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Abstract 3

Let d(G, k) be the number of pairs of vertices of a gra@hthat are at distanck, A a real (or complex) number, and
Wy (G) = > k=1 d(G, k) k*. It is proved that ér a partial cubes, W) +1(G) = |FIWL(G) — > pcr WA (G\F), whereF is
the partition ofE(G) induced by the Djokoei~Winkler relation ©. This resilt extends a previously known result for trees and
implies several relations for distance-based topological indices.
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1. Introduction 10

TheWener number (or Wiener index) W(G) of a connected grap8 is the sum of distances between all pairs of u
vertices ofG, that is, 12

W(G) = > dw, v). 8

(U V}SV(G)xV(G)

In the case of trees the Wiener number was introduced back in 1947 by Wie2é&t,ihdnce the name of this graph
invariant. Right up todday, it has been extensively investigatedyaball in mathematical chemistry; see special s
issues ofgurnals devoted to the topit3,14], recent surveysg,6], and recent paper3{9. 16

The Wiener number can be extended to disconnected graphs as follglv®énote byd(G, k) the number of v
pairs of vertices o that are at distande Note hatd(G, 0) andd(G, 1) represent the number of vertices and edges;s
respectively. TheW can be extended to disconnected graphd/as) = )", , d(G, k)k. Moreover, this definition 1

can be further generalized in the following natural wag,12]: 20
Wi (G) =) "d(G, kK, 2
k>1
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where A is some real (or @mplex) number. Several particular instances of the invagnhave been previously
studied. For instancélV_o, W_1, 3 Wz + 3 Wy, andZ Ws + 3 W, + 3 Wi are the so-called Harary index, reciprocal
Wiener index, hyper-Wiener index, and Tratch—Stankevich—Zefirov index12f.ahd rderences therein. In the
chemical literature als@vy > [27] as well as thegeneral cas§V, were examinedl[0,11,15].

Let T be a tree; then inl2] the folowing recursive formula folV, has been obtained:

Wisa(T) = (n—DW(T) = Y~ Wi (T —e). (1)
ecE(T)

In this note we prove that i6 is a partial cube and the partition ofE(G) induced by the DjokoeWinkler relation
O, then

Wi+1(G) = |FIWA(G) — ) Wi (G\F). 2
FeF

Since trees are partial cubes in which the partitfois trivial, that is, every edge of a tree forms a class of the patrtition,
(1) immediately follows from(2). In addition we will demonstrate that some known relations between distance-based
topological indices follow from formulé2).

2. Themain result

Foru,v € V(G), letdg(u, v) denote the length of a shortest path (also calleggaglesic) in G fromu to v. A
subgraphH of a graphG is calledisometric if dy(u, v) = dg(u, v) for all u,v € V(H). Isametric subgraphs of
hypercubes are callgmrtial cubes. Clearly, hypercubes are partial cubes, as well as trees and median graphs. Partial
cubes form a well studied class of graphs; we refer the reader to classical refefeh@€h the book [LE], the recent
paper R(] and rderences therein. For applications of fi@rcubes to mathematical chemistry s8d f—1921].

TheDjokovic-Wnkler relation © is definedon the edge set of a graph in the following way2[]. Edgese = xy
and f = uv of a graphG are in relation® if

dg (X, u) + da(y, v) # dc(X, v) +dg(Yy, U).

Winkler [26] proved that among bipartite graphs,© is transitive precisely for partial cubes; hen@epartitions the
edge set of a partial cube. L&t be a partial cube an#@ = {F1, Fo, ..., K} the partition of its edge set induced by
the relation®. Then we ay thatF is the @-partition of G.

For the proof of our main theorem we need the following facts algutf. [16,20].
Lemma l. Let G bea partial cube.

(i) Apath P in G isageodesicif and only if no two different edgesof P areinrelation ©.
(i) Let F beaclassof the ©-partition of G. Then G\ F; consists of two connected components.

We are now eady for our main result.

Theorem 2. Let G bea partial cube and F its ©-partition. Then for any real (or complex) number 2,

Wi 41(G) = |FIWA(G) — Y Wi(G\F).
FeF

Proof. Lets be the dameter ofG; then
S
W, (G) = Zd(G, k) k*.
k=1

LetF = {Fy, Fo, ..., I} and set
r
X = W, (G\F).

i=1
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Let u andv be arbitrary vertices 0B, whered(u, v) = k, 1 < k < s. Let P be au, v-geodesic. BjLemma 1i), the

1

edges ofP belong to pairwise different classes Bf We may assume without loss of generality that they belong to -

F1, Fo, ..., Fx. By Lemma 1ii), u andv belong to different connected component&fr fori =1, ..., k. Onthe
other handu andv are in the same connected componen&gfF; fori = k+ 1,...,r. Clearly, in he Idter case,
dg\r (U, v) = k. It follows that the paifu, v} contributegr — k) times toX. Thus,

S
X = "(r —kd(G, kk*
k=1

S S
=1 Y d(G, kK" — > d(G, kK"
k=1 k=1
='W, (G) — Wi1+1(G). O
If F is a ©-class of the hypercub®,, thenQn\F consists of two disjoint copies &,_1. Thus, byTheorem 2

W, 11(Qn) = nW;(Qn) — 2nW, (Qn_1). By this recurrence relation it follows that, (Qn) = px(N)4", wherepy (n)
is apolynomial. This can also be seen from the formia(Qn) = 2"~ 1 370, (¢) k*.

3. Applications

In this section we give two applications @heorem 2The firstone is the following result for the Wiener number,

first given in [L9], and extended to the so-calléd-graphs in ].
Let G be a partial cubeF its ©-partition, andF € F. Then we will denote the connected componentSyF by
Gi1(F) andGa(F). Setny(F) = |G1(F)| andnz(F) = |G2(F)].

Corollary 3. Let G be a partial cube and F its ©-partition. Then

Wi(G) = W(G) = Y m(F)na(F).
FeF

Proof. Letn = |V (G)[; then or anyF € F, n1(F) 4+ n2(F) = n. UsingTheorem 2ve can compute as follows:
Wi(G) = |FIWo(G) — ) Wo(G\F)

FeF
- SO
171 (3) -3 X [P 2n(Fona()
171 (3) -3 PUSLEDIICLLY

> m(F)n(F). O
FeF

For the second application some more concepts are needed. The hyper-WienaMndexa topological index
proposed by Randi[24] for trees and extended to all graphs by Klein et 2?] ps

1 1
WW(G) = SWi(G) + 5W(G).

Let G be a partial cubeF its ©-partition, andF, F’ € F, F # F’. Then we vill define n11(F, F") = |G1(F) N
G1(F)|, n12(F, F") = |G1(F) N G2(F"|, n21(F, F') = |G2(F) N G1(F")|, andnaa(F, F') = |G2(F) N Ga(F')|.
We say thathe classe§ andF’ crossif nge(F, F’) # 0 for1 < k, £ < 2, and wite F#F’ to denote the fact thaF
andF’ cross; see20,23]. Now we can deduce fromiheorem Zhe following result given in17].
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G,(F) G,(F) G,(F) G,(F)
G\(F) G,(F) G,(F) G(F)
F/ F; F/ F;
O] (ii)
G(F) G,(F) G,(F) G,(F)
G,(F) G,(F) Gy(F) G,(F)
F, g F g

(iii) (iv)
Fig. 1. Non-crossing class&$ andF;.
Corollary 4. Let G bea partial cubeand F = {F1, Fo, ..., F} its ©-partition. Then
WW(G) = W(G) + Z[nll(Fi, Finza(Fi, Fj) + ni2(Fi, Fj)n2u(F, Fj)l.

i<j

Proof. By Theorem 2W»(G) = rW(G) — Z{Zl W(G\Fj). On theother handWW(G) = W(G)/2 + Wx(G)/2.
Combining these two equalities we get

WW(G) = W(G) + = [(r — HW(G) — ZW(G\F. } ®3)
i=1
By Corollary 3 we have
r-1r r r—1
r—DW(G) =) > mFn(F) =YY n(F)n(R), )
j:l i=1 i=1 j:l
while on the other hand
r r
Y W(G\F) = ) [W(G1(R)) + W(G2(F))]. (5)
i=1 i=1
Combining(4) and(5) with (3) we obtain
10 r—-1
WW(G) = W(G) + 5> [Z n(FN2(F) — W(G1(F)) — W(Gz(Fi))} : (6)
i=1[j=1

Having in mindCorollary 3 we now @nsider the contribution of a fixed pair of clas¢gsandF; to the right-hand
side sum in(6). For the rest bthe proof letni1, N1z, N21, andny, denoteny1(Fi, Fj), nia(F, Fj), n2u(Fi, Fj), and
na22(Fi, Fj), resgectively.

Suppose first thaF; andF; cross. Then the contribution of the pé&ir, F;j is

[(N11 + N12)(N21 + N22) + (N11 + N21)(N12 + N22)] — [(N11N12 + N21N22) + (N11N21 + N12N22)]
= 2Nn11N22 + 2N12N21.

If K, Fj donotcross, then there are four possibilities for hBwand Fj are related; the possibilities are shown in
Fig. 1
Then the contributions of the classgsandF; are, respectively,

(i) (N11+ N12)N22 + N11(N12 + N22) — (N11N12 + N12N22) = 2N11N22,
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(i) (M1 N12)N21 4 N12(N11 + N21) — (N12N11 + N11N21) = 2N12N21, 1
(iii) (21 + N22)N11 + N22(N11 + N21) — (N21M22 + N21M11) = 2N11N22, 2
(iv) (n21+ N22)N12 + N21(N12 + N22) — (N2aN22 + N22N21) = 2N12N21. 3
Since in cases (i), (i), (iii), and (iv) we have1 = 0,22 = 0,n12 = 0, andny1 = 0, respectively, in all cases the 4
contribution ofF andF; to the right-hand side sum {6) can be written as 5
2Nn11N22 4 2n12N21 6
which conpletes the argument. O 7
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