L(2, 1)-labeling of direct product of paths and cycles

Pranava K. Jha
Department of Computer Science, St. Cloud State University
St. Cloud, MN 56301, USA
pkjha@eeyore.stcloudstate.edu

Sandi Klavzar*
Department of Mathematics and Computer Science, PeF
University of Maribor
Koroska cesta 160, 2000 Maribor, Slovenia
sandi.klavzar@Quni-mb.si

Aleksander Vesel*
Department of Mathematics and Computer Science, PeF
University of Maribor
Koroska cesta 160, 2000 Maribor, Slovenia
vesel @uni-mb.si

Abstract

An L(2,1)-labeling of a graph G is an assignment of labels from {0,1,...,A} to
the vertices of G such that vertices at distance two get different labels and adjacent
vertices get labels that are at least two apart. The A-number A(G) of G is the minimum
value A such that G admits an L(2,1)-labeling. Let G x H denote the direct product
of G and H. We compute the A-numbers for each of C7; x Cr;, Ci1; x Cr1j X Chip,
Py x Cpy, and Ps x Cp,. We also show that for n > 6 and m > 7, \(P, x Cy,) = 6 if
and only if m = 7k, k > 1. The results are partially obtained by a computer search.
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1 Introduction

Consider the problem of assigning frequencies to radio transmitters at various nodes in a
territory. Transmitters that are close must receive frequencies that are sufficiently apart,
for otherwise they may be at the risk of interfering with each other. The spectrum of
frequencies is a very important resource on which there are increasing demands, both civil
and military. This calls for an efficient management of the spectrum. It is assumed that
transmitters are all of identical type and that signal propagation is isotropic. Further,
since frequencies themselves are quantized in practice, there is no loss of generality in
assuming that they admit integer values.

The foregoing problem, with the objective of minimizing the span of frequencies, was
first placed on a graph-theoretical footing in 1980 by Hale [11] who established its equiv-
alence to generalized vertex coloring problem that is known to be computationally hard.
(Vertices correspond to transmitter locations and their labels to radio frequencies, while
adjacencies are determined by geographical “proximity” of the transmitters.) Roberts [23]
subsequently proposed a variation to the problem in which distinction is made between
transmitters that are “close” and those that are “very close.” This enabled Griggs and Yeh
[10] to formulate the L(2,1)-labeling of graphs that has since been an object of extensive
research [2]-[9], [13, 14, 16, 18], [20]-[30].

Formally, an L(2,1)-labeling of a graph G is an assignment f of non-negative integers
to vertices of G such that

2; dg(u,v) =1,
7w) — f@)] > { el =)

[a-(2,1)-coloring]

The difference between the largest label and the smallest label assigned by f is called
the span of f, and the minimum span over all L(2,1)-labelings of G is called the \-
number of G, denoted by A(G). The general problem of determining A(G) is NP-hard [9].
Moreover, determining A\(G) is an NP-complete problem even for graphs G with diameter
2 [10]. On the other hand, if the graph is known to be a tree, then there is an efficient
solution [2]. This result has been extended in [4] to k-almost trees (for any fixed k). For
additional information concerning related complexity issues, we refer to [4].

The following result constitutes a useful lower bound.

Lemma 1.1 (Griggs & Yeh [10]) Let G be a graph with mazimum degree A > 2. If G
contains three vertices of degree /A such that one of them is adjacent to the other two, then

AG) > A+ 2.

The foregoing lower bound is achievable in many cases [9, 20, 24, 30]. In particular,
this is true with respect to Cartesian products as well as strong products of finitely many
cycles, where there are certain conditions on lengths of individual cycles [13, 14]. Indeed,
graphs G exist for which A(G) is strictly larger than the lower bound suggested by Lemma



1.1 [30]. The present paper presents sharp bounds on A-number of direct product (defined
below) of cycles and paths.

By a graph is meant a finite, simple and undirected graph having at least two ver-
tices. Unless otherwise indicated, graphs are also connected. Let P, (resp. C),) denote a
path (resp. a cycle) on m vertices, where V(P,,) = V(Cy,) = {0,...,m — 1} and where
adjacencies are defined in a natural way.

For graphs G = (V, E) and H = (W, F), the direct product G x H of G and H is defined
as follows: V(G x H) =V x W and E(G x H) = {{(a,z), (b,y) : {a,b} € E and {z,y} €
F}. This product (that is commutative and associative in a natural way) is one of the most
important graph products with potential applications in engineering, computer science and
related disciplines. For example, the diagonal mesh studied by Tang and Padubirdi [26]
with respect to multiprocessor network is representable as X-product of two odd cycles
that has several attractive properties, viz., low diameter, high independence number and
high odd girth [12]. Ramirez and Melhem [22] present a fault-tolerant computational array
whose underlying graph is isomorphic to a connected component of Po;1 X Pajy1.

The following statements are relevant with respect to Cy, x C,, Cyp, X Py, and Py, X Py,
and will be (implicitly) used in the sequel:

(i) Caiq1 x Cyjq1 is nonbipartite while each of the rest is bipartite, and
(ii) each of Cy4+1 x C), and Cy;41 X P, is connected, while each of the rest consists
of two connected components.
(iii) Caiy1 X P, is isomorphic to a connected component of Cy9iy1) X Pp.

Let P = vi,v9...v, and @ = uq,us...u, be disjoint paths on n vertices. Then Z,
denotes the graph with the set of vertices V(Z) := V(P) U V(Q). The set of edges of Z,
is for i = 1,2,..., | 22| defined with:

B(Z) = { E(P)UE(Q) U {vgug;—1,v2iU2i41}; nodd,
E(P)U E(Q) U {vgjugi—1,v2ugi1 } U{vpup—1}; meven.

Let f and g be (2,1)-labelings of P, and let f o g be the assignment to the vertices of
Zp, such that the restriction of f o g to the first (second) P, in Z, equals f (g).

We now define graph denoted D, , as follows. Its vertices are ¢-(2,1)-labelings of P,.
Vertices f,g € Dy, are adjacent if and only if f o g is a (2,1)-labeling in Z,.

The next theorem can now be very easily derived from the concepts and results pre-
sented in [18].

Theorem 1.2 (i) Cy; x P, admits a q-(2,1)-labeling if and only if Dy, 4 contains a closed
walk of length 1.

(it) Coip1 x P admits a q-(2,1)-labeling if and only if Dy, 4 contains a closed walk of
length 21 + 1.



2 Preliminaries

Let G = (V(G), E(G)) be a graph. A walk is a sequence of vertices v1,vs,...,v, and edges
iVi+1, 1 <1 <n—1. A path on n vertices is a walk on n different vertices and denoted
P,. A walk is closed if v1 = v,. A closed walk in which all vertices (except the first and
the last) are different, is a cycle. The cycle on n vertices is denoted C,,. For u,v € V(G),
dg(u,v) or d(u,v) denotes the length of a shortest walk (i.e., the number of edges on a
shortest walk) in G from u to v. These definitions extend naturally to directed graphs.

Let Go,G1,...,G, 1 be disjoint graphs and Xy, Xy,..., X, 1 a sequence of sets of
edges such that an edge of X; joins a vertex of G; with a vertex of G;11 (indices modulo
n). A polygraph

Qn = Qn(Go, Gl, ey anl; X(),Xl, e 7X’n71)
is defined in the following way:
V(Q,) =V (Go) UV(G1)U--- UV (Gpoa),
E(Q,) = E(Go) UXgUE(G))UX1U---UE(Gp—1) U Xp_1.

Polygraphs were introduced in chemical graph theory as a model for polymers, cf. [1], and
studied in, for instance, [17, 19, 31]. Assume that for 0 < i < n — 1, G; is isomorphic to
a fixed graph G. Let, in addition, the sets X;, 0 < i < n — 1, be equal to a fixed edge
set X. Then we call the polygraph ,, a rotagraph and denote it w,(G;X). We will also
say that w,(G; X) is a rotagraph with consecutive fibers Go, G1,...,Gn—1. A fasciagraph
¥n(G; X) is a rotagraph w,(G; X) without edges between the fibers G,,_1 and Gj.

In the rest of this section we recall concepts and results that were recently introduces
in [18] and are essential for the present work. For a graph G set

Fo(G)={f:V(G)—={0,1,...,¢ —1}}.

A subset of F,(G) will be called a graph q-property. If g will be clear from the context or
not essential, we will shortly say a graph property.

Let £L,(G) C F4(G) be the set of functions f with the following property: Let f €
Ly(G), then if uwv € E(G) we have |f(u) — f(v)| > 2, and if d(u,v) = 2 we have |f(u) —
f(v)] > 1. Clearly, £,(G) describes the admissible (2, 1)-labelings of G.

Let w,(G; X) be a rotagraph with consecutive fibers Go, G1,...,Gp—1. Then the re-
striction of f € F,(wy,(G; X)) to consecutive fibers X;, X;11,..., X;;x (indices modulo n)
will be denoted fin . We say that a graph property P, is hereditary (for rotagraphs), if
for any rotagraph w,(G; X) with consecutive fibers Gy, Gy, ..., Gp_1,

f € PQ(wn(GﬂX)) = fzz+k € PQ(\IIk+1(G’X))v ’L,k = 0513"' , L — 1.

Note that L, is hereditary property.
A graph property P, is called d-local (for rotagraphs), d > 1, if for any rotagraph
wn(G; X), n > 2d+1, with consecutive fibers Gy, G1,...,Gp—1, and any f € Fy(w,(G; X)),

FI e Py(Wai1(G; X)), 0 <i <n—1= f € Pylwn(G; X)).
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Note that £, is a 2-local property.

Let P, be a d-local property, and wy,(G; X) a rotagraph with n > 2d + 1. We define
a directed graph Dy(G; X) as follows. Its vertices are the functions from Py (Vs (G; X)),
while its arcs are of two types: the first type arcs will be simply called arcs, and the
second type arcs will be d-arcs. Now, in Dy(G; X) make an arc from f to g if and only
if f restricted to the second fiber of Uy(G; X) equals to g restricted to the first fiber of
Uy (G; X). In addition, if d > 2, then for any directed path (consisting of arcs) of length
d—1,say f1 = fo — ... = f4, we make a d-arc from f; to f; whenever the composition of
f1, fa, ..., fa belongs to Py(¥qy1(G; X)). In the particular case when d = 2 we interpret
this as follows: If the composition of f; and f; belongs to P, (V3(G; X)) then we leave the
arc from f1 to fo, otherwise we remove it.

Theorem 2.1 ([18]) Let P, be a hereditary, d-local property, and w,(G;X) a rotagraph
withn > 2d+1. Then Py(wn(G; X)) # 0 if and only if Dy(G; X) contains (not necessarily
different) vertices fo, f1,..., fn—1 connected with arcs (fi, fi+1) and d-ares (fi, fiva—1) for
i=0,1,...,n—1 (indices modulo n).

Corollary 2.2 ([18]) Let P, be a hereditary, d-local property, 1 < d <2, and w,(G; X) a
rotagraph with n > 5. Then Py(w,(G; X)) # 0 if and only if Dg(G; X) contains a directed
closed walk of length n.

3 A-numbers of 072' X C7j and 0112' X Cllj X Cllk

Determining A(C), x C,,) is important also because it yields analogous results for A\(C),, x
P,) and A\(P,, x P,) in most cases. In the present section, we show that the lower bound
of Lemma 1.1 is achieved for each of C7; x C7; and C11; X Ci1j X Chig.

Theorem 3.1 If m = 0(mod 7) and n = 0(mod 7), then \(Cy, x Cy) = 6.

Proof. By Lemma 1.1, \(C,, x Cy) > 6, since C,, x C), is a regular graph of degree
four. It, therefore, suffices to present a valid L(2,1)-labeling of C), x C), using the labels
0,...,6, where m and n are as stated. Let a vertex (i,75) of C,, x C, be assigned the
integer f(i,7) = (8 + 47) mod 7. The assignment is clearly well-defined.

A vertex adjacent to (7, 7) is of the form (i +a, j +b), where a,b € {+1,—1}, and i +a
(resp. j + b) is modulo m (resp. n). Note that f(i + a,j +b) = [(8i + 47) + (8a + 4b)]
mod 7. For the four cases corresponding to a,b in {+1,—1}, (8a + 4b) mod 7 is equal to
exactly one of 2, 3, 4 and 5. Accordingly, 2 < |f(i,5) — f(i +a,j + b)| < 5.

A vertex at a distance of two from (7,7) is of the form (i 4+ ¢,j + d), where ¢,d €
{+2,0,—2}, and ¢, d are not both zero. Note that f(i+¢,j +d) = [(8 + 4j) + (8¢ + 4d)]
mod 7. Conditions on ¢ and d are such that 8c + 4d is necessarily nonzero. Further,
|8¢ + 4d| is a multiple of 8 and at most equal to 24. Accordingly, 8¢ + 4d is not a multiple
of 7. Tt follows that |f(4,j) — f(i + ¢, +d)| > 1.

Conclusions are valid even if 7 (resp. j) is of the form m — 2 or m — 1 (resp. n — 2 or
n — 1), since m and n are themselves multiples of 7. O



For 0 < a <6, let V, be the set of vertices of a connected component of C),, x C,, that
receive label a in the proof of Theorem 3.1. The sets Vj, ..., Vg form a vertex partition into
equal-size independent sets, where elements of each V, dominate (5/7)th of the vertices
(including themselves) in that component. Accordingly, elements of each V, correspond to
as many vertex-disjoint K 4’s. Also, vertices in each (V5; U V5;11) correspond to as many
edge-disjoint K 4’s, 0 <17 < 2.

Corollary 3.2 If m >5,n>4 and i > 1, then \(Py, x P,) = X(C7; x P,) = 6.

Proof. Each of P, x P, and C%; x P, is of largest degree four, and satisfies Lemma 1.1.
Further, (i) P, x P, is a subgraph of
Cr; x Cq; for some ¢ and j, and (ii) C7; x P, is a subgraph of C7; x Cy; for some j. O

Theorem 3.3 Ifr = 0(mod 11), s = 0(mod 11) and t = 0(mod 11), then A\(C, x Cs x
Cy) = 10.

Proof. By Lemma 1.1, \(C, x Cs x Cy) > 10 as C, x Cs x Cy is a regular graph of degree
eight, so it suffices to present a valid L(2,1)-labeling of C, x Cs x Cy using the labels
0,...,10. Let a vertex (i,7,k) of C, x Cys x Cy be assigned the integer (24i + 125 + 6k)
mod 11. The assignment is clearly well-defined.

Analogous to the proof of Theorem 3.1, it suffices to prove that (i) 2 < (24a+ 12b+ 6¢)
mod 11 < 9, where a,b,¢c € {+1,—1}, and (ii) (24z + 12y + 62z) mod 11 > 0, where
z,y,z € {+2,0,—2} and z,y, z are not all zero.

There are a total of eight cases corresponding to a,b,c € {+1,—1}. For each, the
reader may check to see that (24a + 12b+ 6¢) mod 11 is equal to exactly one of 2, 3, 4, 5,
6, 7, 8 and 9. It is next shown that 24x 4+ 12y + 6z is nonzero and not a multiple of 11,
where z, y and z are as stated.

If £ # 0, then 24x + 12y + 6z is of the same sign as z; if £ = 0 and y # 0, then
241z + 12y + 62 is of the same sign as y; if z = y = 0, then z # 0, and 24z 4 12y + 62 is of
the same sign as z. It follows that 242z + 12y + 6z # 0.

“24x + 12y + 62 is not a multiple of 11”7 is equivalent to “|4z 4+ 2y + z| is not a multiple
of 11.” If z = 0, then |4z + 2y + 2| < 6 < 11. If y = 0, then |4z + 2y + 2| < 10 < 11. If
z =0, then |4z + 2y + z| = 2 - |22 + y| that is not a multiple of 11 as 2z + y is not such.
It follows that if z =0 or y = 0 or z = 0, then |4z + 2y + 2| is not a multiple of 11.

If z, y and z are all nonzero and of the same sign, then |4z + 2y + z| = 14 that is not a
multiple of 11. On the other hand, if z, y and z are all nonzero and not of the same sign,
then |4z + 2y + z| < 11. O

Let V, be the set of vertices of a connected component of C,. x Cs x C; that receive label
a in the proof of Theorem 3.3, 0 < a < 10. The sets Vj, ..., Vi form a vertex partition into
equal-size independent sets. Elements of each V, correspond to as many vertex-disjoint
Kig’s. Also, elements of each (Va; U V5;41) correspond to as many edge-disjoint K g’s,
0<i<4.

We conclude this section with an upper bound on A-number of finitely many cycles.



Theorem 3.4 If k > 2 and my, ..., mu_1 are each a multiple of 2 + 1, then 28 +2 <
MCmg X =+ X Cpp,_,) < 28FL,

Proof. Let k£ and my,...,mg_1 be as stated. The graph Cp,, X ---C,, , is regular of
degree 2¥. Accordingly, lower bound is immediate. Further, this graph admits of a vertex
partition into equal-size (independent dominating) sets Vp, ..., Vor such that the (shortest)
distance between any two distinct elements of V; is at least three [15]. Let a vertex v be
assigned the integer label 2i if and only if v € V;, 0 < i < 2%, Tt is easy to see that the
resulting labeling is a valid L(2,1)-labeling. Accordingly, A(Cpny X =+ X Cpp,_,) < 281 O

4 A-numbers of Py x C),

In Corollary 3.2 we have seen that A\(P, x C7;) = 6, n > 4, i > 1. In this section we
demonstrate that for n = 4, the result holds for any cycle C,,:

Theorem 4.1 For any m > 3, \(Py x C),) = 6.

Proof. By Lemma 1.1, A\(P; x Cy,) > 6 for any m > 3. Hence we need to construct
5

)
labelings with labels 0, 1, 2, 3, 4, 5, 6.

Case 1: m=4+4s, s > 0.
In this case, we repeat the following labeling:

2 2331|2233
556 6 | 55 6 6
0011|0011
3344 ] 33 44
Case 2: m =9 +4s, s > 0.
Now we have the following repeated solution:
00112 23341] 2334
253640516 | 0516€6
253640516 | 0516
00112233¢4] 23314

Case 8: m =14+ 4s, s > 0.

In this case we have the following repeated solution:
001122334 ] 455¢6¢6 ]| 23314
253640516 | 20314]051F6
253640516 1] 20314] 02516
001122334 45566 | 23314



Case 4: m =23 +4s, s > 0.
In this case we proceed as follows. First take two times the block with 9 columns and after
the block with 5 columns from Case 3. This gives a solution for m = 23. Then repeat the
block with 4 columns in order to get all the remaining solutions.

Hence we are left with the following sporadic cases:

Case 5: m = 3,5,6,7,10,11, 15, 19.

For m = 7 we apply Theorem 3.1. For the other cases solutions are, respectively:

6 2 1 4 2 5 3 3 32 4 45 6
5 3 0 6 2 5 0 6 06 62 20
5 3 0 00 6 1 4 23006 5
6 2 1 2 4 41 3 155 3 3 4
002233 4433 00110445 3 4 2
54 40011005 6 4 536 2 21006
116 6 5 5 6 6 2 2 23 6 25066 5 3 4
6 3 3 2 2 3 3 4 46 100140331235
1 4426 6 4136 23356
26 6 002364506103
003 355 0012044F¢6 5
3 65113 24536 2 214
455113455 4423556 4 2 2
003 366 1022¢%6¢67200224¢6 6
366 004366 00324610013
11442501445 5146335 5

5 Anumbers of P x C,,

The result of the previous section asserts that for any any m > 3, A(Py; x C);,) = 6. For
the direct products P5 x C,, the situation is similar: For almost any m, A(Ps; x Cy,) = 6.
However, there are several exceptions that make our considerations a bit more involved.
We are going to prove:

Theorem 5.1 Let m > 3. Then

7 om=3,4,5,6,8,9,10,12,13,17, 18, 20, 24, 26, 34, 40,
6; otherwise.

)\(Pg, X Cm) = {



Proof. By Lemma 1.1, \(P5 x Cy,) > 6 for any m > 3.

We first present solutions for the products Ps x Cy, k > 22. Any such graph contains
two isomorphic connected components, thus we will give solutions for one component.
First, the following blocks will be called Block A and Block B, respectively.

05201642 2052016 4
30654205 53 06 5420
164322053 316432205
42106 316 6 42106 31
2056416 4 42056 416

Case 1: k =22+ 8s, s > 0.
L(2,1)-labelings are obtained from the following solution for k¥ = 22 to which we add Block
A as many times as necessary.

0531350145 205313501435 2
31650246 205316350246 2035
1640246206316 4024¢6220°¢6 3
40246105316 4024610531°E€6
0256135315 402561335 31254

Case 2: k =23+ 8s, s > 0.
L(2,1)-labelings are obtained from the following solution for £ = 23 to which we add Block
A as many times as necessary.

0501065 43201642035201E64 2
326954321065 420530¢61542205
164321065 4320531¢64320253
40106 5432106316 4210¢631F6
0256 432106354164 2005¢641¢6 14

Case 8: k =24+8s, s > 0.
L(2,1)-labelings are obtained from the following solution for £ = 24 to which we add Block
B as many times as necessary.

2052016 4205201642035201€6 414
5306 5420530625 42053¢0¢635420
31643205316 4320531¢64322035
6 421063 16421063164 210¢631
42056 416420564164 2056 416

Case 4: k=25+4+8s, s > 0.
L(2,1)-labelings are obtained from the following solution for £ = 25 to which we add Block
A as many times as necessary.



0531350145 2053164202531°¢64 2
3 1650246205316 420531642205
1640246206 31642053164220353
40246105316 4205316420531°6
0256135315 420531¢6420531F¢6 4

Case 5: k=26 +8s, s > 0.
L(2,1)-1abelings are obtained from the following solution for k& = 26 to which we add Block
A as many times as necessary.

0531350145 205010¢63543201E64 2
31650246205 3263543210¢625 42205
16 4024620631643 210¢625432202353
40246105316 4010¢63543210¢631F€6
02561353154025643210¢632541F¢64

Case 6: k =27+ 8s, s > 0.
L(2,1)-labelings are obtained from the following solution for £ = 27 to which we add Block
A as many times as necessary.

0531350145205 201642035201¢642
316502462053 0625420530¢625420 5
16402462063164320531¢643220353
40246105316 4210¢63164210¢631F6
0256135315 4205641642005¢641°¢6 14

Case 7: k =28+ 8s, s > 0.
L(2,1)-labelings are obtained from the following solution for £ = 28 to which we add Block
B as many times as necessary.

2053164205316 4205316420531F¢6 4
5316 42053164205316420531¢6420
3 1642053164205 31642035316422035
6 42053164205>5316420531¢64203531
42053164205 3164205316420531°F6

Case 8: k =29+ 8s, s > 0.
L(2,1)-labelings are obtained from the following solution for £ = 29 to which we add Block
A as many times as necessary.

0531350145 2053135014520531¢64 2
31650246205 316250246200531¢642205
16 4024620631640246220¢631¢6420353
40246105316 402461053164202531F€6
0256135315 402561353154200531E€6 4
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By the above cases we have A\(P; x Cy) = 6 for k£ > 22. If 2k = 44 4+ 2, then
each connected component of P5 x (9 is isomorphic to Ps x C}, hence we also have
AMPs x Cy) =6 for k odd, and k > 23.

We next demonstrate that Ps x Cj admits L(2,1)-labelings with 7 labels for & = 11,
15, 16, 19, 22, 30, 32, 36, 38. Since solutions for 22, 30, and 38 give also solutions for 11,

15, and 19, respectively, it is enough to present solutions for the cases 16, 22, 30, 32, 36
and 38. They are, respectively, given below.

25613531 05313501452
02461054 316502462035
6 402 46 20 1640246 20©6 3
16 5024¢6 2 40246105 31E6
531350114 02561353154

05010635 43201¢642
326543210635 42205
1643210635 432¢035 3
401065 43210¢631F6
025643210¢63541¢6 4

20520164205 201E¢6 4
5306 5420530625420
316432035316 4322035
6 4210631642106 31
42056 416 4205¢641°F6

0531350145205 31¢64 2
31650246205 31642205
1640246 206316422035 3
40246105316 4202531°F¢6
0256135315 4203531°E6 414

0531350145205 201¢64 2
31650246 2053062542035
16 4024620631643 20353
402461053164210¢631F€6
0256135315 4205¢641E¢6 4

11



By the above constructions and by Corollary 3.2 we conclude that A(P5 x Cy,) = 6 for
all m except for m = 3, 4, 5, 6, 8, 9, 10, 12, 13, 17, 18, 20, 24, 26, 34, and 40. To complete
the proof we must show that in these remaining cases A(P5 x Cp,) = 7 holds.

We first claim that there are no L(2,1)-labelings with 7 labels for PsxCo if k < Tor k =
9, 10, 12, 13, 17, 20. The graph Ds g consists of 1098 vertices (determined by a computer
program). In order to search for cycles in Dj ¢ exactly one strongly connected component
(with 132 vertices) was detected. Using a simple backtracking in that component, we have
established that Ds g does not contain cycles of length 2, 3, 4, 5, 6, 9, 10, 12, 13, 17 and
20. Therefore, by Theorem 1.2 there are also no L(2,1)-labelings with 7 labels for Ps x Cy
where k = 3, 4, 5, 6, 8, 9, 10, 12, 13, 17, 18, 20, 24, 26, 34, and 40.

Finally, we implemented the antivoter algorithm [21] adapted for L(2,1)-labelings. We
have obtained labelings with 8 labels for Ps x C}, where k < 7, and £k = 8, 9, 10, 12, 13,
17, 18, 20, 24, 26, 34, and 40. Note that from a labeling with 8 labels of P5 x Cj, a labeling
with 8 labels of P5 x Cy; can be constructed easily, therefore we list only the cases with
k=3,4,5,9,13,17.

1 6 5 4 7 5 2 2 27 31

27 4 4 0 5 1 6 0 0 47

0 7 4 7 0 6 1 4 46 5 0

0 6 3 7T 2 6 3 711 3 2

1 5 2 0 3 5 4 73 5 6 1
2 6 57425 37 276 22516 226 35
273251700 245076 3 44071F€6
4001703 5 4 0071400170314
6 6 7 4 45 3 71 72314253635 95 6 3
3 312 26 17 2 556 75 26 312271

6 6 5 71 35 2335 247511

412713615 760023534

7035 0471402473607

503 6 04 703¢6 2511720 2

51 2 71265 3617 35 4 4 3

|

The antivoter algorithm that we used at the end of the above proof and some of its
generalizations have proved to be reasonably good heuristics for coloring various types
of graphs including random k-colorable graphs, DIMACS challenge graphs [3], frequency
assignment “realistic” graphs, and others [25, 27, 29]. For completeness of the presentation
we briefly recall the algorithm:

get a random order of vertices;
run a greedy coloring algorithm;

12



while not stopping condition do
if the coloring is proper then recolor vertices of the maximum color
select a bad vertex v (randomly)
assign a new color to v

end while

The greedy coloring always takes the minimal color which does not violate any con-
straints.

6 A-numbers of P, x C,,,, n > 6

In this section we prove that Corollary 3.2 finds all optimal solutions (with respect to
Lemma 1.1) for n > 6. More precisely:

Theorem 6.1 Letn > 6 and m > 7. Then A\(P, x Cp,) =6 if and only if m =Tk, k > 1.

Proof. By Lemma 1.1, A\(P, x Cy,) > 6. Hence, using Corollary 3.2, it suffices to show
that \M(Ps x Cp,) > 7 if m # 7k. For this sake we use our method of Theorem 1.2.

We know that P x Cy, admits a 6-(2,1)-labeling if and only if Dg ¢ contains a closed
walk of length m, if m is odd, or a closed walk of length 3, if m is even. The graph Dg g
consists of 3638 vertices (determined by a computer program). In order to search for cycles
in Dgg, exactly eight strongly connected components of Dg g were detected, each of them
consisting of seven vertices and exactly one directed cycle. Therefore, all closed walks in
Deg are of length 7k, k > 1, thus a 6-L(2, 1)-labeling of 0 P x Cy, for m # 0 (mod 7) does
not exist. O

By Theorem 6.1, A(P,, x C,,,) > 7 for m # Tk. We believe that the equality holds, but
were not able to cover all the cases. For instance, we can show that for any n > 6 and any
k > 1 we have A(P, x C3;) = 7. In addition, for any n > 6 we also have A\(P, xC4) = 7. In
general, however, the above conjecture cannot be deduced from labelings of direct products
of two cycles in the way as is Corollary 3.2 obtained from Theorem 3.1. Indeed, using
backtracking we computed that there is no labeling with labels 0, 1, ..., 7 for any of the
graphs 04 X 04, 04 X 05, 05 X 05, 05 X CG, and Cﬁ X 06-
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