
The distinguishing number of Cartesian products
of complete graphs∗

Wilfried Imricha Janja Jerebicb,c Sandi Klavžarb,c
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Abstract

The distinguishing number D(G) of a graph G is the least integer d
such that G has a labeling with d labels that is preserved only by a triv-
ial automorphism. We prove that Cartesian products of relatively prime
graphs whose sizes do not differ too much can be distinguished with a
small number of colors. We determine the distinguishing number of the
Cartesian product Kk ¤Kn for all k and n, either explicitly or by a short
recursion. We also introduce column-invariant sets of vectors and prove a
switching lemma that plays a key role in the proofs.
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1 Introduction

The distinguishing number is a symmetry related graph invariant that was in-
troduced a decade ago by Albertson and Collins [2]. For its motivation we refer
to [14]. Given a graph G its distinguishing number D(G) is the least integer d such
that G has a d-distinguishing labeling, where a labeling ` : V (G) → {1, . . . , d} is
d-distinguishing if it is invariant only under the trivial automorphism.

This concept has been studied continually since its introduction, see [6, 7,
15]. In the last couple of years the area really flourished. Numerous respectable
results were obtained and several generalizations and variations proposed. For
instance, in [8] and [12], an analogue of Brooks Theorem was recently obtained.
It asserts that D(G) ≤ ∆(G) + 1 holds for any connected graph, where equality
is attained exclusively for K∆+1, K∆,∆, and C5. As to generalizations we note
that Tymoczko [16] generalized the notion of the distinguishing number to group
actions on sets, see also [4, 5, 12], and that Collins and Trenk [8] introduced and
studied distinguishing labelings that are proper colorings.

Bogstad and Cowen [3] determined the distinguishing number of hypercubes.
One way of looking at the n-cube is to consider it as the Cartesian product of n
factors, all isomorphic to K2. As it turned out, the result of Bogstad and Cowen
was the tip of an iceberg, as has first been made evident by Albertson [1]. He
proved that for a connected prime graph G, D(Gr) = 2 for all r ≥ 4, and, if
|V (G)| ≥ 5, then D(Gr) = 2 for all r ≥ 3. (Recall that a graph is prime if it
cannot be represented as the Cartesian product of two nontrivial graphs.) Then,
in [13], it was shown that D(Gr) = 2 for any connected graph G 6= K2 and any
r ≥ 3. Lastly, the distinguishing number of all Cartesian powers was determined
in [11] by proving that D(Gk) = 2 for any connected graph G and any k ≥ 2,
with the following three exceptions: D(K2

2) = D(K3
2) = D(K2

3) = 3.
The present paper is closely related to the paper of Chan [5] in which she

studies the distinguishing number of the action of a group G on a set X denoted
by DG(X). More precisely, one searches for the smallest number of labels (or
colors) such that there exists a labeling of X, where no nontrivial group element
induces a label preserving permutation of X. In a special case, every element
of the group Sk × Sn acts on the k × n grid (Nk × Nn) as a permutation of the
rows followed by a permutation of the columns. Hence for k 6= n this action
coincides with the action of the automorphism group of the graph Kk¤Kn on
the set V (Kk¤Kn) and consequently D(Kk¤Kn) = DSk×Sn(Nk × Nn) for every
k 6= n. To determine these numbers Chan [5, Theorem 3.2] recursively defines
sets Tk,n such that DSk×Sn(Nk × Nn) = min{Tk,n}.

In this paper we begin with the investigation of products of relatively prime
graphs and prove that D(G ¤ H) ≤ d provided that k ≤ |G| ≤ |H| ≤ dk − k + 1.
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Then we turn to products of complete graphs and prove our main result:

Theorem 1.1 Let k, n, d be integers so that d ≥ 2 and (d− 1)k < n ≤ dk. Then

D(Kk ¤ Kn) =

{
d, if n ≤ dk − dlogd ke − 1;

d + 1, if n ≥ dk − dlogd ke+ 1.

If n = dk − dlogd ke then D(Kk ¤ Kn) is either d or d + 1 and can be computed
recursively in O(log∗(n)) time.

This also provides a good upper bound on the distinguishing number of prod-
ucts of relatively prime graphs. (Recall that two graphs G and H are relatively
prime if there is no nontrivial graph that is a factor of both G and H. Clearly,
two prime graphs are relatively prime.)

After submission of our paper we learned that Theorem 1.1 had independently
been discovered in the setting of edge labelings by Fisher and Issak [9]. They
determined the values of k and n for which there is a labelling of the edges of the
complete biparite graph Kk,n that is preserved only by a trivial automorphism.
Since the line graph of Kk,n is isomorphic to Kk¤Kn and Aut(Kk,n) coincides
with Aut(Kk¤Kn), their results on the distinguishing edge colorings of complete
bipartite graphs can be translated to distinguishing vertex colorings of Cartesian
product of complete graphs. Of course, Theorem 1.1 also implies their result
on distinguishing edge colorings of Kk,n. Theorem 1.1 is almost the same as [9,
Corollary 9], except that we do not need recursion for K3 ¤ K6, (this case is
covered by Proposition 3.3) nor for K6 ¤ K61 or Kd2−1 ¤ Kdd2−1−2, d ≥ 3 (which
is covered by Proposition 3.10).

Our methods rely heavily on the structure of the automorphism group of the
Cartesian product and hold for all other products with the same structure of
the automorphism group. For example, all the results about the distinguishing
number of Cartesian products of complete graphs also hold for the distinguishing
number of the direct product of complete graphs.

It is tempting to replace the term automorphism in the definition of the dis-
tinguishing number by endomorphism, retraction, or weak retraction. For all
structures where these morphisms are well understood one can expect general
and interesting results.

This also holds for the distinguishing number of Cartesian products of infinite
graphs, which we touch at the end of the paper.

For terms not defined here, in particular for the Cartesian product of graphs
and its properties, we refer to [10].
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2 Products of relatively prime graphs

In this section we consider Cartesian products of relatively prime graphs. The
main result of the section, Theorem 2.2, asserts that the distinguishing number
of such products is small provided that the sizes of the factors do not differ too
much. We begin with the following lemma.

Lemma 2.1 Let k ≥ 2, d ≥ 2, G a connected graph on k vertices, and H
a connected graph on dk − k + 1 vertices that is relatively prime to G. Then
D(G ¤ H) ≤ d.

Proof. Since G and H are relatively prime every automorphism maps G-fibers
into G-fibers and H-fibers into H-fibers.

Denote the set of vectors of length k with integer entries between 1 and d by
Nk

d, and let S be the set of the following k − 1 vectors from Nk
d:

(1, 1, 1, . . . , 1, 1, 1, 2)
(1, 1, 1, . . . , 1, 1, 2, 2)
(1, 1, 1, . . . , 1, 2, 2, 2)

...
(1, 2, 2, . . . , 2, 2, 2, 2).

Consider the dk−k+1 vectors from Nk
d\S and label the G-fibers with them. Then

the number of 1’s in the H-fibers is dk−1 − k + 1, . . . , dk−1 − 1, dk−1. Hence any
label preserving automorphism ϕ of G ¤ H preserves these fibers individually, so
ϕ can only permute the G-fibers. But since they are all different, it follows that
ϕ is the identity. Hence, the described labeling is d-distinguishing. ¤

Before stating the next theorem we wish to remark, as one of the referees
commented, that we could have defined a d-labeling of G ¤ H as a matrix L with
entries {1, 2, . . . , d} whose rows/columns are indexed by vertices of G/H. This
would have allowed different, somehow shorter proofs, of several of the results,
for example the next one. We have decided to do without matrices and wish to
apologize to those readers who would have preferred the other approach.

Theorem 2.2 Let k ≥ 2, d ≥ 2, and Gand H connected, relatively prime graphs
with k ≤ |G| ≤ |H| ≤ dk − k + 1. Then D(G ¤H) ≤ d.

Proof. For d = 2 this is proved in [11, Theorem 4.2].
Let d ≥ 3 and suppose that |G| = k. Call vectors (a1, a2, . . . , ak) and

(b1, b2, . . . , bk) of Nk
2 a complementary pair if ai + bi = 3 for every 1 ≤ i ≤ k.
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Let S be the set of k−1 vectors as in the proof of Lemma 2.1. Set B = Nk
2 \S

and C = Nk
d \ Nk

2. Note that there are 2k−1 − k + 1 complementary pairs in B.
Let Bs = {v1,v2, . . . ,v2k−k+1−2s} be the set obtained from B by removing s,
0 ≤ s ≤ 2k−1−k +1, complementary pairs and let Ct be the set obtained from C
by removing t, 0 ≤ t ≤ dk−2k, vectors. It follows from the construction of Bs that
the vectors u1,u2, . . . ,uk, where ui is defined as ui = (v1

i , v
2
i , . . . , v

2k−k+1−2s
i ) ∈

N2k−k+1−2s
2 and vj

i denotes the i-th coordinate of the vector vj from Bs, have
pairwise different numbers of ones.

For every d ≥ 3 we can write |H| = |Bs|+ |Ct| for some s and t. Let ` be the
labeling of G ¤ H defined as follows. Arbitrarily select 2k − k + 1 − 2s G-fibers
and label them with the vectors of Bs. Then label the remaining G-fibers with
vectors of Ct. Let G1 denote the first and G2 the second set of G-fibers. We claim
that ` is d-distinguishing.

Let α be an automorphism of G ¤ H that preserves `. Then α can only
permute some labels of the G-fibers inside G1 and some labels of the G-fibers
inside G2. Since all of these labels are different, α must permute the H-fibers
also. Let ϕ be the a non-trivial permutation of the H-fibers induced by α. Then
ϕ induces a non-trivial permutation of the vectors u1,u2, . . . ,uk. Since they have
pairwise different numbers of ones, α is the identity.

Suppose next that |G| > k (and |G| ≤ |H|). Select a subgraph G′ of G
with k vertices and use the above labeling for G′ ¤ H. This labeling leads to
at most k different numbers of ones in the H-fibers of G′ ¤ H. Let K be the
set of these numbers. Now label the H-fibers of (G \ G′) ¤ H arbitrarily with

vectors from N|H|d such that every fiber has a distinct number of ones from the
set {0, 1, . . . , |H|} \K. As before the G-fibers and the H-fibers are fixed by every
automorphism. ¤

To conclude this section we observe that distinguishing numbers of products
of complete graphs are upper bounds for distinguishing numbers of products of
relatively prime graphs. As we show in the next section, the bounds are good in
most cases.

Proposition 2.3 Let G and H be connected, relatively prime graphs with |G| 6=
|H|. Then D(G ¤ H) ≤ D(K|G| ¤K|H|).

Proof. Since G and H are relatively prime, every automorphism preserves the set
of G-fibers and the set of H-fibers, see [10, Corollary 4.17]. Since |K|G|| 6= |K|H||
the same conclusion holds for K|G| ¤ K|H| as well. Therefore, considering G ¤ H as
a spanning subgraph of K|G| ¤ K|H| we infer that Aut(G ¤ H) ⊆ Aut(K|G| ¤ K|H|)
and consequently D(G ¤ H) ≤ D(K|G| ¤K|H|). ¤
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3 Proof of Theorem 1.1

It is already known that D(Kn ¤Kn) = 3 for n = 2, 3, and D(Kn ¤ Kn) = 2 for
n > 3, see [11]. Since K1 ¤ Kn is isomorphic to Kn, D(K1 ¤ Kn) = n, we still
have to determine the distinguishing numbers of Kk ¤ Kn for 2 ≤ k ≤ n. Clearly
we may assume that k < n.

As Kk and Kn are relatively prime for k 6= n, Theorem 2.2, in the special case
of complete factors, reads as:

Lemma 3.1 Let k, d ≥ 2 and let k < n ≤ dk − k + 1. Then D(Kk ¤Kn) ≤ d.

On the other hand, if n is large enough, the distinguishing number also has
to be large, as the next result asserts.

Lemma 3.2 Let k, d ≥ 2 and n > dk. Then D(Kk ¤Kn) ≥ d + 1.

Proof. Let ` be an arbitrary d-labeling of Kk ¤ Kn. Since there are more than
dk Kk-fibers, at least two of them have identical labels. Since Aut(Kk ¤ Kn)
acts transitively on the Kk-fibers we infer that ` is not distinguishing. Hence
D(Kk ¤ Kn) ≥ d + 1. ¤

Combining the above two results we can already determine the distinguishing
number in many cases.

Proposition 3.3 Let k, d ≥ 2 and (d− 1)k < n ≤ dk − k + 1 (and n > k). Then
D(Kk ¤ Kn) = d.

Proof. The assertion follows from Lemma 3.1, Lemma 3.2, and the fact that
D(Kk ¤ Kn) = 1 if and only if k = n = 1. ¤

Hence, we still have to determine D (Kk ¤ Kdk−r) for 0 ≤ r ≤ k − 2, where
k, d ≥ 2. In particular, if k = 2 the only missing cases of Proposition 3.3 are
those where n is a perfect square. By Lemmas 3.1 and 3.2 these numbers can
only be d or d + 1. To this end the following concept is useful:

Let π be a permutation from Sk and v = (v1, . . . , vk) ∈ Nk
d. Define πv by

πv = (vπ−1(1), . . . , vπ−1(k)) .

Then we say that the set X = {v1, . . . ,vr} is column-invariant if there exists a
nontrivial π ∈ Sk such that

{v1, . . . ,vr} = π{v1, . . . ,vr},
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where π{v1, . . . ,vr} = {πv1, . . . , πvr} . In other words, π induces a permutation
ϕπ ∈ Sr such that πvi = vϕπ(i) for all i, 1 ≤ i ≤ r.

We can interpret the vi as a d-labeling of Kk ¤ Kr, where every vi labels a
Kk-fiber, and π as a permutation of the Kdk−r-fibers. Column-invariance thus
means that application of π to the Kdk−r-fibers and successive application of ϕπ

to the Kk-fibers is a labeling preserving automorphism of Kk ¤ Kdk−r.
It should be noted though that not all d labels may be used by the vectors

v1, . . . ,vr.

Lemma 3.4 Let k, d ≥ 2. Then D (Kk ¤ Kdk) = d + 1.

Proof. Since Nk
d is column invariant D (Kk ¤ Kdk) must be larger than d. Fur-

thermore, an application of Lemma 3.1 for n = dk and d + 1 in the place of d
shows that it is at most d + 1. ¤

We wish to remark that Lemma 3.4 provides the missing cases of Proposi-
tion 3.3 for k = 2. Thus we know all distinguishing numbers of Kk ¤Kn for
k = 1, 2.

Lemma 3.5 (Switching Lemma) Let k, d ≥ 2 and 1 ≤ r < dk. Then every
set of r vectors from Nk

d is column invariant if and only if every set of dk − r
vectors from Nk

d is also column invariant.

Proof. Let v1, . . . ,vr be a set of r vectors from Nk
d that is column-invariant and

u1, . . . ,udk−r be the remaining dk − r vectors from Nk
d.

By assumption the set v1, . . . ,vr is column-invariant. Thus, there is a per-
mutation π in Sk such that

{v1, . . . ,vr} = π{v1, . . . ,vr} = {πv1, . . . , πvr} .

Since πNk
d = Nk

d we infer that π{u1, . . . ,udk−r} = {u1, . . . ,udk−r}. In other
words, {u1, . . . ,udk−r} is also column invariant.

By the same argument the column invariance of {u1, . . . ,udk−r} entails that
of {v1, . . . ,vr}. ¤

Proposition 3.6 Let k, d ≥ 2 and 1 ≤ r ≤ k − 2. Then

(i ) D(Kr ¤ Kk) ≥ d + 1 ⇒ D(Kk ¤ Kdk−r) = d + 1 and

(ii ) D(Kr ¤ Kk) ≤ d ⇒ D(Kk ¤ Kdk−r) = d.
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Proof. D(Kr ¤ Kk) ≥ d + 1 implies that there is no d-distinguishing labeling
of Kr ¤ Kk. It follows that every set consisting of r vectors from Nk

d is column-
invariant. By the Switching Lemma 3.5 this is possible only if every set consisting
of dk − r vectors from Nk

d is column-invariant. We can thus conclude that there
is no d-distinguishing labeling of Kk ¤Kdk−r and hence D (Kk ¤Kdk−r) ≥ d + 1.
The assertion (i) follows since we already know that D (Kk ¤ Kdk−r) is either d
or d + 1.

The proof of (ii) is similar. ¤

Proposition 3.7 Let k, d ≥ 2 and 1 ≤ r ≤ k − 2. Then D(Kk ¤ Kdk−r) = d + 1
if and only if every set consisting of r vectors from Nk

d is column-invariant.

Proof. If every set of r vectors from Nk
d is column-invariant, then D(Kk ¤ Kr) ≥

d + 1, and thus D(Kk ¤ Kdk−r) = d + 1 by Proposition 3.6 (i).
On the other hand, if there is a set of r vectors from Nk

d that is not column-
invariant, then D(Kk ¤Kr) ≤ d, and thus D(Kk ¤ Kdk−r) 6= d + 1 by Proposi-
tion 3.6 (ii). ¤

Proposition 3.8 Let d ≥ 2, 3 ≤ k ≤ d. Then D (Kk ¤ Kdk−1) = d.

Proof. Let v = (v1, . . . , vk) ∈ Nk
d, where vi 6= vj for every i 6= j and let π ∈

Sk. Then πv = v if and only if π = id. Hence Proposition 3.7 implies that
D (Kk ¤Kdk−1) = d. ¤

Proposition 3.9 Let k, d ≥ 2 and 0 ≤ r < logd k. Then D(Kk ¤ Kdk−r) = d+1.

Proof. The case r = 0 is covered by Lemma 3.4. Thus, let r ≥ 1, and {v1, . . . ,vr}
be a set of r vectors from Nk

d. For every 1 ≤ i ≤ k define ui = (v1
i , . . . , v

r
i ). Since

k > dr, at least two vectors from the set {u1, . . . ,uk} ⊆ Nk
d are the same. Suppose

ui = uj where i < j. In other words, v`
i = v`

j for 1 ≤ ` ≤ r. Let π ∈ Sk be the
transposition (i j). Then for any `, 1 ≤ ` ≤ r,

πv` = (v`
π−1(1), . . . , v

`
π−1(i), . . . , v

`
π−1(j), . . . , v

`
π−1(k))

= (v`
π(1), . . . , v

`
π(i), . . . , v

`
π(j), . . . , v

`
π(k))

= (v`
1, . . . , v

`
j, . . . , v

`
i , . . . , v

`
k)

= (v`
1, . . . , v

`
i , . . . , v

`
j, . . . , v

`
k)

= v` .

Hence {πv1, . . . , πvr} = {v1, . . . ,vr}. Since π is nontrivial, {v1, . . . ,vr} is
column-invariant. By Proposition 3.7 the assertion follows. ¤
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Proposition 3.10 Let d, r ≥ 2 and r+2 ≤ k ≤ dr−r+1. Then D (Kk ¤ Kdk−r) =
d.

Proof. Since the assumptions of Lemma 3.1 are fulfilled we have D(Kr ¤ Kk) ≤ d.
The assertion then follows by Proposition 3.6 (ii). ¤

From the above results we can complete the proof of the non-recursive part
of Theorem 1.1 as follows. Let us call an integer r good if we have established
a closed formula for D (Kk ¤ Kdk−r) (implicitly assuming dk − r > (d − 1)k).
Proposition 3.3 and Lemma 3.4 state that if r is not good then 1 ≤ r ≤ k − 2.
By Proposition 3.9, if r is not good then dlogd ke ≤ r ≤ k − 2.

For r = 1, Propositions 3.8 and 3.9 yield the result. Let r ≥ 2. Choosing k so
that r + 2 ≤ k ≤ dr−1 fits Proposition 3.10. This implies that only r = dlogd ke
may not be good. This case can be treated by the following algorithm:

Distinguishing(k, n)

1. d = bn 1
k c+ 1

2. if n 6= dk − dlogd ke
3. then determine D(Kk ¤ Kn) from Theorem 1.1

4. else determine D(Kk ¤ Kn) from D(Kdk−n ¤ Kk) by an application
of Proposition 3.6

We note that Step 3 returns the distinguishing number and that the recurrence
step, Step 4, is executed only if dk − k + 1 < n. Since d ≥ 2 we infer

2k − k + 1 < n,

2k < 2n,

k − 1 < log2 n.

Hence dk−n < k−1 < log2 n. This means, instead of Kk ¤ Kn we have to consider
Kk1 ¤ Kk, where k1 = dk − n < log2 n. If Distinguishing(k1, k) also enters the
recursive step, then with a call of Distinguishing(k2, k1), where k2 < log2 k.
Since ki ≥ 1 the number of recursive steps cannot be more than the iterated
logarithm

log∗2 n.

Note that log∗2 2 = 1, log∗2 4 = 2, log∗2 16 = 3, log∗2 65536 = 4, and log∗2(2
65536) = 5.

For d = 3 we need a recursion for r = 3 and k = 26. It pertains to the
product K26 ¤K326−3. Distinguishing(26, 326 − 3) leads to Step 4, tells us to
find D(K3 ¤K26), and to apply Proposition 3.6. We thus have to check whether
D(K3 ¤ K26) is ≥ d + 1 or ≤ d. In the first case D (K26 ¤ K326−3) is 4, in the
other 3.

By Proposition 3.8 we infer that D(K3 ¤ K26) = D (K3 ¤ K33−1) = 3. Thus
D (K26 ¤ K326−3) is also 3.

9



4 Concluding remarks

The Cartesian product of finitely many relatively prime, connected infinite graphs
behaves very much as in the finite case. Thus, the results of this paper have
analogues in the infinite case. For example,

D(Kℵ0 ¤ Kℵ0) = 2.

For a proof one simply labels with the vectors

sk = (1, 1, 1, . . . , 1, 2, 2, 2 . . .), k = 1, 2, . . . ,

where sk has k 1’s and infinitely many 2’s.
In general, however, the proofs are more complicated, in particular for large

cardinals, and will be the subject of a subsequent paper.
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