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Abstract: The distinguishing number D(G) of a graph is the least integer d
such that there is a d-labeling of the vertices of G that is not preserved by any
nontrivial automorphism of G. We show that the distinguishing number of
the square and higher powers of a connected graph G �= K2, K3 with respect
to the Cartesian product is 2. This result strengthens results of Albertson
[Electron J Combin, 12 (2005), #N17] on powers of prime graphs, and results
of Klavžar and Zhu [Eu J Combin, to appear]. More generally, we also prove
that d(G�H) = 2 if G and H are relatively prime and |H| ≤ |G| < 2|H| − |H|.
Under additional conditions similar results hold for powers of graphs with
respect to the strong and the direct product. © 2006 Wiley Periodicals, Inc. J Graph
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1. INTRODUCTION

A labeling � : V (G) → {1, 2, . . . , d} of a graph G is d-distinguishing if no nontriv-
ial automorphism of G preserves the labeling. The distinguishing number D(G) of a
graph G is the least integer d such that G has a d-distinguishing labeling. This con-
cept was introduced by Albertson and Collins in [2] and has received considerable
attention, cf. [4,5,7,16,18].

All graphs in this paper are assumed to be connected. This is possible without
loss of generality because a graph and its complement have the same automorphism
groups (and hence equal distinguishing numbers) and because the complement of
a disconnected graph is connected.

If a graph has no nontrivial automorphisms its distinguishing number is 1. In
other words, D(G) = 1 for asymmetric graphs. The other extreme, D(G) = |G|,
occurs if and only if G = Kn. This follows from the fact that D(G) ≤ �(G) for all
graphs G �= Kn, Kn,n and C5 (see [13]).

The Cartesian product (and other products) of graphs have automorphism groups
that are well understood. Hence it is not surprising that the distinguishing number
of Cartesian product graphs have been thoroughly investigated.

It all started with the paper [3] of Bogstad and Cowen in which the distinguishing
number of hypercubes was determined: D(Q2) = D(Q3) = 3 and D(Qd) = 2 for
d ≥ 4. Now, hypercubes are the simplest instances of Cartesian product graphs,
that is, Qd = Kd

2 , where Gr stands for the rth power of G with respect to the
Cartesian product. Then Albertson [1] proved that for a connected prime graph G,
D(Gr) = 2 for all r ≥ 4, and, if |V (G)| ≥ 5, then D(Gr) = 2 for all r ≥ 3. This
considerably generalizes the results of [3]. Moreover, Albertson conjectured that for
any connected graph G there exists an integer R = R(G) such that for any r ≥ R,
D(Gr) = 2. This conjecture has been then verified in [14], where it was shown
that D(Gr) = 2 for any connected graph G �= K2 and any r ≥ 3. Here we round
out these investigations with the following theorem that includes second powers as
well.

Theorem 1.1. LetG �= K2, K3 be a connected graph and k ≥ 2. ThenD(Gk) = 2.

As we already mentioned, the case G = K2 has been settled in [3], whereas
D(Kq

3) = 2 for q ≥ 3 by [14]. It is also known (and can be checked directly) that
D(K2

3) = 3. Hence Theorem 1.1 completely determines the distinguishing number
of all Cartesian powers—it is always two, with the exception of the three special
cases K2

2, K3
2, and K2

3, whose distinguishing number is three.
Our proof of Theorem 1.1 does not use the motion lemma of [16] (or its modifi-

cation from [14]), and is self-contained in the sense that it mainly relies on the prop-
erties of the automorphism groups of Cartesian products of prime and relatively
prime graphs. We will describe these results in Section 2 (see [12] for details).
Then, in Section 3, we prove Theorem 1.1. In Section 4, we consider Cartesian
products with factors of different sizes and prove that D(G�H) = 2 if G and H

are relatively prime and |H | ≤ |G| < 2|H | − |H |. In the last section we show that
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similar results hold for powers of graphs with respect to the strong and the direct
product.

In the sequel we will label graphs with two or more labels and will, in the case of
two labels, sometimes utilize the binary representation of numbers. We shall also
consider 2-labelings as mappings of the form � : V (G) → {0, 1}. Alternatively, we
will speak of black and white colors or regard a labeling or coloring as a partition
of V (G).

2. ALGEBRAIC PROPERTIES OF CARTESIAN PRODUCTS

Let us recall that the Cartesian product G�H of two graphs has the vertex set
V (G) × V (H) where the vertex (g, h) is adjacent to (g′, h′) whenever gg′ ∈ E(G)
and h = h′, or g = g′ and hh′ ∈ E(H). If (g, h) ∈ G�H , we set pG(g, h) = g

and pH (g, h) = h. The mappings pG : V (G�H) → V (G) and pH : V (G�H) →
V (H) are called projections of G�H onto the respective factors.

A graph is called prime (with respect to the Cartesian product) if it cannot be
represented as the Cartesian product of two nontrivial graphs. Clearly every graph
is a product of prime graphs. It is well known that this prime factor decomposition
is unique for connected graphs [17,19], see also [8,12]. That is, every connected
graph G can be uniquely represented as a product of prime graphs Gi

G = G1 �G2 � · · · �Gk

up to the order and isomorphisms of the factors.
Two graphs G and H are relatively prime (with respect to the Cartesian prod-

uct) if there is no nontrivial graph that is a factor of both G and H . Clearly, two
nonisomorphic prime graphs are relatively prime.

If G = G1 �G2 and α ∈ Aut(G1), then the mapping

α∗ : V (G1 �G2) → V (G1 �G2)

defined by

α∗ : (g1, g2) �→ (αg1, g2)

is an automorphism of G.
Furthermore, if G1 = G2, that is, if G = G1 �G1, then

β : (g1, g2) �→ (g2, g1)

also is an automorphism of G.
The automorphism α∗ of G is induced by an automorphism of a factor and β

by an interchange of isomorphic factors. By [10] such automorphisms generate
Aut(G). One can thus visualize Aut(G) as the automorphism group of the disjoint
union of the Gi.
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A fiber G(g1,...,gk)
i of G1 � · · · �Gk is the subgraph induced by the vertex set

{(g1, g2, . . . , gi−1, x, gi+1, . . . , gk) | x ∈ Gi}.

This set consists of all vertices of G that differ from v = (g1, . . . , gk) in the ith
coordinate. Clearly Gv

i is isomorphic to Gi and the number of Gi-fibers is equal to
the number of vertices in

G1 �G2 � · · · Gi−1 �Gi+1 � · · · �Gk.

Any two Gi-fibers are either identical or disjoint.
Every nontrivial automorphism α∗ of G that is induced by an automorphism α

of Gi preserves every single Gi-fiber and permutes the set of Gj-fibers for every
j �= i. Furthermore, any automorphism β of G that is induced by an interchange of
the (isomorphic) factors Gi and Gj interchanges the set of Gi-fibers with the set of
Gj-fibers. It also stabilizes the sets of Gr-fibers for any factor Gr with r �= i, j.

In particular this implies that in a product G�H of relatively prime graphs
every automorphism preserves the set of G-fibers and the set of H-fibers, cf. [12,
Corollary 4.17].

As an example consider K2 �K3 (see Fig. 1). The K3-fibers have the vertex sets
{a, b, c}, {a′, b′, c′}, and the K2-fibers the vertex sets {a, a′}, {b, b′}, and {c, c′}. Since
K2 and K3 are relatively prime, every automorphism of K2 �K3 either stabilizes
both sets {a, b, c} and {a′, b′, c′} or interchanges them. Similarly it permutes (or
stabilizes) the sets {a, a′}, {b, b′}, {c, c′}. If we color a, b, and b′ white and the other
vertices black, cf. Figure 1, then the sets

{a, b, c}, {a′, b′, c′}

cannot be interchanged because they have different numbers of black and white ver-
tices. The same holds for the sets {a, a′}, {b, b′}, and {c, c′}. Thus D(K2 �K3) = 2.

The same argument shows that D(K2 �P3) = 2.

FIGURE 1. A 2-distinguishing labeling of K2 �K3.
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3. PROOF OF THE MAIN THEOREM

We begin with powers of prime graphs.

Lemma 3.1. Let G be a connected prime graph on at least four vertices. Then
D(G�G) = 2.

Proof. Let 4 ≤ k = |G|, H ∼= G, and V (G) = V (H) = {1, . . . , k}. Color the
vertices (k − 1, k − 1), (k, k), the vertices (i, j) with 1 ≤ i < j ≤ k, and vertices
(i, i − 2) for 3 ≤ i ≤ k black and the other ones white.

Since G is prime, all automorphisms of G�H are generated by automorphisms
of G or H or interchanges of the G-fibers with the H-fibers.

Automorphisms of the product generated by automorphisms of G preserve the
number of black vertices in every G-fiber and the automorphisms of G�H gen-
erated by automorphisms of H permute them. Thus, such automorphisms preserve
or permute the number of black vertices in every G-fiber. Similarly one shows
that these automorphisms preserve or permute the number of black vertices in the
H-fibers.

As there is one G-fiber all of whose vertices are black but no H-fiber with this
property, we infer that our coloring forbids interchange of the G-fibers with the
H-fibers.

Moreover, any two G-fibers have different numbers of black vertices, and thus
have to be stabilized by every color preserving automorphism of G�H . If k = 4, 5
we easily check directly that H-fibers cannot be interchanged. Let k ≥ 6, then there
are two H-fibers with k − 2 black vertices and two with just three, but any other two
H-fibers have different numbers of black vertices. These pairs of H-fibers are H (2,1),
H (3,1), and H (k−2,1), H (k−1,1). It is easy to see that they cannot be interchanged since
(2, 1) is white, but (3, 1) is black, and because (k − 2, 2) is black but (k − 1, 2) is
white. �

This implies, in particular, that D(Kk �Kk) = 2 for k ≥ 4. On the other hand it
is not hard to show that D(K3 �K3) = 3.

Lemma 3.2. Let G, H be connected graphs with 3 ≤ |G| ≤ |H | + 1. If G is prime
and D(H) ≥ 2, then D(G�H) ≤ D(H).

Proof. Since D(H) ≥ 2 we have at least the colors black and white at our
disposal. Color one H-fiber completely black, one completely white and endow one
with the distinguishing coloring. (This is possible since there are at least three H-
fibers.) If there are more H-fibers color them such that any two H-fibers, including
the ones we have already colored, have different numbers of black vertices. Since
|G| ≤ |H | + 1 this is possible.

If H is not prime, it may have a prime factor H ′ isomorphic to G, in this case
G�H has an automorphism interchanging G with H ′. But then every G-fiber
is mapped into an H ′-fiber. Thus also every H ′-fiber completely contained in the
H-fiber that is completely black must be an image of a G-fiber. Since there is no
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completely black G-fiber this is not possible. Therefore our coloring requires that
the G-fibers are mapped into G-fibers and hence all H-fibers into H-fibers. These
fibers have pairwise different numbers of black vertices and must thus be stabilized.
This includes the fiber with the distinguishing coloring. But then all G-fibers have
to be stabilized and, moreover, fixed because the H-fibers are stabilized. �
Corollary 3.3. Let G be a connected prime graph on at least 4 vertices. Then
D(Gk) = 2 for k ≥ 2.

Proof. For k = 2 this is Lemma 3.1, for k > 2 use induction and replace H by
Gk−1 in Lemma 3.2. �

We continue with a short proof of the following lemma from [14].

Lemma 3.4. Let G and H be connected, relatively prime graphs with D(G) = 2
and 2 ≤ D(H) ≤ 3. Then D(G�H) = 2.

Proof. Let G, H be relatively prime connected graphs, �G = (A1, A2) a distin-
guishing 2-labeling of G and �H = (B1, B2, B3) a distinguishing 3-labeling of H .
We define a 2-labeling � of G�H by coloring the vertices from

(A1 × B1) ∪ (A1 × B2) ∪ (A2 × B2)

white and all the other vertices black.
With this coloring all vertices of fibers Gu with pH (u) ∈ B3 are black, those with

pH (u) ∈ B2 have only white vertices and the other G-fibers have both black and
white ones. Clearly they form blocks, so every automorphism of G�H induced
by one of H must preserve the blocks B1, B2, B3 of H , and is thus the identity.

The Hu-fibers are divided into two classes, those with pG(u) ∈ A1 and the ones
with pG(u) ∈ A2. The former have |B1| + |B2| white vertices, the latter only |B2|.
These classes are stabilized by any automorphism of G�H . By the same argument
as before every automorphism of G�H that respects the 2-labeling and is induced
by an automorphism of H must be the identity.

Since Aut(G�H) is generated by Aut(G) and Aut(H), � is a distinguishing
2-labeling.

The observation that the above reasoning also holds if B3 is empty completes the
proof. �

Note that the labeling from Figure 1 is a special case of the construction in the
above proof.

Lemma 3.5. Let G be a connected graph. If G has a prime factor of cardinality
at least 4, and no factor K2, then D(Gk) = 2 for k ≥ 2.

Proof. Let G = G
p1

1 � · · · �G
pr
r be the prime factor decomposition of G,

where the Gi’s are prime graphs and pi ≥ 1. Suppose first that all Gis have at least
four vertices. Then D(Gkpi

i ) = 2 by Corollary 3.3. Since Gk = Gkp1
1 � · · · �Gkpr

r

successive applications of Lemma 3.4 show that D(Gk) = 2 in this case.
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If we also have a factor Gp0
0 , where |G0| = 3, we complete the proof by

successive applications of Lemma 3.2. �

To be able to treat the case where G contains a factor K
p

2 we invoke a slightly
different version of Lemma 3.2.

Lemma 3.6. Let G, H be connected graphs with 3 ≤ |G| ≤ |H | + 1. If G and H

are relatively prime, then D(G�H) ≤ max{2, D(H)}.
Proof. By the same arguments as in the proof of Lemma 3.2. �

Lemma 3.7. Let X = K
p

2 �Y , where Y is a connected graph relatively prime to
K2 and D(Yk) = 2 for k ≥ 2. Then D(Xk) = 2.

Proof. We consider the case where p = 1 first. Set G = Kk
2 and H = Yk. Note

that G and H are relatively prime. Since |G| = 2k < |Y |k we can apply Lemma 3.6.
For p > 1 we note that D(Kr

2) = 2 for r ≥ 4, as has been shown in [3]. Now an
application of Lemma 3.4 completes the proof. �

We now complete the proof of the main theorem. In view of Lemmas 3.5 and 3.7
it remains to consider graphs G whose prime factors have two or three vertices. It
is easily seen that D(P3 �P3) = 2. By Lemma 3.2 all higher powers of P3 have
distinguishing number 2. Therefore, if G has a prime factor P3, Lemma 3.4 implies
that D(Gk) = 2 for k ≥ 2.

We have already mentioned that D(K2
3) = 3. A 2-distinguishing labeling of K3

3
can be constructed as follows. Let G1, G2, G3 be three copies of K3. Choose a
distinguishing labeling of H = G2 �G3 with three colors, say b, w, and g, and let
b, w, and g also denote the number of vertices colored with the respective colors. Let
g ≤ w ≤ b, then g + b > w. Color two H-fibers of G1 �H with the distinguishing
coloring. In one fiber, change g to b. In the other, interchange b and w and change
g to w. Color the remaining H-fiber of G1 �H completely with w. It is readily
verified that the constructed labeling is distinguishing.

Since D(K3
3) = 2, applications of Lemma 3.2 yield D(Kk

3) = 2 for any k ≥ 3.
As in addition D(Kk

2) = 2 for any k ≥ 4, D(Gk) = 2 for any k ≥ 2 and any graph
G that has a prime factor Kr

3 of Kr
2 for some r ≥ 2. The only remaining case

is G = K2 �K3. It is straightforward to see that D(K2
2 �K3) = 2. Then apply

Lemma 3.2 with G = K3 to infer that D(G2) = 2. Finally, D(Gk) = 2 for k > 2
by Lemma 3.6. �

4. PRODUCTS WITH FACTORS OF DIFFERENT SIZES

In this section we show that the distinguishing number of the product of two rela-
tively prime graphs is 2 if their sizes do not differ too much.

Lemma 4.1. Let k ≥ 2, let G be a connected graph on 2k − k + 1 vertices and H

a connected graph on k vertices that is relatively prime to G. Then D(G�H) ≤ 2.
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Proof. Since G and H are relatively prime every automorphism maps G-fibers
into G-fibers and H-fibers into H-fibers.

We wish to color the G-fibers with two colors such that the number of ones in
the fibers is 2k−1, 2k−1 − 1, . . . , 2k−1 − k + 1. To this end we consider all binary
numbers from 0 to 2k − 1 and remove the numbers 2 − 1, 22 − 1, . . . , 2k−1 − 1.
Let Bk denote the set of these numbers. Clearly, |Bk| = 2k − k + 1.

Regard the binary numbers from Bk as vectors of length k and label the H-fibers
with them. Then the number of ones in the G-fibers is 2k−1, 2k−1 − 1, . . . , 2k−1 −
k + 1. They are different, thus any automorphism α of G�H that respects the
0-1 labeling must preserve G-fibers, so α can only interchange H-fibers (as 0-1
vectors). They are all different, hence α is the identity. �

Let b = b1b2 . . . bn and c = c1c2 . . . cn be binary numbers. Then we say that c is
the binary complement of b if bi + ci = 1, 1 ≤ i ≤ n.

Theorem 4.2. Let k ≥ 2 and let G and H be connected, relatively prime graphs
with k ≤ |H | ≤ |G| ≤ 2k − k + 1. Then D(G�H) ≤ 2.

Proof. Suppose first that |H | = k. Let Bk be the set of 2k − k + 1 binary
numbers as in the proof of Lemma 4.1. Note that there are (2k − 2(k − 1))/2 =
2k−1 − (k − 1) pairs of binary complements in Bk, one of them being the pair
{00 . . . 0, 11 . . . 1}. Set x = (2k − (k − 1) − |G|)/2. If x is an integer, then let Ck
be the set of binary numbers obtained from Bk by removing 2x numbers that form
x complementary pairs. If x is not an integer, remove 00 . . . 0, and then �x� com-
plementary pairs. Note that |Ck| = |G| and consider the binary numbers from Ck as
vectors of length k and label the H-fibers with them. Recall that the vectors from
Bk have pairwise different number of ones in each of their k coordinates. Since in
the construction of Ck we have removed binary complements (and possibly also
00 . . . 0), the vectors from Ck also have pairwise different numbers of ones in their
coordinates. Thus any automorphism α of G�H must preserve G-fibers and since
the H-fibers are pairwise different, α is the identity.

Suppose next that k < |H | (and |H | ≤ |G|). Then select a subgraph H ′ of H with
k vertices and use the above construction for G�H ′. This construction leads to k

different numbers of 1s in fibers G(g,h′), where h′ ∈ H ′. Let S be the set of these
numbers. Now label the G-fibers of G� (H \ H ′) arbitrarily with 0 s and 1s such
that every fiber has a distinct number of 1s from the set {0, 1, . . . , 2k − k + 1} \ S.
As before the G-fibers and the H-fibers are fixed by every automorphism. �

Note that Theorem 4.2 holds for k = 2 by default, because then G = H = K2,
and G, H are not relatively prime. In fact, we already mentioned that D(K2 �K2)
= 3.

In contrast to Theorem 4.2 we have the following result.

Theorem 4.3. D(Km �Kn) ≥ 3 for m ≥ 2 and n > 2m.

Proof. Let � be an arbitrary 2-coloring of Km �Kn. Since there are more than
2m Km-fibers, at least two of them have identical 2-colorings, that is, if Ku

m and Kv
m

Journal of Graph Theory DOI 10.1002/jgt



258 JOURNAL OF GRAPH THEORY

are these two fibers and x ∈ Ku
m, y ∈ Kv

m have the same projections onto Km, then
�(x) = �(y). Since Aut(Km �Kn) acts transitively on the Km-fibers we infer that �

is not distinguishing. �

Recall that D(K2 �K4) = 3. In addition, we can show that D(K3 �K7) = 3.
Hence it seems to be an interesting question whether there are cases where
D(Km �Kn) = 2 for 2m − m + 1 < n ≤ 2m.

5. DISTINGUISHING STRONG AND DIRECT PRODUCTS

The results for the Cartesian product depend on the structure of the automorphism
group of the product, in some cases on the size of the factors, and, of course, on
the unique prime factorization property. Let us check when these conditions are
satisfied for the strong and the direct product.

We begin with the definition of these products. Both the strong product G � H

and the direct product G × H of two graphs have the same vertex sets as the
Cartesian product. In the case of the direct product two vertices u, v ∈ G × H are
joined by an edge if [pG(u), pG(v)] ∈ E(G) and [pH (u), pH (v)] ∈ E(H), whereas
the edge set of the strong product is the union of the edge sets of the Cartesian
and the direct product. Both products are commutative and associative. Moreover,
every connected graph has a unique prime factor decomposition with respect to the
strong product [6], cf. also [9,11,12].

A. Distinguishing Strong Products

The structure of the automorphism group of strong products is generally not the
same as that of Cartesian products. The most striking example is strong product of
complete graphs. We have

Km � Kn = Km·n

and thus D(Kn � Kn) = n2, whereas D(Kn �Kn) = 2 for any n ≥ 4. The reason is
that any two vertices u, v of Kn are adjacent and similar, that is, any vertex w �= u, v

is either adjacent to both u and v or to neither one of them. A graph is called S-thin
if it has no pairs of such vertices.

The prime factors of S-thin graphs are thin again and the structure of the auto-
morphism group of strong products of connected, prime, S-thin graphs is the same
as that od corresponding Cartesian products. Since K2 and K3 are not thin, we have
the following theorem.

Theorem 5.1. Let G be a connected, S-thin graph and �Gk the k-th power of G

with respect to the strong product. Then D(�Gk) = 2 for k ≥ 2.
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B. Distinguishing Direct Products

Connected nonbipartite graphs have unique prime factor decompositions with re-
spect to the direct product [15], see also [11]. If such a graph G has no pairs u, v

of vertices with the same closed neighborhoods, then the structure of the automor-
phism group of G depends on that of its prime factors exactly as in the case of the
Cartesian product.

Graphs with no pairs of vertices with the same closed neighborhoods are called
R-thin.

Theorem 5.2. Let G be a nonbipartite, connected, R-thin graph different from K3

and ×Gk the k-th power of G with respect to the direct product. Then D(×Gk) = 2
for k ≥ 2.

For the case G = K3 we use the fact that ×Kk
3 and Kk

3 have the same automor-
phism groups. Hence D(K3 × K3) = 3 and D(×Kk

3) = 2 for k ≥ 3.
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