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We give three different characterizations of intersection graphs of hairlines in R 1 and 
determine the number of such graphs on n vertices. We also characterize intersection graphs of 
halfplanes in R 2 in terms of forbidden subgraphs, and prove that sphericity of joins of 
triangulated graphs with bipartite complements is at most 2. 

1. Introduction 

If ~ = {$1, $ 2 , . . . ,  Sn} is a family of sets, then its intersection graph is the 
graph G = ( ~ : , E )  where SiSjc. E if and only if SiNSj:/:~ and i:/:j (see [4]). 
Characterization of intersection graphs of unit spheres in R 3 is a difficult problem 
[5]. An interesting subclass consists of intersection graphs of halfspaces (observe 
that replacing halfspaces with spheres of sufficiently large diameter preserves the 
intersection graph). It is easy to see that the classes of intersection graphs of 
halfspaces in R n and R m coincide if n, m I> 2. Therefore it suffices to consider 
intersection graphs of halfplanes in R 2. These in turn are built from intersection 
graphs of hairlines in R x in a simple way. We shall call intersection graphs of 
finite families of hairlines unbounded interval graphs. 

Lemma 1. G is the intersection graph of a finite family of halfplanes in R 2 if  and 
only if G is a join of a finite family of  unbounded interval graphs. 

Proof. A family 3~ of parallel halfplanes in R 2 has the same intersection graph as 
some family of hairlines in R 1 (obtained by projecting the elements of 3~ 
orthogonally on the common normal of their boundaries). Because two nonpara- 
llel halfplanes have nonempty intersection, the lemma follows. [] 

In Section 2 we give three different characterizations of unbounded interval 
graphs and enumerate them, and in Section 3 we characterize intersection graphs 
of halfplanes in terms of forbidden subgraphs. 

If G is a graph and v ~ V(G),  then A d j ( v ) =  {w 6 V(G) /vw ~ E(G)}. The 
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relation <~ in V(G),  defined by: 

v ~< w ¢:> Adj(v) ~_ Adj(w) U {w}, 

is called the vicinal preorder of G. The Dilworth number of G is the size of a 
maximum antichain in V(G) with respect to ~<, or equivalently, the size of a 
minimum cover of V(G) by chains with respect to ~< (see [1]). Other 
graph-theoretical definitions follow [3]. 

2. Unbounded interval graphs 

Theorem 1. For a graph G the following statements are equivalent: 
(1) G is an unbounded interval graph, 
(2) V(G) can be partitioned into V~ and V2 such that V1 and V2 induce complete 

subgraphs in G and 111 forms a chain in the vicinal preorder of G, 
(3) G is triangulated and (~ is bipartite, 
(4) G contains no induced subgraph isomorphic to (?4 or to any of (72,+1, for 

n = L 2 ,  • • • 

Proof. (1) => (2): Let G be an unbounded interval graph. We partition V(G) into 
two subsets V1 and V2, with 111 corresponding to intervals infinite to the left and V2 
corresponding to intervals infinite to the right. Clearly, 111 and V2 induce complete 
graphs in G. Let vi and vj from V1 correspond to intervals ( - ~ ,  ai] and ( - ~ ,  aj] 
such that ai <~aj. Then Adj(vi) is contained in Adj(vj)U {vj}, proving that 111 
forms a chain in the vicinal preorder of G. 

(2 )~ (3 ) :  Suppose C = v l v 2 ' ' ' V k ,  k ~ 4 ,  is a cycle in G. If at least three of 
the v~'s belong to the same complete subgraph of G then C has a chord. 
Otherwise k = 4 and each of 111, V2 contains two vertices of C. Wig. assume that 
v~, v2 e V1, v3, v4 e 1/2 and v~ ~< v2 (recall that 1/1 forms a chain for ~< ). Then 
v2v4e E(G) is a chord, and G is triangulated. Obviously (~ is bipartite with 
partition V(G) = Vi t.J Vz. 

(3) ~ (4): Because G is triangulated it contains no induced subgraph isomor- 
phic to (74. Because t~ is bipartite G contains none of t~2,+~, for n = 1, 2 , . . .  

( 4 )~ (1 ) :  Since bipartite graphs are comparability graphs, G is an interval 
graph by Theorem 8.1, of [3]. Let ~ be a family of intervals on the real line 
whose intersection graph is G, and let I be an interval from ~:. Denote by ~ ( I )  
the set of all intervals from ~ which do not intersect L As t~ contains no 
triangles, the size of the largest independent set in G cannot exceed 2. Therefore 
all the intervals from [9(I) lie on the same side of L By extending I on the other 
side into infufity the intersection graph of ~: is preserved. In this way we can 
replace all the intervals from 3~ with unbounded intervals without changing the 
intersection graph of the family. D 
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From (2) it follows that the Dilworth number of unbounded interval graphs is 
at most 2, and hence these graphs are permutation graphs (see [1]). However, 
there exist permutation graphs which are also interval graphs and have Dilworth 
number at most 2, but are not unbounded interval graphs. An example is 
furnished by the stars Kl.n, for n I>3. Also, it is easy to see that the class of 

unbounded interval graphs is properly contained in the class of unit interval 
graphs. 

Theorem 2. There are exactly 2n-2+ 2 [½n-l] pairwise nonisomorphic unbounded 
interval graphs on n vertices (n >t 1). 

Proof. A family of unbounded intervals can be represented by a word over the 
alphabet {L, R} by assigning L's and R's to intervals unbounded to the left and 
right, respectively, and ordering the letters coherently with the order of the 
endpoints of their corresponding intervals. Let W denote the collection of all 
finite words constructed on alphabet {L, R}, and Wn the collection of all those 
words from W which have length n. If w ~ W, let G(w) denote the intersection 
graph of the family represented by w. For example, if w = LRLL then G(w) is 
isomorphic to K4 - e. Then G(W,,) is the set of all unbounded interval graphs on 
n vertices. Let r(w) be the word obtained from w by reversing it, and chan~ng 
L's into R's  and vice versa. Obviously r is an involution, and the words w and 
r(w) yield the same graph. Hence IG(Wn)I ~< en, where en is the number of orbits 
of r in Wn. For n odd, the middle letters of w and r(w) are different. Hence in 
this case r has no fixed point, and there are 2 n-1 orbits of cardinality 2. For n 
even, r has 2 ½n fixed points. Therefore there a re  2½ n orbits of cardinality 1 and 

! n  21(2 n - 25 ) orbits of cardinality 2. Thus 

Let 

~2 n-l, for n odd, n/> 1, 

en = [2n_ 1 + 2½n_1, for n even, n I> O. 
(1) 

A,, := RWn-1 LI Wn-IL, for n >I 1, 

Bn := LWn_2R, for n ~> 2, 

where juxtaposition indicates concatenation. Then Wn = An tA Bn for n 1> 2. The 
graphs from G(An) have at least one vertex of degree n - 1 while this is not true 
for graphs from G(Bn). Hence 

IG(Wn)l-  IG(An)l + IG(Bn)l, for n I> 2. (2) 

The graphs of G(An) are obtained from graphs of G(Wn-1) by joining them 
with Ka. It is easy to see that joins of nonisomorphic graphs with K1 are 
themselves noni~morphic, hence 

IG(An) l -  IG(Wn-01, for n >~ 1. (3) 
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We claim that different words from B. give rise to nonisomorphic graphs unless 
they belong to the same orbit of r. To see this, note first that complements of 
graphs from G(B, )  are connected and bipartite, hence the partition of vertices of 
these graphs into two cliques is unique. Let G = ( V ,  E ) e G ( B , )  and let 
V = 111 t.J V2 be the corresponding partition. Suppose we decide to represent 
vertices from 1/1 with L's and vertices from 1/2 with R's. Let w ~ Bn be such that 
G(w)  = G. Then w contains IEI Z's. If 111 = {vl, 132,  • - • , 13k} and deg(13i) ~< 
deg(vi÷l) then there are deg(vi+~) - deg(v~) R's between the ith and the i + 1st L 
in w, for i = 1, 2 , . . . ,  k - 1, while the last L is followed by n - 1 - deg(vk) R's. 
One sees that this w is unique. If we represent vertices from V1 with R's and 
vertices from V2 with L's, then we obtain r(w). For instance, P4 is represented by 
L R L R ,  which is a fixed point of r. 

As a consequence, IG(B~)I equals the number of orbits of r in Bn. Since the 
first and the last letter of words from B, are fixed we have 

Ia(n )l = en-2, for n t> 2. (4) 

From (2), (3) and (4) it follows that 

IG(W,)I = IG(Wn-1)I + en-2, for n I> 2. 

Since IG(W1)I = 1  the solution of (5) is, using (1), 

n - - 2  

IG(w )l- 1 + ek = 2 + 2t½ - l, 
k = 0  

(5) 

proving the theorem. [] 

3. Intersection graphs of halfplanes 

Theorem 3. A graph G is the intersection graph o f  a finite family o f  half-planes in 
R 2 if  and only i f  G contains no induced subgraph isomorphic to ['5 or to any o f  

C2n+1, for n -" 1, 2, . . . .  

Proof. If G is the intersection graph of a finite family of halfplanes, then by 
Lemma 1 each connected component of G is the complement of some unbounded 
interval graph. As P5 is connected and P5 is not an unbounded interval graph 
(note that it contains (74 as an induced subgraph), G contains no induced 
subgraph isomorphic to/35. As by Theorem 1 unbounded interval graphs have 
bipartite complements, G contains no induced subgraph isomorphic to any of 
( ~ 2 n + 1 ,  for n = 1, 2, . . . .  

Conversely, suppose that G contains no induced subgraph isomorphic to P5 or 
to any of (~2~÷1, for n = 1, 2, . . . .  Then G is bipartite. Let C = (U1, U2, F) be a 
connected component of G, and u, v ~ U1. Let WoWs. • . , ~ ,  n >>- 2, Wo = u, 
w2~ = v, be a path in (77. Since the subgraph of (~ induced by the vertices Wo, wl, 
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U W V" 

Fig. 1. 

WE, W3 and w4 is not Ps, at least one of w0w3 and wlw4 belongs to F. Repeating this 
argument we obtain a path uwv of length 2 connecting u and v in t~. Suppose u 
and v are incomparable in the vicinal preorder of t~. Then there exist u',  v '  e U2 
such that uu', vv '  e F and uv', vu' ~ F (see Fig. 1). But then u' ,  u, w, v, v '  
induce /'5 in (~, a contradiction. It follows that /31 forms a chain in the vicinal 
preorder of t~ and hence of C. Then by Theorem 1 C is an unbounded interval 
graph, and by Lemma 1, G is the intersection graph of some family of halfplanes 
in R E. [] 

It is easy to see that joins of permutation graphs are permutation graphs. As 
unbounded interval graphs are permutation graphs, Lemma 1 implies that 
intersection graphs of halfplanes are permutation graphs, too. Therefore both 
unbounded interval graphs and intersection graphs of halfplanes are perfect. 

The sphericity sph(G) of a graph G is defined to be the minimum number n 
such that G is isomorphic to some intersection graph of unit spheres in R n (see 
[2]). 

Corollary 1. I f  G is a join of  a finite family of  triangulated graphs with bipartite 
complements, then sph(G) ~< 2. 
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