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Abstract---An edge of a graph H with a perfect matching is a fixed edge if it either 
belongs to none or to all of the perfect matchings of H. It is shown that a connected 
plane bipartite graph has no fixed edges if and only if the boundary of every face is an 
alternating cycle. Moreover, a polyhex fragment has no fixed edges if and only if the 
boundaries of its infinite face and the non-hexagonal finite faces are alternating cycles. 
These results extend results on generalized hexagonal systems from [1]. 
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1 Introduction 
 
Benzenoid hydrocarbons constitute a class of conjugated hydrocarbons. For many 
aspects of these compounds, the reader is invited to consider the recent extensive 
survey of Randić [2]. Benzenoid hydrocarbons can be represented by graphs, known as 
hexagonal systems, and so they lend themselves to graph-theoretic analysis. 
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A fascinating amount of theoretical work has been done on hexagonal systems, but here 
we only briefly mention some areas of this research. Two of the central problems are to 
find the number of perfect matchings (or Kekulé structures) of a hexagonal system and 
to try to relate this number to physico-chemical properties of the underlying compound 
[3, 4]. Interactions among the Kekulé structures of a given benzenoid hydrocarbon 
turned out to be important as well. One way to model these interactions is by means of 
the so called resonance graph (or Z-transformation graph). These resonance graphs 
have a nice structure and interesting properties [5-9] and their definition offers several 
possibilities for generalizations [10, 11].  
 
An edge is fixed if it belongs to all or none of the perfect matchings. Hence, an edge is 
not fixed if and only if it belongs to an alternating cycle. Randić [12, 13] used alternating 
cycles (or conjugated circuits) to estimate resonance energies of benzenoid 
hydrocarbons. In 1991, Zhang and Chen [14] characterized hexagonal systems without 
fixed edges. They proved: 
 
Theorem 1.1 [14] Let H be a Kekuléan hexagonal system. Then the following 
statements are equivalent. 

(i) H has no fixed edges. 
(ii) Every hexagon of H is alternating. 
(iii) The infinite face is alternating. 

 
A year later, Zhang and Zheng [15] characterized generalized hexagonal systems 
without fixed edges. They proved: 
 
Theorem 1.2 [15] Let G be a Kekuléan generalized hexagonal system. Then the 
following statements are equivalent. 

(i) G has no fixed edges. 
(ii) Every face of G is alternating. 
(iii) Every non-hexagonal face is alternating. 

 
The main goal of this note is to extend results from [15] on generalized hexagonal 
systems to polyhex fragments or to plane bipartite graphs. The proofs of the extensions 
are analogous or similar to the proofs by Zhang and Zheng and are therefore omitted or 
outlined, but they can be found in [16]. 
 
In the rest of this section, we define the concepts used while in the next section the 
results are presented. 
 
All graphs considered are finite and simple. A plane graph is a planar graph together 
with a particular embedding in the plane. 
 
A vertex and an edge are said to cover each other if they are incident. A matching in a 
graph is a set of edges no two of which have shared end vertices. A perfect matching or 
a Kekulé structure is a matching M such that each vertex of the graph is covered by 
some edge in M. A graph is called Kekuléan if it contains at least one perfect matching. 
 
Let C be a cycle of a graph H. C is called an alternating cycle of H if there exists a 
perfect matching M of H such that the edges of C are alternately in M and its 
complement. We will say that C is M-alternating. Note that an alternating cycle is of even 
length. The symmetric difference of two distinct perfect matchings M and M', denoted 



M⊕M', consists of disjoint (M, M')-alternating cycles. An alternating cycle of a plane 
graph is maximal if it is not contained in the region bounded by another alternating cycle.  
 
An edge of a Kekuléan graph H is a fixed single (fixed double, resp.) edge if it belongs to 
none (all, resp.) of the perfect matchings of H. An edge is fixed if it is either a fixed single 
edge or a fixed double edge. 
 
A hexagonal system is a 2-connected subgraph of the hexagonal lattice without non-
hexagonal finite faces. A generalized hexagonal system is a 2-connected subgraph of 
the hexagonal lattice, while a polyhex fragment is a connected subgraph of the 
hexagonal lattice. Clearly, hexagonal systems form a proper subset of generalized 
hexagonal systems which, in turn, form a proper subset of polyhex fragments. The 
boundary of a polyhex fragment is defined as the union of the boundaries of its infinite 
face and the non-hexagonal finite faces. 
 
 
2 Results 
 
All the results in this note are stated for Kekuléan graphs. 
 
Lemma 2.1. Let H be a bipartite graph, M a perfect matching of H, C an M-alternating 
cycle, and P an M-alternating path. If the intersection of P and C consists of the two end 
vertices of P, then the edges of P and C are not fixed in H. 
 
Before stating the next lemma, we need to define a technical notation. Let H be a 
polyhex fragment, e an edge of H and s a hexagon that contains e (s may or may not 
belong to H). By Ls,e we denote the segment of the perpendicular bisector of e such that 
it starts from the midpoint of e and if s is not a hexagon of H it ends at the central point of 
s, otherwise it passes through s and ends at the boundary of H and is totally contained in 
some hexagons of H. 
 
Lemma 2.2. Let H be a polyhex fragment, M a perfect matching of H, and e be a fixed 
single edge of H. If the edges e1 and e2 of M which cover the end vertices of e belong to 
a hexagon s (s may or may not belong to H), then the edges of H which intersect Ls,e are 
all fixed single edges.  
 
Lemma 2.3. Let H be a Kekuléan polyhex fragment which has both fixed edges and 
non-fixed edges. Then there exist a fixed single edge e and a perfect matching of H such 
that the edges of the perfect matching which cover the end vertices of e belong to a 
hexagon (not necessarily of H).  
 
Lemma 2.4. Let H be a Kekuléan polyhex fragment which has both fixed edges and 
non-fixed edges. Then H has a fixed single edge in its boundary. 
 
Lemma 2.5. Let C be a maximal alternating cycle of a plane bipartite graph H. Then the 
edges incident with the vertices of C in the outside of C are fixed single edges. 
 
Theorem 2.6. Let H be a Kekuléan connected plane bipartite graph. H has no fixed 
edges if and only if the boundary of every face of H (including the infinite face) is an 
alternating cycle of H. 
 



Proof. The "if part" is trivial and we outline the proof of the "only if" part. First, we prove 
that the boundary of the infinite face is an alternating cycle. H has an alternating cycle 
since it has no fixed edges. Let C be a maximal alternating cycle. By Lemma 2.5, H has 
no edges incident with the vertices of C in the outside of C. Since H is connected, H has 
neither vertices nor edges in the outside of C. Hence, C is the boundary of the infinite 
face.  
 

P
C

Figure 1. The path P divides the region bounded by C. 
 
Let F be the boundary of a finite face of H. Let C be an alternating cycle with the 
property that F is contained in the region bounded by C and there is no other alternating 
cycle with this property contained in the region bounded by C. In other words, C is a 
minimal alternating cycle with this property. Assume that F is not equal to C. Since H is 
connected, there exists an edge e incident with a vertex of C in the inside of C. Let M be 
a perfect matching of H such that C is an M-alternating cycle. The edge e does not 
belong to M and since it is not fixed, it belongs to another perfect matching, M' say. Thus 
e ∈ M⊕M' and so it belongs to an M-alternating cycle, C' say.  
 
If we move along the cycle C' starting from the end vertex of e on C and passing along e 
until we hit C again, we obtain a path, P say (not a cycle since both C and C' are M-
alternating). This path is contained in the region bounded by C and it divides that region 
into two parts as shown in Fig. 1. It can be proved that the boundary of each of these 
two parts is an alternating cycle of H. Since F is the boundary of a face of H, F is 
contained in one of these two parts, a contradiction to the minimality of C. Q.E.D. 
 
Remark. Theorem 2.6 also follows from a result in [17]. 
 
Theorem 2.7. A Kekuléan polyhex fragment has no fixed edges if and only if the 
boundaries of its infinite face and the non-hexagonal finite faces are alternating cycles. 
 
Proof. The "only if" part follows from Theorem 2.6 and the "if part" follows from Lemma 
2.4. Q.E.D. 
 
As the final remark, let us add that we believe that the above results might be further 
extended to graphs embedded into surfaces of higher genus. 
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