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Abstract

An r-perfect code of a graphG = (V ,E) is a setC ⊆ V such that ther-balls centered at vertices ofC form a partition ofV .
It is proved that the direct product ofCm andCn (r � 1, m,n � 2r + 1) contains anr-perfect code if and only ifm andn are
each a multiple of(r + 1)2 + r2 and that the direct product ofCm, Cn, andC� (r � 1, m,n, � � 2r + 1) contains anr-perfect
code if and only ifm, n, and� are each a multiple ofr3 + (r + 1)3. The correspondingr-codes are essentially unique. Als
r-perfect codes inC2r × Cn (r � 2, n � 2r) are characterized.
 2005 Elsevier B.V. All rights reserved.
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The problem of efficient resource placement in
computer network or in a communication network c
be naturally formulated as a search for a (perfe
r-code in the corresponding underlying graph [1
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torus [4]. In [21], the authors studied a new netwo
the diagonal mesh network, and compared it with
well-known toroidal mesh networks as models for p
allel computations. Diagonal mesh networks cor
spond to the direct product of cycles, while toroid
mesh networks can be represented as the Carte
product of cycles. As it turns out, cf. [13,21], the d
agonal mesh networks surpass the toroidal mesh
works in many respects. Jha [12,13] studied partiti
of the direct product of cycles intor-perfect codes an
proved the following:

.
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Theorem 1.
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as the number of edges on a shortestu,v-path. For
a vertexv ∈ V let Br(v) = {u ∈ V | d(u, v) � r} be
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(i) [13] If r � 1 and m and n are each a multiple of
(r +1)2 + r2 then (each connected component of )
Cm × Cn can be partitioned into r-perfect codes.

(ii) [12] If r � 1 and m, n, and � are each a multiple of
(r +1)3 + r3 then (each connected component of )
Cm × Cn × C� can be partitioned into r-perfect
codes.

(Similar constructions as the one for proving Th
orem 1 have been used elsewhere, for instance, in
in the case of perfect codes in the Lee metric and
[6] for tilings of integer lattices with spheres defin
by the Manhattan metric.)

Here we complement Theorem 1 by showing t
Cm × Cn (r � 1, m,n � 2r + 1) contains anr-perfect
code if and only ifm and n are each a multiple o
(r + 1)2 + r2 and thatG = Cm × Cn × C� (r � 1,
m,n, � � 2r + 1) contains anr-perfect code if and
only if m, n, and� are each a multiple ofr3 + (r +1)3.
Moreover, in these cases codes are essentially un
In addition, we also characterizer-perfect codes fo
C2r × Cn, where r � 2 and n � 2r . (For a related
problem of determining ther-domination numbers o
direct products of two paths see [16,17].)

The direct product G × H of graphsG and H

is the graph defined on the Cartesian product of
vertex sets of the factors, with two vertices(u1, u2)

and(v1, v2) adjacent if and only ifu1v1 ∈ E(G) and
u2v2 ∈ E(H). This product of graphs is commutativ
and associative in a natural way. Moreover, the
rect product of two graphs is connected if and o
if both factors are connected and at least one of th
is not bipartite [22], cf. also [9]. If both factors ar
connected and bipartite, then their direct product c
sists of two connected components. In the special c
whenG = C2m ×C2n it is in addition well known that
the connected components ofG are isomorphic. The
direct product of graphs is one of the four stand
graph products [9] and is known under many differ
names, for instance as the cardinal product, the K
necker product and the categorical product. It is
product in the category of graphs [7] and has been c
sidered from several points of view, cf. McKenzie [2
and Imrich [8].

For a graphG = (V ,E), thedistance dG(u, v), or
briefly d(u, v), between verticesu and v, is defined
.

the r-ball centered at v. In particular,N [v] = B1(v)

andN(v) = N [v] \ {v}. A setC ⊆ V is anr-code in
G if Br(u) ∩ Br(v) = ∅ for any two distinct vertices
u,v ∈ C. In addition, anr-codeC is called anr-per-
fect code if {Br(u) | u ∈ C} forms a partition ofV .
For the results on codes in graphs up to 1991 see
monograph [18], while for some recent results see
15]. Perfect codes in graphs arising from interconn
tion networks were studied in [19]. SinceCm × Cn is
a 4-regular graph andCm × Cn × C� is 8-regular, it is
worth to add that the 1-perfect code problem rema
NP-complete onk-regular graphs (for any fixedk � 3)
[18, Theorem 7.2.2].

Throughout the paper we will setV (Cn) = {0, . . . ,

n − 1}. Whenever applicable, the vertices of a cy
will be calculated modulo the number of its vertice
An explicit formula for the distance function in the d
rect product was first given by Kim in [14], but fo
our purposes the following approach from [1] is mo
useful.

Lemma 2. Let (a, x) and (b, y) be vertices of the di-
rect product X = G × H . Then dX((a, x), (b, y)) is
the smallest d such that there is an a, b-walk of length
d in G and an x, y-walk of length d in H . In partic-
ular, if such walks do not exist, then (a, x) and (b, y)

are in different connected components of X.

2. Products of two cycles

In this section we complement Theorem 1(i). F
this sake, some preparation is needed.

Lemma 3. Let r � 1 and n � m � 2r + 1 and let P be
an r-perfect code of a connected component of Cm ×
Cn. Assume that (i, j) ∈ P . Let s = 2r + 1 and set

R1 = {
(i + s, j + 1), (i − 1, j + s),

(i − s, j − 1), (i + 1, j − s)
}
,

R2 = {
(i + 1, j + s), (i − s, j + 1),

(i − 1, j − s), (i + s, j − 1)
}
.

If P ∩ Rk �= ∅, then Rk ⊆ P (1� k � 2).
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Lemma 4. Under the assumptions of Lemma 3, either
R1 ⊆ P and R2 ∩ P = ∅, or R2 ⊆ P and R1 ∩ P = ∅.
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Fig. 1. Vertices from[ij ]•, •[ij ], •[ij ], [ij ]• and(i, j) are marked
black;R1 is denoted by circles andR2 by squares.

Proof. (The setsR1 andR2 are schematically show
on Fig. 1 for the caser = 2.) By symmetry it suffices
to prove the lemma forR1. Using symmetry again w
may assume that(i + s, j + 1) ∈ P . Let

[ij ]• = {
(i + s, j + 1+ 2k), (i + s − 2k, j + s);
0� k � (s − 1)/2

}
,

•[ij ] = {
(i − 1− 2k, j + s), (i − s, j + s − 2k);
0� k � (s − 1)/2

}
,

•[ij ] = {
(i − s, j − 1− 2k), (i − s + 2k, j − s);
0� k � (s − 1)/2

}
,

[ij ]• = {
(i + 1+ 2k, j − s), (i + s, j − s + 2k);
0� k � (s − 1)/2

}
,

cf. Fig. 1. Since(i, j) ∈ P , P does not contain an
vertex of B2r (i, j), hence the vertices(i ± (r + 1),

j ± (r + 1)) are not inP . As these vertices do no
belong toBr(i, j), P must contain exactly one verte
of each of the sets[ij ]•, •[ij ], •[ij ] and [ij ]•. Since
(i + s, j + 1) ∈ [ij ]•, P does not contain any othe
vertex of [ij ]•. Consider now the vertex(i + r − 1,

j + r +1). This vertex can only lie inBr(i −1, j + s),
where(i − 1, j + s) ∈ •[ij ]. Hence(i − 1, j + s) ∈
P . If we repeat analogous arguments for the verti
(i − r −1, j + r −1) and(i − r +1, j − r −1), we get
(i − s, j −1) ∈ P and(i +1, j − s) ∈ P . We conclude
thatR1 ⊆ P . �
Proof. Suppose thatR1 ∩ P �= ∅ and R2 ∩ P �= ∅.
Then by Lemma 3,R1 ⊆ P and R2 ⊆ P . But since
R1 ∪ R2 contains vertices at distance two, this in n
possible.

Suppose now thatR2∩P = ∅. Then(i +s, j −1) /∈
P and the vertex(i + r + 1, j + r − 1) must lie in one
of ther-ballsBr(i + s, j +1+2k), 0� k � (s −3)/2.
If we consider the vertex(i + r −1, j + r +1) as in the
proof of Lemma 3, we get that(i − 1, j + s) ∈ P . By
the same lemma,R1 ⊆ P . The second assertion can
shown analogously. �
Lemma 5. The assumptions of Lemma 3 together with
R1 ⊆ P imply that {(i + 2, j − 2s), (i + 2s, j + 2),

(i − 2, j + 2s), (i − 2s, j − 2)} ⊆ P .

Proof. Since(i + 1, j − s) ∈ R1 ⊆ P , Lemma 4 im-
plies thatP contains exactly one of the following se
{
(i + 1+ s, j − s + 1), (i, j), (i + 1− s, j − s − 1),

(i + 2, j − 2s)
}
,

{
(i + 2, j), (i + 1− s, j − s + 1), (i, j − 2s),

(i + 1+ s, j − s − 1)
}
.

On the other hand, since(i, j) ∈ P , Lemma 3 implies
thatP contains the first set. Hence(i +2, j −2s) ∈ P .

For the other three vertices ofR1 we similarly get
that
{
(i + 2s, j + 2), (i − 2, j + 2s), (i − 2s, j − 2)

}

⊆ P. �
Let P be anr-perfect code of a connected comp

nent ofG = Cm × Cn and (i, j) ∈ P . By Lemma 4,
either R1 ⊆ P or R2 ⊆ P . SupposeR1 ⊆ P . Con-
sider the setsP0 = {(i − t, j + ts) | t ∈ N} andQ0 =
{(i + qs, j + q) | q ∈ N}. Let �1 be the smallest inte
ger such that(i +�1s, j +�1) ∈ P0 and�2 the smallest
integer such that(i − �2, j + �2s) ∈ Q0. DefinePk =
{(i − t + ks, j + ts + k) | t ∈ N} for k = 1, . . . , �1 − 1
andQk = {(i − k + qs, j + q + ks) | t ∈ N} for k =
1, . . . , �2 − 1. By Lemma 5,Pk ⊆ P and Qk ⊆ P .
Then

P =
�1−1⋃

k=0

Pk =
�2−1⋃

k=0

Qk.
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Since|Pk| = pm and |Qk| = qn we infer that|P | =
�1pm = �2qn. On the other hand,|Br(u)| = (r +1)2+
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Proposition 9. Let r � 2 and n � 2r . Then C2r × Cn

contains an r-perfect code precisely in the following

s
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r2, cf. [13, Lemma 2.1], hence|P | = mn/((r + 1)2 +
r2). We conclude thatm andn are each a multiple o
(r + 1)2 + r2. Note that the above setP is uniquely
determined by its vertices(i, j) and(i + s, j + 1). We
denote this set byPij (i + s, j + 1).

In the case whenR2 ⊆ P we argue analogously tha
m andn are each a multiple of(r + 1)2 + r2. In this
caseP is uniquely determined by the vertices(i, j)

and (i + 1, j + s). We denote this set byPij (i + 1,

j + s).
Suppose thatP = Pij (i + s, j + 1) or P = Pij (i +

1, j +s). Then it follows from Lemma 2 thatd(x, y) �
2r +1 for any verticesx, y ∈ Cm ×Cn. We do not give
details as this also follows directly from Theorem
The following result then follows immediately.

Theorem 6. Let r � 1, n � m � 2r + 1, and G =
Cm × Cn. Then a connected component G contains
an r-perfect code P if and only if m and n are each a
multiple of (r + 1)2 + r2. Moreover, if (i, j) ∈ P then
either P = Pij (i + s, j + 1) or P = Pij (i + 1, j + s).

Combining Theorems 6 and 1(i) we also have:

Corollary 7. Let r � 1, n � m � 2r + 1, and G =
Cm ×Cn. Then (each connected component of ) G can
be partitioned into r-perfect codes if and only if m and
n are each a multiple of (r + 1)2 + r2.

Corollary 8. Let r � 1 and n � 2r + 1. Then C2r+1 ×
Cn contains no r-perfect code.

Proof. By Theorem 6, 2r + 1 must be a multiple o
(r +1)2+ r2 if C2r+1×Cn would contain anr-perfect
code. �

The conditionsr � 1 andn � m � 2r + 1 in the
above results assure that for any vertex(i, j) of G =
Cm ×Cn we have|Br(i, j)| = (r +1)2+ r2. This is no
longer true if eithern or m or both numbers are smalle
than 2r + 1 since then we have vertices inBr(i, j)

which can be reached by paths of length at mostr by
moving in both directions around the “torus”. The fir
such case is whenr � 2 andn � 2r . In this case we
have:
two cases:

(i) n = 2r ,
(ii) n > 2r and n = �(2r + 1), for some � ∈ N.

Proof. Let n = 2r . ThenC2r × C2r consists of two
isomorphic componentsH1 and H2. Select any ver-
tices u1 ∈ H1 and u2 ∈ H2. Then, since|Br(ui)| =
2r2 = |V (Hi)|, C2r × C2r contains anr-perfect code.

Supposen > 2r and letP be anr-perfect code of
C2r ×Cn. We first claim thatn is a multiple of 2r + 1.
Let |P | = k and letB be a arbitraryr-ball of G. Then
|B| = r(2r + 1) and hence 2rn = kr(2r + 1). Since
n ∈ N it follows that k is even, and hence it follow
thatn is a multiple of 2r + 1.

It remains to show thatX = C2r × Cn contains an
r-perfect code whenevern = �(2r + 1) for some� ∈
N. Set

P =
�−1⋃

t=0

{(
r − 1, t (2r + 1)

)
,

(
r, t (2r + 1)

)}
.

Lemma 2 implies that

dX

((
r − 1,p(2r + 1)

)
,
(
r, q(2r + 1)

)) = �(2r + 1)

wheneverp = q and at least 2r + 1 wheneverp �= q.
Since|Br(x)| = r(2r + 1) for any vertexx of X, we
have
∑

x∈P

∣∣Br(x)
∣∣ = 2�r(2r + 1) = |X|. �

We note that in the caseX = C2r × C�(2r+1) it is
also easy to obtain a partition ofV (X) into r-perfect
codes.

3. Products of three cycles

Similar arguments as for the product of two cyc
also work for the product of three cycles. However
situation is a little bit more involved and the proof
rather lengthy so we only sketch it, the details can
found in [10].

To explain the ideas as briefly as possible, we
troduce the following notation. Letx = (i, j, k) be an
arbitrary vertex ofCm × Cn × C�, let r � 1 ands =
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2r +1. Fora1, a2, a3 ∈ {⊕,	,+,−} let xa1a2a3 be the
vertex(i + i′, j + j ′, k + k′), wherei′ = s,−s,1,−1
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if a1 = ⊕,	,+,−, respectively, andj ′, k′ are defined
analogously. For instance,

x⊕++ = (i + s, j + 1, k + 1)

and

x−	+ = (i − 1, j − s, k + 1).

In addition, let

X⊕∗∗ = {x⊕++, x⊕+−, x⊕−+, x⊕−−},
and define the setsX	∗∗,X∗⊕∗,X∗	∗,X∗∗⊕, and
X∗∗	 analogously. For instance,

X∗	∗ = {x+	+, x+	−, x−	+, x−	−}.
With this notation we first have the following two lem
mata.

Lemma 10. Let P be an r-perfect code of Cm × Cn ×
C� (m,n, � � 2r + 1), and let x = (i, j, k) ∈ P . Then

|X⊕∗∗ ∩ P | = |X	∗∗ ∩ P | = |X∗⊕∗ ∩ P |
= |X∗	∗ ∩ P | = |X∗∗⊕ ∩ P |
= |X∗∗	 ∩ P | = 1.

Lemma 11. Let P be an r-perfect code of Cm × Cn ×
C� (m,n, � � 2r + 1), let x = (i, j, k) ∈ P , and let:

R1 = {x⊕++, x−⊕+}, R2 = {x⊕++, x−⊕−},
R3 = {x⊕+−, x−⊕+}, R4 = {x⊕+−, x−⊕−},
R5 = {x⊕−+, x+⊕+}, R6 = {x⊕−+, x+⊕−},
R7 = {x⊕−−, x+⊕+}, R8 = {x⊕−−, x+⊕−}.
Then there is exactly one i ∈ {1, . . . ,8} such that Ri ⊆
P . In addition, P is uniquely determined by Ri ∪ {x}.

The elements and the correspondingr-balls (for
r = 2) of the codeP are shown in Fig. 2. The thir
component of the center of eachr-ball is written in
the upper right corner of the corresponding ball.

The above two lemmata reflect the local struct
of anr-perfect code. In order to determine the leng
of the cycles in mind, we next consider the code o
larger scale and obtain the following lemma.
Fig. 2. 2-balls of codeP .

Lemma 12. Let P be an r-perfect code of Cm × Cn ×
C� (m,n, � � 2r + 1) and R1 ∪ {(i, j, k)} ⊆ P . Then
for some t ∈ N we have

(i − 1, j + s, k + 1)

= (
i − 1+ 2t

(
(r + 1)3 + r3), j + s, k + 1

)
.

Finally, we also have the following lemma.

Lemma 13. Let P be an r-perfect code of Cm × Cn ×
C� (m,n, � � 2r + 1) and R1 ∪ {(i, j, k)} ⊆ P . Let t0
be the smallest integer such that

(i − 1, j + s, k + 1)

= (
i − 1+ 2t0

(
(r + 1)3 + r3), j + s, k + 1

)
.

Then 2t0((r + 1)3 + r3) � 2m.

Lemmas 12 and 13 are formulated and proved
the case whenR1 ∪ {(i, j, k)} ⊆ P . By symmetry both
results also hold for all casesRi ∪ {(i, j, k)} ⊆ P (i =
2, . . . ,8). Therefore, combining these two lemmas
get:

Corollary 14. Let r � 1, m,n, � � 2r + 1, and let P

be an r-perfect code of Cm × Cn × C�. Then m is a
multiple of r3 + (r + 1)3.

By the commutativity of the direct product the r
sult of Corollary 14 can also be applied to the oth
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two cycles of the product. We thus have as the main
result of this section:
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[2] H. Chen, N. Tzeng, Efficient resource placement in hypercubes
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Theorem 15. Let r � 1, m,n, � � 2r + 1, and G =
Cm × Cn × C�. Then each connected component of G

contains an r-perfect code if and only if m, n, and �

are each a multiple of r3 + (r + 1)3.

Finally, combining Theorem 15 with Theorem 1(
we can also state:

Corollary 16. Let r � 1, m,n, � � 2r + 1, and G =
Cm × Cn × C�. Then each connected component of G

can be partitioned into r-perfect codes if and only if
m, n, and � are each a multiple of r3 + (r + 1)3.

4. Concluding remarks

The direct product of graphs has found several
plications in computer science, engineering and
lated areas. In particular, direct products of cycles h
been proposed as a network model for parallel co
putations. The applicability of these graphs is in p
ticular imposed by their rich cycle structure, cf. [11
Recent developments from [1] also enable us to ta
location type problems in direct products of gra
more efficiently than before.

The problem of efficient resource placement in
computer/communication network can be modeled
a search for (perfect) codes in the corresponding
derlying graphs. The major contribution of our pap
is an explicit characterization of perfect codes in
rect products of two and three cycles. It is theref
hoped that our results will have an impact on effici
resource placement in diagonal meshes.
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