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Abstract

Suppose Γ is a group acting on a set X. A k-labeling of X is a mapping c :X → {1,2, . . . , k}.
A labeling c of X is distinguishing (with respect to the action of Γ ) if for any g ∈ Γ , g �= idX , there
exists an element x ∈ X such that c(x) �= c(g(x)). The distinguishing number, DΓ (X), of the action
of Γ on X is the minimum k for which there is a k-labeling which is distinguishing. This paper studies
the distinguishing number of the linear group GLn(K) over a field K acting on the vector space Kn

and the distinguishing number of the automorphism group Aut(G) of a graph G acting on V (G).
The latter is called the distinguishing number of the graph G and is denoted by D(G). We determine
the value of DGLn(K)(K

n) for all fields K and integers n. For the distinguishing number of graphs,
we study the possible value of the distinguishing number of a graph in terms of its automorphism
group, its maximum degree, and other structure properties. It is proved that if Aut(G) = Sn and each
orbit of Aut(G) has size less than

(n
2
)
, then D(G) = �n1/k� for some positive integer k. A Brooks

type theorem for the distinguishing number is obtained: for any graph G, D(G) � Δ(G), unless G
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is a complete graph, regular complete bipartite graph, or C5. We introduce the notion of uniquely
distinguishable graphs and study the distinguishing number of disconnected graphs.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let Γ be a group acting on a set X. For a positive integer k, a k-labeling of X is a
mapping c :X → {1,2, . . . , k}. We say c is a distinguishing labeling (with respect to the
action of Γ ) if for any g ∈ Γ , if g is not the identity, then there is an element x ∈ X such
that c(x) �= c(g(x)). The distinguishing number DΓ (X) of the action of Γ on X is the
minimum number k for which there is a k-labeling c which is a distinguishing labeling.

The distinguishing number was first defined by Albertson and Collins [1] for graphs.
Let G be a graph and � a vertex labeling of G. We say (G,�) is a labeled graph. By an au-
tomorphism of (G,�) we mean an automorphism ϕ of G that in addition preserves vertex
labels, i.e., �(ϕ(v)) = �(v) for every vertex v. A distinguishing labeling of G is a labeling
� of G such that (G,�) has only the trivial automorphism. In other words, for a graph G,
the distinguishing number of G is the distinguishing number of the action of the automor-
phism group Aut(G) on V (G), i.e., D(G) = DAut(G)(V (G)). In the seminal paper [1] it
was proved, among others, that if Aut(G) = S4, then D(G) = 2 or 4, and for each group
Γ there exists a graph G such that Aut(G) ∼= Γ and D(G) = 2. In addition, D(G) � 2
whenever Aut(G) is abelian, and D(G) � 3 whenever Aut(G) is dihedral. Bogstad and
Cowen [3] determined the distinguishing number of hypercubes and their squares. For hy-
percubes they proved D(Q2) = D(Q3) = 3 and D(Qd) = 2 for d � 4. Their work on
hypercubes powers was completed in [4] where it is proved that D(Q

p
n) = 2 for each n � 4

and 2 < p < n − 1. (Here Q
p
n denotes the graph that is obtained from Qn by making ad-

jacent any pair of vertices at distance at most p.) For the computational complexity of the
d-distinguishability problem see [11].

Tymoczko [12] generalized the notion of the distinguishing number to group actions on
sets. It was proved in [12] that if a general group Γ acts on itself by translation, or the
symmetric group Sn acts on itself by conjugation, then the distinguishing number is 2. An
example was given in [12] to show that there is a faithful S4-action with distinguishing
number 3, in contrast to the fact that there is no graph G with Aut(G) = S4 and with
D(G) = 3. This shows that not all faithful group actions are realized as actions of the
automorphism groups of a graph on its vertex set. In [6], Chan studied the distinguishing
number of the wreath product of two groups on the Cartesian product of their sets, the
distinguishing number of the direct product of two groups on the direct product of their
sets. In [5], Chan proved that if Γ is nilpotent of class c or supersolvable of length c, then
Γ acts with distinguishing number at most c+1. In particular, if Γ is an abelian group then
Γ acts with distinguishing number at most 2, if Γ is a dihedral group, then Γ acts with
distinguishing number at most 3. It was also proved in [5] that the distinguishing number
of the action of the linear group GLn(K) over a field K on the vector space Kn is equal to
2 if K is infinite or |K| > n + 1.
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In this paper, we answer a question of Chan, by determining the distinguishing number
of the linear group GLn(K) over a field K on the vector space Kn for all fields K and
for all integers n. Then we study the distinguishing number of graphs. We determine the
distinguishing number of graphs G with Aut(G) = Sn and for which each orbit of Aut(G)

has size less than
(
n
2

)
. We prove a Brooks type theorem for the distinguishing number of

graphs. Namely, for a connected graph G its distinguishing number is bounded by the
largest degree, unless G is either Kn, n � 1, Kn,n, n � 1, or C5. We also introduce the
notion of uniquely distinguishable graphs, and use the concept to the study of the distin-
guishing number of disjoint unions of connected graphs.

2. The distinguishing number of the linear group GLn(K)

In this and the next section, we discuss the distinguishing number of the action of the
linear group GLn(K) over a field K on the vector space Kn. Here GLn(K) is the group of
n × n invertible matrices over a field K , and the action of GLn(K) on Kn is through the
left multiplication defined as v → Av for A ∈ GLn(K) and v ∈ Kn.

This problem was first studied by Chan [5]. It was proved in [5] that if K is infinite or K

is finite but |K| > n+ 1, then DGLn(K)(K
n) = 2. Then Chan posed the following problem:

Problem 2.1. Compute DGLn(K)(K
n) for n � 3 and |K| � n + 1.

We solve this problem and determine the value of DGLn(K)(K
n) for all n and all K . This

section is devoted to the case that |K| � 3. The case |K| = 2 is left to the next section. In
the following, we assume that K is finite, and α is a generator of the multiplicative group
K×, and the order of α is o(α) = k = |K| − 1. We shall denote by e1, e2, . . . , en a basis
of Kn.

Theorem 2.2. Suppose K is a finite field.

(1) If |K| � 3 and n � 3, then DGLn(K)(K
n) = 2.

(2) If |K| � 4, then DGLn(K)(K
n) = 2.

(3) If |K| = 3 and n = 2, then DGLn(K)(K
n) = 3.

Proof. The case |K| = 3 and n = 2 was settled in [5]. We only need to prove (1) and (2).
It is obvious that DGLn(K)(K

n) � 2 provided that n � 2 or |K| � 3. Thus we only need to
exhibit a distinguishing 2-labeling when |K| � 4 or |K| = 3 and n � 3.

Assume |K| � 3 and n � 3. Then k � 2. Let

X1 = {e1} ∪ {
αiej : i = 0,1, . . . , k − 1, j = 2,3, . . . , n

}
∪ {αei + ei+1: i = 1,2, . . . , n − 1}
∪ {−αe1 − (α + 1)(e2 + e3 + · · · + en−1) − en

}
,

X2 = Kn \ X1.
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Let c be the 2-labeling which labels the elements of Xi by label i for i = 1,2. We shall
prove that c is a distinguishing labeling. Let φ ∈ GLn(K) be an invertible linear transfor-
mation of Kn which preserves the labels. We shall prove that for each i ∈ {1,2, . . . , n},
φ(ei) = ei . This implies that φ = idKn .

First of all, since e1 = ∑
x∈X1

x and φ(X1) = X1, we have

φ(e1) = φ

( ∑
x∈X1

x

)
=

∑
x∈X1

φ(x) =
∑
x∈X1

x = e1.

Assume that 2 � i � n and each of e1, e2, . . . , ei−1 is fixed by φ. This implies that φ

fixes each of the elements in the set X′ = {e1} ∪ {αsej : s = 0,1, . . . , k − 1, j = 2,3, . . . ,

i − 1} ∪ {αej + ej+1: j = 1,2, . . . , i − 2}.
We shall prove that ei is also fixed by φ. As αei−1 + ei ∈ X1 \ X′, we have φ(αei−1 +

ei) = αei−1 + φ(ei) ∈ X1 \ X′. On the other hand, ei, αei ∈ X1 \ X′ implies that φ(ei) ∈
X1 \ X′, and φ(αei) = αφ(ei) ∈ X1 \ X′. This implies that φ(ei) = αjet for some j ∈
{0,1, . . . , k − 1} and t ∈ {i, i + 1, . . . , n}, for otherwise, we would have φ(ei) = −αe1 −
(α + 1)(e2 + e3 + · · · + en−1) − en, but then, because k � 2,

αφ(ei) = α
(−αe1 − (α + 1)(e2 + e3 + · · · + en−1) − en

)
/∈ X1,

which is a contradiction.
Thus φ(αei−1 + ei) = αei−1 + αjet . If i � 3, then since αei−1 + αjet ∈ X1 and t � i

we must have t = i and j = 0. If i = 2, then it is also easy to see that either φ(e2) = e2,
or αei−1 + αjet = −αe1 − (α + 1)(e2 + e3 + · · · + en−1) − en. However, αei−1 + αjet =
−αe1 − (α + 1)(e2 + e3 + · · · + en−1) − en implies that α = −α which means that K has
characteristic 2, and α + 1 = 0 (since n � 3), which means that α = 1 and hence |K| = 2,
a contradiction.

It remains to prove that if |K| � 4 and n = 2, then DGLn(K)(K
n) = 2. Let e1, e2 be a

basis of K2. Let

X1 = {
αie2: i = 1,2, . . . , k − 1

} ∪ {e1 + e2},
X2 = K2 \ X1.

Let c be the 2-labeling which labels the elements of Xi by label i for i = 1,2. Let φ be a
label preserving invertible linear transformation of K2. As

∑
x∈X1

x = e1 and φ(X1) = X1,
we conclude that φ(e1) = e1.

Since αj (e1 + e2) /∈ X1 for j = 1,2, we infer that αjφ(e1 + e2) /∈ X1 for
j = 1,2. Moreover, e1 + e2 is the only element of X1 for which α(e1 + e2) /∈ X1 and
α2(e1 + e2) /∈ X1, therefore φ(e1 + e2) = e1 + e2. Here we used the condition that
k = |K| − 1 � 3. We conclude that φ(e2) = e2 and so φ is the identify. �
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3. The case |K| = 2

This section discusses the case |K| = 2. The exact value of DGLn(K)(K
n) is determined

for all n � 2.

Theorem 3.1. Suppose K is the field GF(2), i.e., |K| = 2. Then

DGLn(K)

(
Kn

) =
⎧⎨
⎩

2, if n � 5,

3, if n = 2,4,

4, if n = 3.

The case n = 2 is solved in [5], so we need to prove the cases n � 3. The proof of
Theorem 3.1 is a little bit complicated, hence we divide it into four lemmas according to
the value of n.

Lemma 3.2. Suppose K is the field GF(2). If n � 6, then DGLn(K)(K
n) = 2.

Proof. Assume n � 6. Let X1 = {e1, e2, . . . , en, e1 + e2, e1 + e2 + e3, . . . , e1 + e2 + · · · +
en,u, v}, where u,v are defined as follows:

If n is even then

u = e2 + e3 + en, v = e1 + e2 + (e5 + e7 + e9 + · · · + en−1) + en.

If n is odd, then

u = e1 + e4 + en, v = e1 + e2 + (e6 + e8 + e10 + · · · + en−1) + en.

Observe that if n is even, then u + v = e1 + e3 + e5 + · · · + en−1. If n is odd, then
u + v = e2 + e4 + e6 + · · · + en−1.

Let X2 = Kn \ X1 and let c be the 2-labeling which labels the elements of Xi by label
i for i = 1,2. We shall prove that c is a distinguishing labeling. Let φ ∈ GLn(K) be a
linear transformation of Kn which preserves the labels. We shall prove that φ(ei) = ei for
i = 1,2, . . . , n, which implies that φ is the identity. It is easy to verify that

∑
x∈X1

x = e1.
Since φ is invertible and preserves the labels (that is, φ(X1) = X1), we have

φ(e1) = φ

( ∑
x∈X1

x

)
=

∑
x∈X1

φ(x) =
∑
x∈X1

x = e1.

Assume that i � 2 and φ(ej ) = ej for j = 1,2, . . . , i−1. We shall prove that φ(ei) = ei .
Let

x = φ(ei),

y = φ(e1 + e2 + · · · + ei) = e1 + e2 + · · · + ei−1 + φ(ei).
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As ei, e1 + e2 + · · ·+ ei ∈ X1, we have x, y ∈ X1. Moreover, x + y = e1 + e2 + · · ·+ ei−1.
It is straightforward to verify that (using the fact that n � 6), ei and e1 + e2 + · · · + ei

are the only two elements of X1 whose sum is equal to e1 + e2 + · · · + ei−1. Therefore
{x, y} = {ei, e1 + e2 + · · · + ei}. It remains to show that x �= e1 + e2 + · · · + ei . Assume to
the contrary that x = e1 + e2 + · · · + ei . We consider two cases.

Case 1. i � n − 1.
Let

w = φ(ei+1),

z = φ(e1 + e2 + · · · + ei+1) = e1 + e2 + · · · + ei−1 + φ(ei) + φ(ei+1) = ei + w.

Then w,z ∈ X1 and w + z = ei . Again it is easy to verify that e1 + e2 + · · · + ei and
e1 + e2 + · · · + ei−1 are the only two elements of X1 whose sum is ei . This implies that
{w,z} = {e1 + e2 + · · · + ei, e1 + e2 + · · · + ei−1}. But e1 + e2 + · · · + ei−1 = φ(e1 + e2 +
· · · + ei−1), in contrary to the fact that φ is one-to-one. Therefore x = ei , i.e., φ(ei) = ei .

Case 2. i = n.
If n is even, then

φ(u) = φ(e2 + e3 + en)

= e2 + e3 + e1 + e2 + · · · + en

= e1 + e4 + e5 + · · · + en /∈ X1,

which is a contradiction. If n is odd, then

φ(u) = φ(e1 + e4 + en)

= e1 + e4 + e1 + e2 + · · · + en

= e2 + e3 + e5 + e6 + · · · + en /∈ X1,

which is again a contradiction. �
Lemma 3.3. Suppose K is the field GF(2). If n = 5, then DGLn(K)(K

n) = 2.

Proof. Let X1 = {e1, e2, e3, e4, e5, e1 + e2, e1 + e3, e1 + e4, e1 + e5, e2 + e3, e2 + e4, e2 +
e3 + e5, e2 + e3 + e4 + e5}. Let X2 = Kn \ X1. Let c be the 2-labeling which labels the
elements of Xi by label i for i = 1,2. We shall prove that c is a distinguishing labeling.
Let φ ∈ GLn(K) be a linear transformation of Kn which preserves the labels.

For i = 1,2,3,4, let Yi ⊆ X1 be the subset of X1 consisting of all the elements u of X1
such that there exist exactly i 2-element sets {x, y} with x, y ∈ X1 and u = x + y. Then a
straightforward but tedious calculation shows that
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Y1 = {e1 + e5, e2 + e3 + e4 + e5},
Y2 = {e3, e5, e1 + e3, e1 + e4, e2 + e4, e2 + e3 + e5},
Y3 = {e2, e4, e1 + e2, e2 + e3},
Y4 = {e1}.

For example, we have e1 ∈ Y4, because e1 ∈ X1 and

e1 = e2 + (e1 + e2) = e3 + (e1 + e3) = e4 + (e1 + e4) = e5 + (e1 + e5),

where e2, e1 + e2, e3, e1 + e3, e4, e1 + e4, e5, e1 + e5 ∈ X1. Moreover, there is no other two
elements x, y ∈ X1 with x + y = e1.

If x, y,u ∈ X1 and x + y = u, then we have φ(x),φ(y),φ(u) ∈ X1 and φ(x) + φ(y) =
φ(u). Therefore φ(Yi) = Yi for i = 1,2,3,4. This implies that φ(

∑
x∈Yi

x) = ∑
x∈Yi

x, for
i = 1,2,3,4. As

∑
x∈Y1

x = e1 + e2 + e3 + e4,
∑

x∈Y2
x = e3,

∑
x∈Y3

x = e1 + e2 + e3 + e4
and

∑
x∈Y4

x = e1, we conclude that φ fixes each of e1, e3, e2 + e4. Now e5 is the only
element of Y2 which is the sum of an element of Y1 and an element of Y4, and e4 is the
only element of Y3 which is the sum of an element of Y1 and an element of Y2. So φ fixes
each of e5 and e4. Therefore φ is the identity. �
Lemma 3.4. Suppose K is the field GF(2). If n = 3, then DGLn(K)(K

n) = 4.

Proof. Assume n = 3. Label ei by label i for i = 1,2,3, and label the remaining elements
by label 4, the result is certainly a distinguishing labeling. So DGL3(K)(K

3) � 4. It remains
to show that for any 3-labeling c of K3, there is an invertible linear transformation which
is not the identity and which preserves the labels. Note that to define an invertible linear
transformation φ, it suffices to define the value of φ(u),φ(v),φ(w) for any three linearly
independent vectors u,v,w so that φ(u),φ(v),φ(w) are also linearly independent. There
are 7 nonzero elements in K3. Let Xi = c−1(i)\{0}. Assume that ti = |Xi | and t1 � t2 � t3.
We divide the discussion into a few cases.

Case 1. (t1, t2, t3) = (1,1,5).
Assume X1 = {u}, X2 = {v}. Let w,w′ ∈ X3, w �= w′ and w,w′ �= u + v. Then

φ(u) = u, φ(v) = v and φ(w) = w′ defines a linear transformation which preserves the
labels.

Case 2. (t1, t2, t3) = (1,2,4).
Assume that X1 = {u}, and v ∈ X2. The other element of X2 is either equal to u + v, or

is independent of u,v. In either case, the mapping which fixes u and interchanges the two
elements of X2 defines (or can be extended to) a linear transformation which preserves the
labels.

Case 3. (t1, t2, t3) = (1,3,3).
Assume X1 = {u}. If

∑
x∈X2

x = 0, then
∑

x∈X3
= u. It follows that X2 = {v,w,v+w}

and X3 = {u+v,u+w,u+v+w}. Let φ(u) = u, φ(v) = w, φ(w) = v. Then φ preserves
the labels. The case

∑ = 0 is symmetric. Assume
∑

x = v �= 0 and
∑

x =
x∈X3 x∈X2 x∈X3
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u + v �= 0. Then X2 = {u + v,w + v,w + u + v} and X3 = {v,w,u + w}, where u,v,w

are independent. Let φ(u) = u, φ(v) = v, φ(w) = u + w. Then φ preserves the labels.

Case 4. (t1, t2, t3) = (2,2,3).
Assume first that

∑
x∈X3

x = 0. Then X3 = {u,v,u + v}. Without loss of generality,
we may assume that X2 = {w,w + u}, where w,u, v are linearly independent. Then X1 =
{w + u + v,w + v}. Let φ(u) = u,φ(w) = w,φ(v) = u + v. Then φ preserves the labels.

Assume
∑

x∈X3
x = v �= 0. Then X3 = {v + u,v + w,v + u + w}, where u,v,w are

linearly independent. Without loss of generality, we may assume that X2 = {v,u} and
X1 = {w,u+w}. Let φ(v) = v,φ(u) = u,φ(w) = u+w. Then φ preserves the labels. �
Lemma 3.5. Suppose K is the field GF(2). If n = 4, then DGLn(K)(K

n) = 3.

Proof. First we prove that DGLn(K)(K
n) � 3. Let X1 = {e2, e3, e4, e1 + e2 + e3 + e4},

X2 = {e1, e1 + e2, e2 + e3, e3 + e4}, and X3 = Kn \ (X1 ∪ X2). Let c be the 3-labeling
which labels the elements of Xi by label i for i = 1,2,3. It suffices to prove that c is a
distinguishing labeling. Let φ ∈ GLn(K) be a linear transformation of Kn which preserves
the labels. Similarly as before, we have φ(e1) = e1, because

∑
x∈X1

x = e1. Assume i � 2
and we have proved that φ(ej ) = ej for j � i − 1. Then

φ(ei) = φ(ei−1 + ei−1 + ei) = ei−1 + φ(ei−1 + ei).

Note that φ(ei−1 + ei) ∈ X2. As φ(e1) = e1, so φ(ei−1 + ei) �= e1. Hence φ(ei−1 + ei) =
es + es+1 for some s ∈ {1,2,3}. On the other hand, φ(ei) ∈ X1. So

φ(ei) = ei−1 + es + es+1 ∈ X1.

By comparing to each element of X1, we conclude that s = i − 2 or i − 1. If s = i − 2,
then φ(ei) = ei−2, in contrary to the fact that φ(ei−2) = ei−2. Therefore s = i − 1 and
φ(ei) = ei . Thus φ is the identity.

It remains to prove that DGLn(K)(K
n) �= 2. Let c be an arbitrary 2-labeling of Kn. Let

Xi = c−1(i) \ {0} for i = 1,2. As |K4| = 16, we may assume that |X1| � 7. Furthermore,
we assume that either

∑
x∈X1

x = 0 or
∑

x∈X1
x = e4 (because if

∑
x∈X1

x = u �= 0, then u

can be extended into a basis of K4). We shall construct a linear transformation φ ∈ GL4(K)

which is not identity and which preserves the labeling c.
We denote by Q the subspace of K4 generated by {e1, e2, e3}. Let Y1 = Q ∩ X1 and

let Y2 = {u ∈ Q: u + e4 ∈ X1}. By our assumption,
∑

x∈X1
x = 0 or e4. This implies that∑

x∈Y1
x + ∑

x∈Y2
x = 0.

Claim 3.6. For any subsets Y1, Y2 of Q \ {0} such that
∑

x∈Y1
x + ∑

x∈Y2
x = 0, there is a

linear transformation φ of Q which is not identity, and φ(Yi) = Yi for i = 1,2.

Proof. By symmetry, we may assume that |Y1| � |Y2|.
If Y1 ∩ Y2 = ∅ or Y1 ⊆ Y2, then Y1, Y2 \Y1,Q \ (Y1 ∪ Y2) induces a 3-labeling of Q. By

Lemma 3.4, the required linear transformation φ exists.
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Thus we assume that D = Y1 ∩ Y2 �= ∅, Y ′
i = Yi \ D �= ∅ for i = 1,2. Our task is to

construct a linear transformation φ of Q such that φ(D) = D, φ(Y ′
i ) = Y ′

i for i = 1,2.
Note that 2|D| + |Y ′

1| + |Y ′
2| = |X1| � 7. As each element of D occurs twice in the

summation
∑

x∈Y1
x + ∑

x∈Y2
x, the assumption

∑
x∈Y1

x + ∑
x∈Y2

x = 0 implies that∑
x∈Y ′

1∪Y ′
2
x = 0. This implies that |Y ′

1| + |Y ′
2| = 3 or 4.

Case 1. |D| = 1, say D = {u}.
If |Y ′

1| = 1, say Y ′
1 = {v}, then |Y ′

2| = 2 or 3. Assume |Y ′
2| = 2. Then Y ′

2 = {v+w,w} for
some w such that u,v,w are linearly independent. Then the mapping φ which fixes u,v

and interchanges the two elements of Y ′
2 is the required linear transformation. If |Y ′

2| = 3,
then Y ′

2 = {v + u,w + v,w + u + v}, where u,v,w are linearly independent. Then the
mapping φ which fixes u,v and φ(w) = w + u is the required linear transformation.

If |Y ′
1| = 2, then |Y ′

2| = 2. If Y ′
1 = {w,v}, where u,v,w are independent, then Y ′

2 =
{u + v,u + w}. In this case, the mapping φ which fixes u and interchanges v and w is
the required linear transformation. If Y ′

1 = {v, v + u}, then Y ′
2 = {w,w + u}. In this case,

the mapping φ which fixes u and v and interchanges w + u and w is the required linear
transformation.

Case 2. |D| = 2, say D = {u,v}.
Then |Y ′

1| = 1 and |Y ′
2| = 2. Thus either Y ′

1 = {w}, where u,v,w are independent, or
Y ′

1 = {u + v}. In any case, the mapping φ which interchanges u and v and fixes w (where
u,v,w are independent) is the required linear transformation. This completes the proof of
Claim 3.6. �

Now we extend φ constructed in the proof of Claim 3.6 to a linear transformation of
K4 by letting φ(e4) = e4. It is easy to verify that such an extension of φ preserves the
labeling c. �

4. Graphs with a symmetric group as their automorphism group

Given a group Γ , a graph G is said to realize Γ if Aut(G) = Γ . Albertson and Collins
[8] defined the distinguishing set of Γ as

D(Γ ) = {
D(G): G realizes Γ

}
.

In [1], it was proved that D(S4) = {2,4} and conjectured that n−1 /∈ D(Sn). In this section,
we prove that if G realizes Sn and each orbit of Aut(G) has size less than

(
n
2

)
then D(G) =

�n1/k� for some positive integer k. Moreover, for each k � 1, there is a graph G which
realizes Sn, with each orbit of size less than

(
n
2

)
and with D(G) = �n1/k�.

First we need a lemma proved by Liebeck [10] concerning the structure of graphs G

with Aut(G) = Sn.

Lemma 4.1. [10] Let G = (V ,E) be a graph which realizes Sn, where n > 6. If each orbit
of Aut(G) on V (G) has size less than

(
n
)
, then all the orbits have size 1 or n.
2
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In the following, we denote the set {1,2, . . . , n} by I . Each automorphism τ of G is
also viewed as a permutation of I . So τ is viewed to act on the set V (G) ∪ I .

Theorem 4.2. Let G = (V ,E) be a graph which realizes Sn and n > 6. If each orbit of
Aut(G) on V (G) has size less than

(
n
2

)
, then D(G) = �n1/k� for some positive integer k.

Proof. By Lemma 4.1, each orbit of Aut(G) has size 1 or n. Let Xi = {xi,1, xi,2, . . . , xi,n}
(i = 1,2, . . . , k) be the orbits of Aut(G) on V (G) of size n. We have k � 1, for otherwise
each orbit of Aut(G) has size 1, which implies that Aut(G) = {idV }, consists of the single
identity permutation on the vertex set V , in contrary to our assumption.

For any ϕ ∈ Aut(G), for any i ∈ {1,2, . . . , k}, let ϕ|Xi
be the restriction of ϕ to Xi .

First we show that if ϕ,ψ ∈ Aut(G) and ϕ|Xi
= ψ |Xi

, then ϕ = ψ . For x ∈ V , let
Hx = {τ ∈ Aut(G): τ(x) = x}. Let x∗ be an arbitrary vertex in Xi . Then

⋂
x∈Xi

Hx =⋂
τ∈Aut(G) τHx∗τ−1 is a normal subgroup of Aut(G) with index at least n (as Hx∗ has

index n). As the only nontrivial normal subgroup of Sn is An for n � 5, we conclude that⋂
τ∈Aut(G) τHxτ

−1 = {idV }. Since ϕ−1ψ ∈ ⋂
x∈Xi

Hx , we have ϕ−1ψ = idV , i.e., ϕ = ψ .
It follows from the paragraph above that the set {ϕ|Xi

: ϕ ∈ Aut(G)} consists of all
the permutations of Xi . In other words, the mapping fi defined as fi(ϕ) = ϕ|Xi

is an
automorphism of Sn. It is well known that for n � 3 and n �= 6, Aut(Sn) = Inn(Sn). This
implies that, for each i ∈ {1,2, . . . , k}, after identifying xi,j with j , there is a permutation
τi ∈ Sn such that for any ϕ ∈ Sn, fi(ϕ) = τiϕτ−1

i . In other words, ϕ(xi,j ) = x
i,τiϕτ−1

i (j)
.

For j = 1,2, . . . , n, let Aj be the sequence (x1,τ1(j), x2,τ2(j), . . . , xk,τk(j)). Then each ϕ ∈
Aut(G) induces a permutation on the set {A1,A2, . . . ,An}. Conversely, any permutation
on the set {A1,A2, . . . ,An} corresponds to an automorphism of G.

Now we show that D(G) = �n1/k�. Let s = �n1/k� and let C = {1,2, . . . , s}.
For a labeling � of the vertices of G by labels from C, let �(Ai) be the sequence
(�(x1,τ1(i)), �(x2,τ2(i)), . . . , �(xk,τk(i))). Since sk � n, there is a labeling � of the vertices
of G by labels from C so that all the sequences �(A1), �(A2), . . . , �(An) are distinct.
If ϕ is an automorphism of G for which �(ϕ(v)) = �(v) for all v ∈ V , then we have
�(ϕ(Ai)) = �(Ai). As �(Ai) �= �(Aj ) for any i �= j , this implies that σ(Ai) = Ai . So
σ is the identity permutation. Therefore � is a distinguishing labeling of G, and hence
D(G) � s = �n1/k�.

If s < �n1/k�, then sk < n. For any labeling � of V with s labels, there exist j �= j ′ such
that �(Aj ) = �(Aj ′). The automorphism σ of G which fixes all the other vertices of G

and interchanges Aj and Aj ′ preserves the labeling �. So � is not a distinguishing labeling
of G. Therefore D(G) = �n1/k�. �

It is very likely that the condition “each orbit of Aut(G) on V (G) has size less than
(
n
2

)
”

in Theorem 4.2 can be removed. This guess is supported by the following observation.
Suppose n > 6 and G is a graph with Aut(G) = Sn. Let H be the complete bipartite

graph with V (G) and I as the two partite sets. Define an equivalence relation � on the
edge set of H as follows: xi � yj if and only if there is an automorphism τ ∈ Aut(G) = Sn

such that τ(x) = y and τ(i) = j . Denote by E1,E2, . . . ,Em the equivalence classes of �,
and for each vertex x of G, let Ei(x) = {e ∈ Ei : e is incident to x}.
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Lemma 4.3. If there is a vertex x and an index i (or two indices i, i′) such that
2 � |Ei(x)| � n/2 (or 2 � |Ei(x) ∪ Ei′(x)| � n/2), then D(G) = 2.

Proof. Assume that x is a vertex for which there is an index i with 2 � |Ei(x)| � n/2. With
a change of names, if necessary, we may assume that Ei(x) = {x1, x2, . . . , xt}. (In case
there are two indices i, i′ with 2 � |Ei(x) ∪ Ei′(x)| � n/2, assume that Ei(x) ∪ Ei′(x) =
{x1, x2, . . . , xt}). Let τ be the cyclic permutation (12 · · ·n), and let π be any (fixed) per-
mutation for which π(1) = 2,π(i) = i + 2 for i = 2,3, . . . , t . For i = 0,1,2, . . . , n − t ,
let xi = τ i(x), and let xn−t+1 = π(x). Let X = {x0, x1, . . . , xn−t+1}. Let H ′ be the sub-
graph of H with vertex set V ′ = X∪ I , and with edge set E′ = ⋃t

j=1((
⋃n−t

i=0 τ i(x)τ i(j))∪
π(x)π(j)).

Now we show that H ′ is a rigid graph. As H ′ is connected and the two partite sets have
different cardinality, any automorphism φ of H ′ preserves the partite sets, i.e., φ(X) = X

and φ(I) = I . Observe that in H ′, each vertex xi ∈ X has degree t . Vertices of I have
different degrees. For example, it is easy to verify that each of vertices 1 and n has degree 1,
vertex 2 has degree 3, vertex n − 1 has degree 2 (because n > 6), and every other vertex
has degree at least min{3, t}. For each vertex xi , let S(xi) be the multiset of degrees of
neighbors of xi in H ′, i.e., S(xi) = {dH ′(j): xij ∈ E′}. If φ is an automorphism of H ′,
then for any xi ∈ X, S(xi) = S(φ(xi)). Since S(xn−t ) and S(x0) are the only multisets that
contains 1, and since S(xn−t ) �= S(x0), it follows that both x0 and xn−t are fixed by φ.
Observe that x1 is the only vertex which shares t − 1 neighbors with x0, so φ fixes x1. For
i = n − t − 1, n − t − 2, . . . ,4,3, xi is the only vertex of X which shares t − 1 neighbors
with xi+1. So φ fixes xn−t−1, xn−t−2, . . . , x3. So φ fixes every vertex of the set X′ =
X\{x2, xn−t+1}. For i, j ∈ {1,2, . . . , n}, it is easy to verify that if i �= j , then NH ′(i)∩X′ �=
NH ′(j)∩ X′. Therefore φ fixes all the vertices of I , and hence fixes each of x2 and xn−t+1

as well. So H ′ is a rigid graph.
Let �(v) = 1 for v ∈ X and �(y) = 2 for all other vertices y of G. Suppose σ ∈ Aut(G)

is an automorphism of G which preserves the labels. Then σ(X) = X and σ(I) = I . If
xi is an edge of H ′, then σ(x)σ (i) � xi and hence σ(x)σ (i) is an edge of H ′. (By the
definition of H ′, if x, y ∈ X, i, j ∈ I , xi is an edge of H ′ and yj is not an edge of H ′, then
xi �� yj .) So σ is an automorphism of H ′. As H ′ is a rigid graph, we conclude that σ is
the identity. So � is a distinguishing labeling, and hence D(G) = 2. �
Lemma 4.4. If there are vertices x1, x2, . . . , xk such that each lies in a distinct orbit,
and each has |Ei1(xi)| = 1 and |Ei2(xi)| = n − 1 for some indices i1, i2, then D(G) �
�n1/k� + 1.

Proof. By choosing different vertices in the orbit of xi , if necessary, we may assume that
Ei1(xi) = {xi1}. Let τ = (12 · · ·n) be the cyclic permutation. For i = 1,2, . . . , k, for j =
0,1, . . . , n − 1, let xi,j = τ j (xi). Let Aj denote the sequence (x1,j , x2,j , . . . , xk,j ). Label
the vertices of G so that labels 1,2, . . . , �n1/k� are used to label vertices xi,j in such a
way that �(Aj ) �= �(Aj ′) for j �= j ′, and label the other vertices of G with an extra label
�n1/k�+ 1. Similarly to the proof of Theorem 4.2, the labeling is a distinguishing labeling.
So D(G) � �n1/k� + 1. �
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It is very likely that if x is a vertex for which there are indices i1, i2 with |Ei1(x)| = 1
and |Ei2(x)| = n − 1, then x lies in an orbit of size n. We also believe that if x is a vertex
for which there is an index i with |Ei(x)| = n, then x lies in an orbit of size 1, i.e., x is
fixed by every automorphism of G. If this is the case then the extra color used in the proof
of Lemma 4.4 is not needed, and we have the conclusion that D(G) = �n1/k�. We state it
as a conjecture:

Conjecture 4.5. If G = (V ,E) is a graph which realizes Sn and n � 6, then D(G) =
�n1/k� for some positive integer k.

5. A Brooks type results on D(G)

Albertson and Collins [1] proved that for a connected graph G, D(G) � Δ(G) + 1,
where Δ(G) denotes the maximum degree of G. (In [2] the result is mentioned for the case
of regular graphs.) Moreover, the result for the case of trees appears in [12, Theorem 4.1].
In this section we prove that D(G) � Δ(G), unless G is a complete graph, complete bipar-
tite graph, or C5. (Just before the print of this paper, we learned that this result is proved
independently by Collins and Trenk [9].) We begin with the following observation. For a
vertex x of a graph G, NG(x) denote the set of vertices adjacent to x.

Lemma 5.1. Let (G,�) be a connected, labeled graph and let every vertex of X ⊆ V (G) be
fixed by every automorphism of (G,�). Let x ∈ X and set S = NG(x) \ X. If �(u) �= �(v)

holds for any different vertices u and v of S, then every vertex of S is fixed by every
automorphism of (G,�).

Proof. Let ϕ be an automorphism of (G,�). By assumption, every vertex of X ⊆ V is
fixed by ϕ. In particular, ϕ(x) = x. This implies that ϕ(S) = S. Since �(v) �= �(u) for any
u,v ∈ S with u �= v we conclude that ϕ fixes every vertex of S. �
Theorem 5.2. Let G be a connected graph. Then D(G) � Δ(G) unless G is either Kn,
n � 1, Kn,n, n � 1, or C5. In these cases D(G) = Δ(G) + 1.

Proof. It is easy to verify that for n � 1, D(Kn) = n = Δ(Kn) + 1, D(Kn,n) = n + 1 =
Δ(Kn,n) + 1, and that D(C5) = 3 = Δ(C5) + 1.

Assume G /∈ {Kn,Kn,n,C5}. We shall prove that D(G) � Δ(G).
Suppose that G is not regular. Let u be a vertex of G with d(u) < Δ(G) and set

�(u) = Δ(G). No other vertex but u will receive label Δ(G), thus u will be fixed by every
automorphism of (G,�). Arrange the remaining vertices in a breadth-first search (BFS)
order with u as the root, and proceed as follows. Let v be a vertex considered in this order
and suppose that some of its neighbors are not yet labeled. Then label the unlabeled neigh-
bors of v with different labels from {1,2, . . . ,Δ(G) − 1}. By an inductive application of
Lemma 5.1 we easily infer that � is a Δ(G)-distinguishing labeling of G.

Assume that G is regular. Since D(Cn) = 2 for n � 6, cf. [1], we may assume in the
rest that Δ(G) � 3. Take an arbitrary shortest cycle C and let u,v,w be three consecutive
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vertices of C. If (NG(u) \ C) �= (NG(w) \ C) then let x ∈ NG(u) \ (C ∪ NG(w)). Then
we set �(z) = Δ(G) for all z ∈ C \ v, �(x) = �(v) = 1. No other vertex will receive label
Δ(G) and no other neighbor of u or of w will receive label 1. It follows that u and w will
be fixed by every automorphism of G since the neighborhood of u contains two vertices
of label 1 while the neighborhood of w contains only one such vertex. Recall that x is not
adjacent to w and note that x is cannot be adjacent to any other vertex of C labeled with Δ

since C is a shortest cycle. It follows that the vertices x and v are distinguishable because
x is adjacent to only one vertex of label Δ but v is adjacent to two such vertices. By the
BFS method started in vertex v we can extend � to a Δ(G)-distinguishing labeling of G.

Thus we assume that for any three consecutive vertices u,v,w of a shortest cycle C we
have (NG(u) \ C) = (NG(w) \ C). Since |NG(u)| = Δ � 3, we conclude that G has girth
at most 4. If G has a triangle, then u is adjacent to w, and hence for every x ∈ NG(u),
u,w,x are three consecutive vertices of a shortest cycle C′ (which is a triangle), and hence
(NG(u) \ C′) = (NG(x) \ C′). This implies that G is a complete graph, in contrary to our
assumption. If G has no triangle, then G has girth 4, and hence NG(u) ∩ C = NG(w) ∩ C.
Therefore NG(u) = NG(w). Moreover, for any two vertices x, y ∈ NG(u), x,u, y are three
consecutive vertices of a 4-cycle (x,u, y,w), and hence NG(x) = NG(y). This implies that
any two nonadjacent vertices lies in a 4-cycle and hence have the same neighbors. So G is
a regular complete bipartite graph, again in contrary to our assumption. �

In some cases Theorem 5.2 can be further improved. For instance:

Proposition 5.3. Let G be a connected graph and let H be a subgraph of G invariant
under every automorphism of G. If H has at least one edge and D(H) < Δ(G) then
D(G) < Δ(G).

Proof. We proceed similarly as in the proof of Theorem 5.2. First label vertices of H with
D(H) labels so that H is eventually fixed by an arbitrary automorphism of (H, �). Since H

is invariant under every automorphism of G this implies that H will be point-wise fixed by
automorphisms of (G,�′), where �′ is any extension of �. Let v be a vertex of H which has
a neighbor in H and construct a BFS tree with v as a root. Then follow the BFS order and
whenever we reach a vertex with unlabeled neighbors, label its unlabeled neighbors with
different labels. By the BFS construction, we can always use labels from {1,2, . . . ,Δ− 1}.
Lemma 5.1 completes the proof. �

As we already mentioned, Theorem 5.2 is proved in [12] for the case of trees. (If a
tree T has at least two edges, then D(T ) � Δ(T ).) On the other hand, Cheng [7] showed
that the distinguishing number of a tree can be computed efficiently. The main ideas are
to reduce the problem to rooted trees whose centers consist of a single vertex and then to
count different d-distinguishing labelings starting from the leaves. Based on this approach
the following result easily follows.

Proposition 5.4. Let T be a tree, T0 the set of its leaves, and for i � 1 let Ti = {x /∈
T0 ∪ · · · ∪ Ti−1: ∃y ∈ Ti−1, x ∼ y}. Set di(x) = |NG(x) ∩ Ti |. Then

D(T ) � max
{⌈

di(x)1/(i+1)
⌉

: x ∈ V (T ), i � 0
}
.
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Fig. 1. The tree T3.

To see that this bound is in a way best possible (and arbitrarily better than the Δ(T )

bound) consider the following example. Let k � 1, take 2k copies of the path Pk+1, select
an end of each and identify the selected vertices. Denote the resulting graph Tk , see Fig. 1
for T3. Then Δ(Tk) = 2k , but by Proposition 5.4, D(Tk) � 2 and so D(Tk) = 2.

6. Uniquely distinguishable graphs

Let G and H be connected graphs and let G ∪ H be the disjoint union of G and H .
Clearly, D(G ∪ H) � max{D(G),D(H)}. Moreover, if G and H are not isomorphic the
equality holds. The remaining question is what is D(G∪G)? (See [12] for such examples.)
It is easy to note that D(G ∪ G) � D(G) + 1, hence D(G ∪ G) equals either D(G) or
D(G) + 1. To classify graphs with respect to these two possibilities, we introduce the
following definition.

A connected graph G is uniquely distinguishable if for any D(G)-distinguishing label-
ings �1 and �2 of G there exists an automorphism ϕ of G such that for any vertex x ∈ V (G)

we have �1(x) = �2(ϕ(x)). From this definition and by the above remarks we infer:

Proposition 6.1. Let G be a connected graph. Then D(G ∪ G) � D(G) + 1, where the
equality holds if and only if G is uniquely distinguishable.

Note also that the definition immediately implies that the number of vertices of a
uniquely d-distinguishable graph is a multiple of d .

A (connected) asymmetric graph is a uniquely 1-distinguishable graph and Kn is a
uniquely n-distinguishable graph. The only uniquely 2-distinguishable graph on four ver-
tices is K4 minus an edge. C6 and the Cartesian product of K3 with K2 are uniquely
2-distinguishable graphs on six vertices.

Let G and H be graphs, let V (G) = {v1, . . . , vn}, and let H1, . . . ,Hn be isomorphic
copies of H . Take the disjoint union G ∪ H1 ∪ · · · ∪ Hn and join by an edge every vertex
of Hi with vi , 1 � i � n. Denote the resulting graph with G•H . In addition, let D�d(H)

denote the number of nonequivalent distinguishable labelings of H with at most d labels.

Theorem 6.2. Let d � 2, let H be a graph with D(H) � d , and let n = d · D�d(H). Then
K•H

n is uniquely d-distinguishable.

Proof. Set r = D�d(H) and let v1, . . . , vn be the vertices of K•H
n that correspond to Kn.

The vertices of K•H
n of the largest degree are v1, . . . , vn, so any automorphism of K•H

n

will permute them. Let � be a d-labeling of K•H
n and suppose that at least r + 1 vertices
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Fig. 2. A uniquely 3-distinguishable graph.

among v1, . . . , vn receive the same label. Then there exist vertices vi, vj such that �(vi) =
�(vj ) and such that the copies Hi and Hj of H (in K•H

n ) have equivalent labelings �i and
�j , respectively. Let ϕij be an automorphism of H such that �i = �j ◦ ϕij . Let ϕ be the
automorphism of K•H

n with ϕ(vi) = vj , ϕ(vj ) = vi , ϕ(Hi) = ϕij (Hj ), ϕ(Hj ) = ϕ−1
ij (Hi),

and fixed elsewhere. Since ϕ is a nontrivial automorphism of (K•H
n , �) it follows that �

is not a distinguishable labeling. An analogous argument also implies that D(K•H
n ) �

n/r = d .
Let H1 = {H1, . . . ,Hr}, . . . , Hd = {H(d−1)r+1, . . . ,Hdr}. We define a labeling � as fol-

lows: �(v1) = · · · = �(vr) = 1, . . . , �(v(d−1)r+1) = · · · = �(vdr ) = d . For each 1 � i � d ,
label the graphs from Hi in such a way that no two graphs in Hi receive equivalent
labelings. By the choice of n, such a labeling exists. It is easy to see that � is a distin-
guishing labeling. On the other hand, if � is a d-distinguishable labeling of K•H

n , then
by the argument in the previous section, we may assume that �(v1) = · · · = �(vr) = 1, . . . ,
�(v(d−1)r+1) = · · · = �(vdr ) = d , and moreover, any two of the graphs from Hi (1 � i � d)
receive nonequivalent labelings. So we must use all the r = D�d(H) labelings to label the
graphs from Hi . Therefore � defined above is the unique d-distinguishable labeling of
K•H

n . �
Theorem 6.2 is illustrated in Fig. 2 for the case d = 3 and H = K2.
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