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Abstract

The center of a graph is the set of vertices with minimum eccentricity.
Graphs in which all vertices are central are called self-centered graphs. In this
paper almost self-centered (ASC) graphs are introduced as the graphs with ex-
actly two non-central vertices. The block structure of these graphs is described
and constructions for generating such graphs are proposed. Embeddings of ar-
bitrary graphs into ASC graphs are studied. In particular it is shown that any
graph can be embedded into an ASC graph of prescribed radius. Embeddings
into ASC graphs of radius two are studied in more detail. ASC index of a graph
G is introduced as the smallest number of vertices needed to add to G such that
G is an induced subgraph of an ASC graph.
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1 Introduction

The center of a graph/network is one of the central concepts in location theory;
many different center-related concepts were introduced. The reason is that we want
to distribute sources within a graph/network such that they can be used elsewhere
as efficiently as possible. Hence, we put them into central vertices. Another point of
view is that every firm would prefer to establish in such a location where abundant
natural and human resource are available. At the same time, every individual or
consumer would like to be in a location, which is convenient to access all the basic
amenities.

In many circumstances an ideal situation would be that resources can be placed
at any location. In such cases we wish to have a graph in which any of its vertices
is central. Such graphs are called self-centered (SC) graphs and they have been
extensively studied, see [1, 3, 8, 12] and the survey [2]. For instance, these graphs
are 2-connected and for any finite group F there is a SC graph whose automorphism
group is isomorphic to the group F [10]. Recently, several algorithms for constructing
SC graphs were described in [9]. We also mention that there is a related concept of
eccentric graphs [4] as well as of eccentric digraphs [5].

In this paper we are interested in graphs that are not self-centered but as close
to them as possible. If G is not SC, then it has at least two non-central vertices.
We introduce and study the so-called almost self-centered (ASC) graphs in which all
but two vertices are central. Of course, the remaining two vertices are diametrical.
(A variant of this concept in which all vertices are peripheral except one is studied
in [15].) See Figure 1 for three examples of ASC graphs, where each vertex is
equipped with its eccentricity.
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Figure 1: 2-ASC graph, 3-ASC graph, and 4-ASC graph

Situation where exactly two specific locations are desired has been studied earlier.
See for instance [7, 13, 16], where in the later paper a problem of deploying two
servers in a tree network is studied. ASC graphs may in particular serve as a
network model in which we plan to install two expensive resources (we need both to
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be sure that the system also works even if one is corrupted) and the resources need
to be far away due to an interference reason.

The paper is organized as follows. In the rest of this section the concepts needed
are formally introduced. Then, in Section 2, we describe the block structure of ASC
graphs and we give two constructions that generate such graphs. In the subsequent
section we realize ASC graphs on any admissible number of vertices and embed an
arbitrary graph into an ASC graph of prescribed radius. In Section 4 we introduce
the ASC index of a graph G as the smallest number of vertices we need to add to
G such that G is an induced subgraph of the supergraph. We give a closer look to
the case where the supergraph is of radius 2. In the concluding remarks we propose
several problems for further study.

Let G = (V (G), E(G)) be a connected graph. A block of G is an inclusion
maximal 2-connected subgraph of G or a bridge. (For graph whose all blocks are
odd cycles see [11].) The distance dG(u, v) between vertices u and v is the length of
a shortest path between u and v. The notation will be simplified to d(u, v) if the
graph will be clear from the context. The eccentricity eG(v) or e(v) of a vertex v
is the distance to a farthest vertex from v. A vertex v is said to be an eccentric
vertex of u if dG(u, v) = e(v). The radius r(G) of G and the diameter d(G) of G are
the minimum and the maximum eccentricity, respectively. The center C(G) and the
periphery P (G) consists of the set of vertices of minimum and maximum eccentricity,
respectively. More formally,

C(G) = {u ∈ V (G) | e(u) = r(G)}

and
P (G) = {u ∈ V (G) | e(u) = d(G)} .

Vertices in C(G) are called central vertices and those in P (G) diametrical. A graph
G of order n for which |C(G)| = n (equivalently, |P (G)| = n) holds is called a self-
centered graph, SC graphs for short. G is an almost self-centered graph, ASC graphs
for short, if |C(G)| = |V (G)| − 2. If r is the radius of an SC graph or an ACS graph
G, we will also say that G is an r-SC graph or r-ASC graph, respectively.

2 Two constructions

In this section we first describe the block structure of ASC graphs. We follow with
two constructions that generate ASC graphs. The first construction uses an ASC
graph as a basis and the second one uses an SC graph.

Clearly, P3 is the unique ASC graph on at most 3 vertices. In general, each ASC
contains a block with at most two pendant vertices attached to it. More precisely:

Proposition 2.1. Let G be an ASC graph of order at least four. Then

(i) G has at most two pendant vertices u and v.
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(ii) The neighbor of a vertex u is different than the corresponding for the vertex v.

(iii) G \ {u, v} is 2-connected.

Proof. It is not difficult to prove the result by considering an arbitrary cut vertex x
of G and a shortest x−y path, where d(x, y) = e(x). Instead, we recall from [6] that
the center of a graph lies in a single block. Let B be the block of G containing C(G).
If at least one of the two diametrical vertices x or y of G lies in B there is nothing
to be proved. Suppose, that x, y /∈ B. Since x and y are diametrical vertices, they
cannot be adjacent. Hence x is adjacent to a vertex x′ ∈ B and y to a vertex y′ ∈ B.
If x′ = y′ then d(x, y) = 2 and B must be a complete subgraph of G. But since G
has at least four vertices, G would contain another vertex z 6= x, y with d(x, z) = 2.
Therefore x′ 6= y′ and we are done.

To characterize unicyclic ASC graphs is now (using Proposition 2.1) straight-
forward: a triangle with two pendant vertices attached (to different vertices of the
triangle), and even cycles with one vertex attached.

In order to construct new ASC graphs we introduce the following operation. Let
G and H be graphs and u ∈ V (G). Then let

G⊕u H

be the graph obtained from the disjoint union of G and H by joining each vertex of
H to all vertices in the closed neighborhood of u in G.

Theorem 2.2. Let G be an r-ACS graph, r ≥ 2, and let u ∈ V (G) be a vertex with
e(u) = r. Then for any graph H, G⊕u H is an r-ASC graph.

Proof. Set K = G⊕u H. Let x and y be vertices of G with eG(x) = eG(y) = r + 1
and let P be a shortest x − y path in K. If P contains no vertex of H then P has
length r + 1. Assume P contains a vertex w of H. By the construction and since
P is a shortest path, P contains a subpath w′ → w → w′′, where w′, w′′ ∈ V (G).
Replacing this subpath with w′ → u → w′′ we get a shortest path between x and y
of the same length. In conclusion, eK(x) = eK(y) = r + 1.

Analogously we infer that eK(w) = r holds for any vertex w ∈ V (G) with
eG(w) = r.

Consider now an arbitrary vertex w of H (as a vertex of K). Since eG(u) = r,
there is a vertex u′ ∈ V (G) and a shortest path u → z → · · · → u′ of length r. Then
w → z → · · · → u′ is a shortest path and hence eK(w) ≥ r. Similarly we also get
that eK(w) ≤ r. So, all vertices of K but x and y have eccentricity r.

Clearly, the only 1-ASC graphs are complete graphs with one edge removed.
Note that Theorem 2.2 does not work for r = 1 because in G⊕u H the eccentricity
of any nonadjacent vertices is 2. Hence H must be a complete graph and the graph
obtained is again a complete graph with an edge removed.

We next give another construction of ASC graphs that in particular yields many
2-connected ASC graphs. The key idea is use SC graphs.
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Theorem 2.3. Let G be an r-SC graph, u an arbitrary vertex of G, and X the set
of eccentric vertices of u. Let H be a graph obtained from G by joining a new vertex
x to all vertices of X. If the subgraph of G induced by X is of diameter at most 2,
then H is an r-ASC graph.

Proof. Note first that eH(u) = eH(x) = r + 1. Let w be an arbitrary vertex of H
different from u and x. Since G is an r-SC graph, there is a vertex w′ ∈ V (G) such
that dG(w, w′) = r. Let P be a shortest w−w′ path in H. If P does not contain x,
it is clearly of length r. Otherwise P contains a subpath of the form x′ → x → x′′,
where x′, x′′ ∈ X. Since X induces a subgraph of G of diameter at most 2, there
exists a vertex x′′′ ∈ X adjacent to x′ and x′′. Replacing x with x′′′ in P yields a
shortest w − w′ path of length r in G. Therefore eH(w) = r and we are done.

We note here that graphs of diameter 2 are a highly nontrivial family of graphs,
cf. [14].

Let us consider some special cases of the construction from Theorem 2.3. If G
is a complete graph, the constructed graph is a complete graph minus an edge. If
G = C2r, the constructed graph is C2r with a pendant vertex attached to it. We
already know these two families of ASC graphs. If G = C2r+1, the constructed graph
is C2r+1 together with a vertex attached to two adjacent vertices of the cycle. For
r = 1 we get K4 minus an edge, but for r ≥ 2 all the constructed graphs are new.

To conclude the section we pose:

Problem 2.4. Which SC graphs G and which vertices u of G satisfy the condition
of Theorem 2.3? More precisely, when the eccentric vertices of u induce a subgraph
of diameter at most 2?

3 Consequences of the constructions

In this section we give some applications and consequences derived from the con-
structions given in the previous section.

Lemma 3.1. Let G be an r-ASC graph of order n ≥ 5. Then n ≥ 2r + 1.

Proof. Let x and y be diametrical vertices of G and P : x → x1 → · · · → xr → y
a diametrical path. Then x1, . . . , xr are from C(G) and consequently belong to the
same block B of G. If at least one of x and y, say x, lies in B, then there exists
a path between x and xr that is internally disjoint from P and of length at least
r. So G has at least |V (P )| + r − 1 = 2r + 1 vertices. Suppose next x, y /∈ B.
Then there is a path between x1 and xr internally disjoint from P (in particular,
not containing x and y) of length at least r − 1. If the length is r − 1, the graph
constructed so far is an even cycle with two pendant vertices attached and thus not
an ASC graph. Hence G contains at least one more vertex. In any case, G has at
least 2r + 1 vertices.
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Theorem 2.2 implies that the bound of Lemma 3.1 is best possible:

Corollary 3.2. For any r ≥ 1 and any n ≥ 2r + 1 there exists an r-ASC graph of
order n.

Proof. For r = 1, the complete graphs with an edge deleted does the job. In partic-
ular, the smallest such graph is P3 (obtained from K3 by removing an edge).

Let r ≥ 2. Then C2r with one vertex attached is an r-ASC graph on 2r + 1
vertices. To construct r-ASC graphs with more than 2r + 1 vertices apply Theo-
rem 2.2.

In Figure 2 two additional infinite families of 2-ASC and 3-ASC graphs are
presented.
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Figure 2: 2-ASC and 3-ASC graphs

Another consequence of Theorem 2.2 is:

Corollary 3.3. Let H be a graph. Then for any r ≥ 2 there exists an r-ACS graph
X such that H is an induced subgraph of X.

Proof. Let G be an arbitrary r-ASC graph. Then by Theorem 2.2 we can select
X = G⊕u H, where u ∈ V (G) is a vertex with e(u) = r.

Thus r-ASC graphs cannot be characterized in terms of forbidden subgraphs.

4 Embeddings into 2-ASC graphs

From Corollary 3.3 we know that for any graph G and any r ≥ 2 there exits an
r-ASC graph containing G as an induced subgraph. Hence, a natural optimization
problem consists to find a smallest r-ASC graph containing G. More precisely, let

θr(G) = min{|V (H)| − |V (G)| ; H is r−ASC, G induced in H} ,
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be the r-ASC index of the graph G. So θr(G) is the minimum number of vertices
needed to add to G in order to construct an r-ASC graph containing G as an induced
subgraph.

As an example consider the tree T from Figure 3 that is induced by vertices
u1, . . . , u10. Construct the graph H by adding a new vertex x and connected it to
all vertices of T but to u4, see the figure again where the new edges are indicated
with dashed lines. Then e(u1) = e(u4) = 3 and the eccentricity of any other vertex
is 2, hence H is a 2-ASC graph. Since T is not a 2-ASC graph we conclude that
θ2(T ) = 1.
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Figure 3: Tree T with θ2(T ) = 1

Note that Corollary 3.3 asserts:

Corollary 4.1. For any graph G and any r ≥ 2, 0 ≤ θr(G) ≤ 2r + 1.

Since 1-ASC graphs are the complete graphs with an edge removed, the first
interesting case is r = 2. By Corollary 4.1, 0 ≤ θ2(G) ≤ 5. However, more can be
shown:

Theorem 4.2. For any graph G, θ2(G) ≤ 2.

Proof. Throughout the proof, H is a graph obtained from G by adding two new
vertices x and y, that is,

V (H) = V (G) ∪ {x, y} .

We need to define the edge set of H such that H is a 2-ASC graph containing G as
an induced subgraph. We distinguish the following cases depending on the diameter
of G.

Case 1: d(G) ≤ 2.
Suppose first that G is a complete graph (that is, d(G) = 1). Let u be an arbitrary
vertex of G and set

E(H) = E(G) ∪ {xy} ∪ {xw ; w ∈ V (G), w 6= u} .
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Then it is straightforward to see that eH(u) = eH(y) = 3 and that the eccentricity
of all the other vertices is 2. Hence H is a 2-ACS graph. (Note that the construction
works also for G = K2, in which case H = P4.)

If d(G) = 2 select u to be an arbitrary diametrical vertex of G. Then the same
construction as above yields a 2-ASC graph H.

Case 2: d(G) ≥ 3.
There exist vertices u and v with dG(u, v) = 3. Then define the edge set of H as
follows

E(H) = E(G) ∪ {xz, z ∈ V (G), z 6= u} ∪ {yz, z ∈ V (G), z 6= v} ∪ {xy} .

Note first that eH(u) = eH(v) = 3. Since vertex x is adjacent to all vertices of G
but vertex u, we get eH(x) = 2. Similarly, eH(y) = 2. Let finally z be a vertex of
V (G), z 6= u, v. Then vertex z is not adjacent to both u and v, since otherwise we
would have dG(u, v) ≤ 2. Assume without loss of generality zu /∈ E(G). Then since
zy, yu ∈ E(H), dH(z, u) = 2. Similarly, dH(z, v) ≤ 2. Moreover, any other vertex z′

is also adjacent to vertex x, hence dH(z, z′) ≤ 2. We conclude that eH(z) = 2 and
the proof is complete.

Next, we find exact values of the 2-ASC index for some well-known classes of
graphs. By Theorem 4.2 we need to decide between three possibilities: 0, 1, and 2.

Proposition 4.3. (i) For any n ≥ 2, θ2(Kn) = 2.

(ii) θ2(Km,n) =
{

2, m = n = 1;
1, otherwise.

(iii) θ2(Cn) =
{

1, n = 4, 5, 6;
2, otherwise.

(iv) θ2(Pn) =





0, n = 4;
1, n = 3, 5, 6;
2, otherwise.

Proof. (i) Kn is not an ASC graph. Moreover, adding a vertex and connect it to
some vertices of Kn results in a graph with diameter at most 2. Hence θ(Kn) > 1.

(ii) K1,1 = K2, hence θ2(G) = 2 by (i). Now assume that Km,n has at least three
vertices, say m ≥ 2. Let H be a graph obtained from Km,n by joining a new vertex
x to all vertices but one, say u, from the m-partite set. Then H is a 2-ASC graph
where eH(u) = eH(x) = 3 and the remaining vertices of H have eccentricity 2.

(iii) No cycle is an ASC graph, so θ2 is either 1 or 2. θ2(Cn) = 1 holds for
n = 4, 5, 6 as it can be seen in Figure 4, where the 2-ASC graphs H1, H2, and H3

contain C4, C5, and C6, respectively.
θ2(C3) = 2 follows from (i). It remains to consider the case n ≥ 7. Let

u1, u2, . . . , un be the vertices of Cn with the natural adjacencies.
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Figure 4: Embedding C4, C5, and C6 into H1, H2, and H3

Suppose that θ2(Cn) = 1. Then there exists a 2-ASC graph H consisting of Cn

and a vertex x adjacent to some vertices of Cn. Suppose first that x is a diametrical
vertex of H. We assume without loss of generality that dH(x, u4) = 3. Then it
follows easily that dH(u1, u4) = 3 as well, a contradiction. Hence we may assume
without loss of generality that dH(u1, u4) = 3. Then x is not adjacent to both u1

and u4, we may assume that xu4 /∈ E(H). Since n ≥ 7, we infer that dH(un, u4) ≥ 3,
the final contradiction.

(iv) P4 is a 2-ASC graph. P3 embeds into P4 thus θ2(P3) = 1. For the fact that
θ2(Pn) = 1 holds also for n = 5, 6 see Figure 5.

t

tttt
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t
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tx x

H1 H2

Figure 5: Embedding P5 and P6 into H1 and H2

Suppose now n ≥ 7. Let u1, u2, . . . , un be the vertices of Pn with the natural
adjacencies and assume that θ2(Pn) = 1. Let H be a 2-ASC graph consisting
of Pn and a vertex x adjacent to some vertices of Pn. Assume dH(u1, u4) = 3.
Then dH(u1, u5) = 2 and hence u1 (as well as u5) is adjacent to x. Similarly,
because dH(u4, u7) = 2 we get that u4 is also adjacent to x. But this would mean
that dH(u1, u4) = 2 which is not possible. Analogously we find that un is not a
diametrical vertex of H. Suppose dH(ui, uj) = 3, where i > 1 and i + 3 ≤ j < n.
Since dH(ui, uj+1) = 2, ui is adjacent to x. It follows (because dH(ui, uj) = 3) that
x is not adjacent to uj . But then dH(ui−1, uj) ≥ 3, a contradiction. Finally, suppose
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dH(x, ui) = 3 for some i. If i = 1, the it follows that dH(u1, u4) = 3. By symmetry
we may thus assume that 1 < i < n. Then x is adjacent to none of ui−1, ui, and
ui+1. But then at least one of dH(ui−2, ui+1) = 3 if i > 2 and dH(ui−1, ui+2) = 3 if
i < n− 1 holds, the final contradiction.

5 Concluding remarks

In this paper we have introduced ASC graphs and the corresponding ASC index.
These two concepts offer numerous problems, here is a selection of topics that could
be investigated.

Problem 5.1. Could ASC graphs be recognized faster than computing all the eccen-
tricities of the graph?

Problem 5.2. Which is the computational complexity of determining θr(G)? In
particular, can we decide in polynomial time whether θr(G) = 1?

Problem 5.3. Are there some well-known classes of graphs for which the ASC index
can be determined efficiently?
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