 3 together with $R_{1} \subseteq P$ imply that $\{(i+2, j-2 s),(i+2 s, j+2)$, $(i-2, j+2 s),(i-2 s, j-2)\} \subseteq P$.

Proof. Since $(i+1, j-s) \in R_{1} \subseteq P$, Lemma 4 implies that P contains exactly one of the following sets

$$
\begin{aligned}
& \{(i+1+s, j-s+1),(i, j),(i+1-s, j-s-1) \\
& \quad(i+2, j-2 s)\} \\
& \{(i+2, j),(i+1-s, j-s+1),(i, j-2 s) \\
& \quad(i+1+s, j-s-1)\}
\end{aligned}
$$

On the other hand, since $(i, j) \in P$, Lemma 3 implies that P contains the first set. Hence $(i+2, j-2 s) \in P$. For the other three vertices of R_{1} we similarly get that

$$
\begin{aligned}
& \{(i+2 s, j+2),(i-2, j+2 s),(i-2 s, j-2)\} \\
& \quad \subseteq P .
\end{aligned}
$$

Let P be an r-perfect code of a connected component of $G=C_{m} \times C_{n}$ and $(i, j) \in P$. By Lemma 4, either $R_{1} \subseteq P$ or $R_{2} \subseteq P$. Suppose $R_{1} \subseteq P$. Consider the sets $P_{0}=\{(i-t, j+t s) \mid t \in \mathbb{N}\}$ and $Q_{0}=$ $\{(i+q s, j+q) \mid q \in \mathbb{N}\}$. Let ℓ_{1} be the smallest integer such that $\left(i+\ell_{1} s, j+\ell_{1}\right) \in P_{0}$ and ℓ_{2} the smallest integer such that $\left(i-\ell_{2}, j+\ell_{2} s\right) \in Q_{0}$. Define $P_{k}=$ $\{(i-t+k s, j+t s+k) \mid t \in \mathbb{N}\}$ for $k=1, \ldots, \ell_{1}-1$ and $Q_{k}=\{(i-k+q s, j+q+k s) \mid t \in \mathbb{N}\}$ for $k=$ $1, \ldots, \ell_{2}-1$. By Lemma 5, $P_{k} \subseteq P$ and $Q_{k} \subseteq P$. Then
$P=\bigcup_{k=0}^{\ell_{1}-1} P_{k}=\bigcup_{k=0}^{\ell_{2}-1} Q_{k}$.

Since $\left|P_{k}\right|=p m$ and $\left|Q_{k}\right|=q n$ we infer that $|P|=$ $\ell_{1} p m=\ell_{2} q n$. On the other hand, $\left|B_{r}(u)\right|=(r+1)^{2}+$ r^{2}, cf. [13, Lemma 2.1], hence $|P|=m n /\left((r+1)^{2}+\right.$ r^{2}). We conclude that m and n are each a multiple of $(r+1)^{2}+r^{2}$. Note that the above set P is uniquely determined by its vertices (i, j) and $(i+s, j+1)$. We denote this set by $P_{i j}(i+s, j+1)$.

In the case when $R_{2} \subseteq P$ we argue analogously that m and n are each a multiple of $(r+1)^{2}+r^{2}$. In this case P is uniquely determined by the vertices (i, j) and $(i+1, j+s)$. We denote this set by $P_{i j}(i+1$, $j+s)$.

Suppose that $P=P_{i j}(i+s, j+1)$ or $P=P_{i j}(i+$ $1, j+s)$. Then it follows from Lemma 2 that $d(x, y) \geqslant$ $2 r+1$ for any vertices $x, y \in C_{m} \times C_{n}$. We do not give details as this also follows directly from Theorem 1 . The following result then follows immediately.

Theorem 6. Let $r \geqslant 1, n \geqslant m \geqslant 2 r+1$, and $G=$ $C_{m} \times C_{n}$. Then a connected component G contains an r-perfect code P if and only if m and n are each a multiple of $(r+1)^{2}+r^{2}$. Moreover, if $(i, j) \in P$ then either $P=P_{i j}(i+s, j+1)$ or $P=P_{i j}(i+1, j+s)$.

Combining Theorems 6 and 1(i) we also have:
Corollary 7. Let $r \geqslant 1, n \geqslant m \geqslant 2 r+1$, and $G=$ $C_{m} \times C_{n}$. Then (each connected component of) G can be partitioned into r-perfect codes if and only if m and n are each a multiple of $(r+1)^{2}+r^{2}$.

Corollary 8. Let $r \geqslant 1$ and $n \geqslant 2 r+1$. Then $C_{2 r+1} \times$ C_{n} contains no r-perfect code.

Proof. By Theorem 6, $2 r+1$ must be a multiple of $(r+1)^{2}+r^{2}$ if $C_{2 r+1} \times C_{n}$ would contain an r-perfect code.

The conditions $r \geqslant 1$ and $n \geqslant m \geqslant 2 r+1$ in the above results assure that for any vertex (i, j) of $G=$ $C_{m} \times C_{n}$ we have $\left|B_{r}(i, j)\right|=(r+1)^{2}+r^{2}$. This is no longer true if either n or m or both numbers are smaller than $2 r+1$ since then we have vertices in $B_{r}(i, j)$ which can be reached by paths of length at most r by moving in both directions around the "torus". The first such case is when $r \geqslant 2$ and $n \geqslant 2 r$. In this case we have:

Proposition 9. Let $r \geqslant 2$ and $n \geqslant 2 r$. Then $C_{2 r} \times C_{n}$ contains an r-perfect code precisely in the following two cases:
(i) $n=2 r$,
(ii) $n>2 r$ and $n=\ell(2 r+1)$, for some $\ell \in \mathbb{N}$.

Proof. Let $n=2 r$. Then $C_{2 r} \times C_{2 r}$ consists of two isomorphic components H_{1} and H_{2}. Select any vertices $u_{1} \in H_{1}$ and $u_{2} \in H_{2}$. Then, since $\left|B_{r}\left(u_{i}\right)\right|=$ $2 r^{2}=\left|V\left(H_{i}\right)\right|, C_{2 r} \times C_{2 r}$ contains an r-perfect code.

Suppose $n>2 r$ and let P be an r-perfect code of $C_{2 r} \times C_{n}$. We first claim that n is a multiple of $2 r+1$. Let $|P|=k$ and let B be a arbitrary r-ball of G. Then $|B|=r(2 r+1)$ and hence $2 r n=k r(2 r+1)$. Since $n \in \mathbb{N}$ it follows that k is even, and hence it follows that n is a multiple of $2 r+1$.

It remains to show that $X=C_{2 r} \times C_{n}$ contains an r-perfect code whenever $n=\ell(2 r+1)$ for some $\ell \in$ \mathbb{N}. Set

$$
P=\bigcup_{t=0}^{\ell-1}\{(r-1, t(2 r+1)),(r, t(2 r+1))\} .
$$

Lemma 2 implies that
$d_{X}((r-1, p(2 r+1)),(r, q(2 r+1)))=\ell(2 r+1)$
whenever $p=q$ and at least $2 r+1$ whenever $p \neq q$. Since $\left|B_{r}(x)\right|=r(2 r+1)$ for any vertex x of X, we have
$\sum_{x \in P}\left|B_{r}(x)\right|=2 \ell r(2 r+1)=|X|$.
We note that in the case $X=C_{2 r} \times C_{\ell(2 r+1)}$ it is also easy to obtain a partition of $V(X)$ into r-perfect codes.

3. Products of three cycles

Similar arguments as for the product of two cycles also work for the product of three cycles. However the situation is a little bit more involved and the proof is rather lengthy so we only sketch it, the details can be found in [10].

To explain the ideas as briefly as possible, we introduce the following notation. Let $x=(i, j, k)$ be an arbitrary vertex of $C_{m} \times C_{n} \times C_{\ell}$, let $r \geqslant 1$ and $s=$
$2 r+1$. For $a_{1}, a_{2}, a_{3} \in\{\oplus, \ominus,+,-\}$ let $x^{a_{1} a_{2} a_{3}}$ be the vertex $\left(i+i^{\prime}, j+j^{\prime}, k+k^{\prime}\right)$, where $i^{\prime}=s,-s, 1,-1$ if $a_{1}=\oplus, \ominus,+,-$, respectively, and j^{\prime}, k^{\prime} are defined analogously. For instance,
$x^{\oplus++}=(i+s, j+1, k+1)$
and
$x^{-\ominus+}=(i-1, j-s, k+1)$.
In addition, let
$X^{\oplus * *}=\left\{x^{\oplus++}, x^{\oplus+-}, x^{\oplus-+}, x^{\oplus--}\right\}$,
and define the sets $X^{\ominus * *}, X^{* \oplus *}, X^{* \ominus *}, X^{* * \oplus}$, and $X^{* * \ominus}$ analogously. For instance,
$X^{* \ominus *}=\left\{x^{+\ominus+}, x^{+\ominus-}, x^{-\ominus+}, x^{-\ominus-}\right\}$.
With this notation we first have the following two lemmata.

Lemma 10. Let P be an r-perfect code of $C_{m} \times C_{n} \times$ $C_{\ell}(m, n, \ell \geqslant 2 r+1)$, and let $x=(i, j, k) \in P$. Then

$$
\begin{aligned}
\left|X^{\oplus * *} \cap P\right| & =\left|X^{\ominus * *} \cap P\right|=\left|X^{* \oplus *} \cap P\right| \\
& =\left|X^{* \ominus *} \cap P\right|=\left|X^{* * \oplus} \cap P\right| \\
& =\left|X^{* * \ominus} \cap P\right|=1 .
\end{aligned}
$$

Lemma 11. Let P be an r-perfect code of $C_{m} \times C_{n} \times$ $C_{\ell}(m, n, \ell \geqslant 2 r+1)$, let $x=(i, j, k) \in P$, and let:
$R_{1}=\left\{x^{\oplus++}, x^{-\oplus+}\right\}, \quad R_{2}=\left\{x^{\oplus++}, x^{-\oplus-}\right\}$,
$R_{3}=\left\{x^{\oplus+-}, x^{-\oplus+}\right\}, \quad R_{4}=\left\{x^{\oplus+-}, x^{-\oplus-}\right\}$,
$R_{5}=\left\{x^{\oplus-+}, x^{+\oplus+}\right\}, \quad R_{6}=\left\{x^{\oplus-+}, x^{+\oplus-}\right\}$,
$R_{7}=\left\{x^{\oplus--}, x^{+\oplus+}\right\}, \quad R_{8}=\left\{x^{\oplus--}, x^{+\oplus-}\right\}$.
Then there is exactly one $i \in\{1, \ldots, 8\}$ such that $R_{i} \subseteq$ P. In addition, P is uniquely determined by $R_{i} \cup\{x\}$.

The elements and the corresponding r-balls (for $r=2$) of the code P are shown in Fig. 2. The third component of the center of each r-ball is written in the upper right corner of the corresponding ball.

The above two lemmata reflect the local structure of an r-perfect code. In order to determine the lengths of the cycles in mind, we next consider the code on a larger scale and obtain the following lemma.

Fig. 2. 2-balls of code P.

Lemma 12. Let P be an r-perfect code of $C_{m} \times C_{n} \times$ $C_{\ell}(m, n, \ell \geqslant 2 r+1)$ and $R_{1} \cup\{(i, j, k)\} \subseteq P$. Then for some $t \in \mathbb{N}$ we have

$$
\begin{aligned}
& (i-1, j+s, k+1) \\
& \quad=\left(i-1+2 t\left((r+1)^{3}+r^{3}\right), j+s, k+1\right)
\end{aligned}
$$

Finally, we also have the following lemma.

Lemma 13. Let P be an r-perfect code of $C_{m} \times C_{n} \times$ $C_{\ell}(m, n, \ell \geqslant 2 r+1)$ and $R_{1} \cup\{(i, j, k)\} \subseteq P$. Let t_{0} be the smallest integer such that

$$
\begin{aligned}
& (i-1, j+s, k+1) \\
& \quad=\left(i-1+2 t_{0}\left((r+1)^{3}+r^{3}\right), j+s, k+1\right)
\end{aligned}
$$

Then $2 t_{0}\left((r+1)^{3}+r^{3}\right) \leqslant 2 m$.

Lemmas 12 and 13 are formulated and proved for the case when $R_{1} \cup\{(i, j, k)\} \subseteq P$. By symmetry both results also hold for all cases $R_{i} \cup\{(i, j, k)\} \subseteq P(i=$ $2, \ldots, 8)$. Therefore, combining these two lemmas we get:

Corollary 14. Let $r \geqslant 1, m, n, \ell \geqslant 2 r+1$, and let P be an r-perfect code of $C_{m} \times C_{n} \times C_{\ell}$. Then m is a multiple of $r^{3}+(r+1)^{3}$.

By the commutativity of the direct product the result of Corollary 14 can also be applied to the other
two cycles of the product. We thus have as the main result of this section:

Theorem 15. Let $r \geqslant 1, m, n, \ell \geqslant 2 r+1$, and $G=$ $C_{m} \times C_{n} \times C_{\ell}$. Then each connected component of G contains an r-perfect code if and only if m, n, and ℓ are each a multiple of $r^{3}+(r+1)^{3}$.

Finally, combining Theorem 15 with Theorem 1(ii) we can also state:

Corollary 16. Let $r \geqslant 1, m, n, \ell \geqslant 2 r+1$, and $G=$ $C_{m} \times C_{n} \times C_{\ell}$. Then each connected component of G can be partitioned into r-perfect codes if and only if m, n, and ℓ are each a multiple of $r^{3}+(r+1)^{3}$.

4. Concluding remarks

The direct product of graphs has found several applications in computer science, engineering and related areas. In particular, direct products of cycles have been proposed as a network model for parallel computations. The applicability of these graphs is in particular imposed by their rich cycle structure, cf. [11]. Recent developments from [1] also enable us to tackle location type problems in direct products of graph more efficiently than before.

The problem of efficient resource placement in a computer/communication network can be modeled as a search for (perfect) codes in the corresponding underlying graphs. The major contribution of our paper is an explicit characterization of perfect codes in direct products of two and three cycles. It is therefore hoped that our results will have an impact on efficient resource placement in diagonal meshes.

References

[1] G. Abay-Asmerom, R. Hammack, Centers of tensor products of graphs, Ars Combin., in press.
[2] H. Chen, N. Tzeng, Efficient resource placement in hypercubes using multiple-adjacency codes, III, Trans. Comput. 43 (1994) 23-33.
[3] P. Cull, I. Nelson, Error-correcting codes on the Towers of Hanoi graphs, Discrete Math. 208-209 (1999) 157-175.
[4] H. Choo, S.-M. Yoo, H.Y. Youn, Processor scheduling and allocation for 3D torus multicomputer systems, IEEE Trans. Parallel Distrib. Systems 11 (2000) 475-484.
[5] S.W. Golomb, L.R. Welch, Perfect codes in the Lee metric and the packing of polyominoes, SIAM J. Appl. Math. 18 (1970) 302-317.
[6] S. Gravier, M. Mollard, C. Payan, Variations on tilings in the Manhattan metric, Geom. Dedicata 76 (1999) 265-273.
[7] P. Hell, An introduction to the category of graphs, Topics in Graph Theory (New York, 1977), Ann. New York Acad. Sci. 328 (1979) 120-136.
[8] W. Imrich, Factoring cardinal product graphs in polynomial time, Discrete Math. 192 (1998) 119-144.
[9] W. Imrich, S. Klavžar, Product Graphs: Structure and Recognition, J. Wiley \& Sons, New York, 2000.
[10] J. Jerebic, S. Klavžar, S. Špacapan, Characterizing r-perfect codes in direct products of cycles, Preprint Ser. Univ. Ljubljana, IMFM 42 (919) (2004) 1-15.
[11] P.K. Jha, Kronecker products of paths and cycles: Decomposition, factorization and bi-pancyclicity, Discrete Math. 182 (1998) 153-167.
[12] P.K. Jha, Perfect r-domination in the Kronecker product of three cycles, IEEE Trans. Circuits Systems I Fund. Theory Appl. 49 (2002) 89-92.
[13] P.K. Jha, Perfect r-domination in the Kronecker product of two cycles, with an application to diagonal toroidal mesh, Inform. Process. Lett. 87 (2003) 163-168.
[14] S.-R. Kim, Centers of a tensor composite graph, Congr. Numer. 81 (1991) 193-203.
[15] S. Klavžar, U. Milutinović, C. Petr, 1-perfect codes in Sierpiński graphs, Bull. Austral. Math. Soc. 66 (2002) 369-384.
[16] A. Klobučar, k-dominating sets of $P_{2 k+2} \times P_{n}$ and $P_{m} \times P_{n}$, Ars Combin. 58 (2001) 279-288.
[17] A. Klobučar, N. Seifter, k-dominating sets of cardinal products of paths, Ars Combin. 55 (2000) 33-41.
[18] J. Kratochvíl, Perfect codes in general graphs, in: Rozpravy Československé Akad. Věd Řada Mat. Přírod. Věd no. 7, Akademia Praha, 1991, p. 126.
[19] M. Livingston, Q.F. Stout, Perfect dominating sets, Congr. Numer. 79 (1990) 187-203.
[20] R. McKenzie, Cardinal multiplication of structures with a reflexive relation, Fund. Math. 70 (1971) 59-101.
[21] K.W. Tang, S.A. Padubidri, Diagonal and toroidal mesh networks, IEEE Trans. Comput. 43 (1994) 815-826.
[22] P.M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc. 13 (1962) 47-52.

[^0]: * Corresponding author.

 E-mail addresses: janja.jerebic@uni-mb.si (J. Jerebic), sandi.klavzar@uni-mb.si (S. Klavžar), simon.spacapan@uni-mb.si (S. Špacapan).

 1 Supported by the Ministry of Education, Science and Sport of Slovenia under the grant P1-0297.

