$L(2,1)$-labeling of direct product of paths and cycles

Pranava K. Jha ${ }^{\text {a }}$, Sandi Klavžar ${ }^{\text {b, }}$, Aleksander Vesel ${ }^{\text {b, }}$,
${ }^{\text {a }}$ Department of Computer Science, St. Cloud State University, St. Cloud, MN 56301, USA
${ }^{\mathrm{b}}$ Department of Mathematics and Computer Science, PeF, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia

Received 14 February 2002; received in revised form 11 December 2002; accepted 16 January 2004
Available online 2 October 2004

Abstract

An $L(2,1)$-labeling of a graph G is an assignment of labels from $\{0,1, \ldots, \lambda\}$ to the vertices of G such that vertices at distance two get different labels and adjacent vertices get labels that are at least two apart. The λ-number $\lambda(G)$ of G is the minimum value λ such that G admits an $L(2,1)$-labeling. Let $G \times H$ denote the direct product of G and H. We compute the λ-numbers for each of $C_{7 i} \times C_{7 j}, C_{11 i} \times C_{11 j} \times C_{11 k}, P_{4} \times C_{m}$, and $P_{5} \times C_{m}$. We also show that for $n \geqslant 6$ and $m \geqslant 7, \lambda\left(P_{n} \times C_{m}\right)=6$ if and only if $m=7 k, k \geqslant 1$. The results are partially obtained by a computer search.

© 2004 Published by Elsevier B.V.
MSC: 05C78; 05C38

Keywords: $L(2,1)$-labeling; Vertex labeling; λ-number; Direct product of graphs; Rotagraph; Fasciagraph; Channel assignment; Dynamic algorithm

1. Introduction

Consider the problem of assigning frequencies to radio transmitters at various nodes in a territory. Transmitters that are close must receive frequencies that are sufficiently apart, for otherwise, they may be at the risk of interfering with each other. The spectrum of frequencies is a very important resource on which there are increasing demands, both civil and military. This calls for an efficient management of the spectrum. It is assumed that transmitters are all of identical type and that signal propagation is isotropic. Further, since frequencies themselves are quantized in practice, there is no loss of generality in assuming that they admit integer values.

The foregoing problem, with the objective of minimizing the span of frequencies, was first placed on a graph-theoretical footing in 1980 by Hale [10] who established its equivalence to generalized vertex coloring problem that is known to be computationally hard. (Vertices correspond to transmitter locations and their labels to radio frequencies, while adjacencies are determined by geographical "proximity" of the transmitters.) Roberts [23] subsequently proposed a variation to the problem in which distinction is made between transmitters that are "close" and those that are "very close." This enabled Griggs and Yeh [9] to formulate the $L(2,1)$-labeling of graphs that has since been an object of extensive research [2-8,12,13,15,18,20,24,28,30].

[^0]Formally, an $L(2,1)$-labeling of a graph G is an assignment f of nonnegative integers to vertices of G such that,

$$
|f(u)-f(v)| \geqslant \begin{cases}2 ; & d_{G}(u, v)=1 \\ 1 ; & d_{G}(u, v)=2\end{cases}
$$

If q is the largest label of f, we speak of a $\llbracket q-(2,1)$-labeling \rrbracket
The difference between the largest label and the smallest label assigned by f is called the span of f, and the minimum span over all $L(2,1)$-labelings of G is called the λ-number of G, denoted by $\lambda(G)$. The general problem of determining $\lambda(G)$ is NP-hard [8]. Moreover, determining $\lambda(G)$ is an NP-complete problem even for graphs G with diameter 2 [9]. On the other hand, if the graph is known to be a tree, then there is an efficient solution [2]. This result has been extended in [3] to k-almost trees (for any fixed k). For additional information concerning related complexity issues, we refer to [3].

The following result constitutes a useful lower bound.
Lemma 1.1 (Griggs and Yeh [9]). Let G be a graph with maximum degree $\Delta \geqslant 2$. If G contains three vertices of degree Δ such that one of them is adjacent to the other two, then $\lambda(G) \geqslant \Delta+2$.

The foregoing lower bound is achievable in many cases [8,20,24,30]. In particular, this is true with respect to Cartesian products as well as strong products of finitely many cycles, where there are certain conditions on lengths of individual cycles [12,13]. Indeed, graphs G exist for which $\lambda(G)$ is strictly larger than the lower bound suggested by Lemma 1.1 [30]. The present paper presents sharp bounds on λ-number of direct product (defined below) of cycles and paths.

By a graph is meant a finite, simple and undirected graph having at least two vertices. Unless otherwise indicated, graphs are also connected. Let $P_{m}\left(\right.$ resp. $\left.C_{m}\right)$ denote a path (resp. a cycle) on m vertices, where $V\left(P_{m}\right)=V\left(C_{m}\right)=\{0, \ldots, m-1\}$ and where adjacencies are defined in a natural way.

For graphs $G=(V, E)$ and $H=(W, F)$, the direct product $G \times H$ of G and H is defined as follows: $V(G \times H)=V \times W$ and $E(G \times H)=\{\{(a, x),(b, y)\}:\{a, b\} \in E$ and $\{x, y\} \in F\}$. This product (that is commutative and associative in a natural way) is one of the most important graph products with potential applications in engineering, computer science and related disciplines. For example, the diagonal mesh studied by Tang and Padubirdi [26] with respect to multiprocessor network is representable as \times-product of two odd cycles that has several attractive properties, viz., low diameter, high independence number and high odd girth [11]. Ramirez and Melhem [22] present a fault-tolerant computational array whose underlying graph is isomorphic to a connected component of $P_{2 i+1} \times P_{2 i+1}$.

The following statements are relevant with respect to $C_{m} \times C_{n}, C_{m} \times P_{n}$, and $P_{m} \times P_{n}$, and will be (implicitly) used in the sequel:
(i) $C_{2 i+1} \times C_{2 j+1}$ is nonbipartite while each of the rest is bipartite, and
(ii) each of $C_{2 i+1} \times C_{n}$ and $C_{2 i+1} \times P_{n}$ is connected, while each of the rest consists of two connected components.
(iii) $C_{2 i+1} \times P_{n}$ is isomorphic to a connected component of $C_{2(2 i+1)} \times P_{n}$.

Let $P=v_{1}, v_{2} \ldots, v_{n}$ and $Q=u_{1}, u_{2} \ldots, u_{n}$ be disjoint paths on n vertices. Then, Z_{n} denotes the graph with the set of vertices $V\left(Z_{n}\right):=V(P) \cup V(Q)$. The set of edges of Z_{n} is for $i=1,2, \ldots,\left\lfloor\frac{n-1}{2}\right\rfloor$ defined with:

$$
E\left(Z_{n}\right):= \begin{cases}E(P) \cup E(Q) \cup\left\{v_{2 i} u_{2 i-1}, v_{2 i} u_{2 i+1}\right\}, & n \text { odd, } \\ E(P) \cup E(Q) \cup\left\{v_{2 i} u_{2 i-1}, v_{2 i} u_{2 i+1}\right\} \cup\left\{v_{n} u_{n-1}\right\}, & n \text { even. }\end{cases}
$$

Let f and g be $L(2,1)$-labelings of P_{n} and let $f \circ g$ be the assignment to the vertices of Z_{n}, such that the restriction of $f \circ g$ to the first (second) P_{n} in Z_{n} equals $f(g)$.

We now define graph denoted $D_{n, q}$ as follows. Its vertices are q-(2,1)-labelings of P_{n}. Vertices $f, g \in D_{n, q}$ are adjacent if and only if $f \circ g$ is a $L(2,1)$-labeling in Z_{n}.

The next theorem can now be very easily derived from the concepts and results presented in [18].
Theorem 1.2. (i) $C_{2 i} \times P_{n}$ admits a q-(2,1)-labeling if and only if $D_{n, q}$ contains a closed walk of length i.
(ii) $C_{2 i+1} \times P_{n}$ admits a $q-(2,1)$-labeling if and only if $D_{n, q}$ contains a closed walk of length $2 i+1$.

2. Preliminaries

Let $G=(V(G), E(G))$ be a graph. A walk is a sequence of vertices $v_{1}, v_{2}, \ldots, v_{n}$ and edges $v_{i} v_{i+1}, 1 \leqslant i \leqslant n-1$. A path on n vertices is a walk on n different vertices and denoted P_{n}. A walk is closed if $v_{1}=v_{n}$. A closed walk in which all vertices
(except the first and the last) are different, is a cycle. The cycle on n vertices is denoted C_{n}. For $u, v \in V(G), d_{G}(u, v)$ or $d(u, v)$ denotes the length of a shortest walk (i.e., the number of edges on a shortest walk) in G from u to v. These definitions extend naturally to directed graphs.

Let $G_{0}, G_{1}, \ldots, G_{n-1}$ be disjoint graphs and $X_{0}, X_{1}, \ldots, X_{n-1}$ a sequence of sets of edges such that an edge of X_{i} joins a vertex of G_{i} with a vertex of G_{i+1} (indices modulo n). A polygraph

$$
\Omega_{n}=\Omega_{n}\left(G_{0}, G_{1}, \ldots, G_{n-1} ; X_{0}, X_{1}, \ldots, X_{n-1}\right)
$$

is defined in the following way:

$$
\begin{aligned}
& V\left(\Omega_{n}\right)=V\left(G_{0}\right) \cup V\left(G_{1}\right) \cup \cdots \cup V\left(G_{n-1}\right) \\
& E\left(\Omega_{n}\right)=E\left(G_{0}\right) \cup X_{0} \cup E\left(G_{1}\right) \cup X_{1} \cup \cdots \cup E\left(G_{n-1}\right) \cup X_{n-1}
\end{aligned}
$$

Polygraphs were introduced in chemical graph theory as a model for polymers, cf. [1], and studied in, for instance, [17,19,31]. Assume that for $0 \leqslant i \leqslant n-1, G_{i}$ is isomorphic to a fixed graph G. Let, in addition, the sets $X_{i}, 0 \leqslant i \leqslant n-1$, be equal to a fixed edge set X. Then we call the polygraph Ω_{n} a rotagraph and denote it $\omega_{n}(G ; X)$. We will also say that $\omega_{n}(G ; X)$ is a rotagraph with consecutive fibers $G_{0}, G_{1}, \ldots, G_{n-1}$. A fasciagraph $\Psi_{n}(G ; X)$ is a rotagraph $\omega_{n}(G ; X)$ without edges between the fibers G_{n-1} and G_{0}.

In the rest of this section we recall concepts and results that were recently introduced in [18] and are essential for the present work. For a graph G set

$$
\mathscr{F}_{q}(G)=\{f: V(G) \rightarrow\{0,1, \ldots, q-1\}\} .
$$

A subset of $\mathscr{F}_{q}(G)$ will be called a graph q-property. If q will be clear from the context or not essential, we will say, in short, a graph property.

Let $\mathscr{L}_{q}(G) \subseteq \mathscr{F}_{q}(G)$ be the set of functions f with the following property: Let $f \in \mathscr{L}_{q}(G)$, then if $u v \in E(G)$ we have $|f(u)-f(v)| \geqslant 2$, and if $d(u, v)=2$ we have $|f(u)-f(v)| \geqslant 1$. Clearly, $\mathscr{L}_{q}(G)$ describes the admissible $L(2,1)$-labelings of G.

Let $\omega_{n}(G ; X)$ be a rotagraph with consecutive fibers $G_{0}, G_{1}, \ldots, G_{n-1}$. Then the restriction of $f \in \mathscr{F}_{q}\left(\omega_{n}(G ; X)\right)$ to consecutive fibers $X_{i}, X_{i+1}, \ldots, X_{i+k}$ (indices modulo n) will be denoted f_{i}^{i+k}. We say that a graph property \mathscr{P}_{q} is hereditary (for rotagraphs), if for any rotagraph $\omega_{n}(G ; X)$ with consecutive fibers $G_{0}, G_{1}, \ldots, G_{n-1}$,

$$
f \in \mathscr{P}_{q}\left(\omega_{n}(G ; X)\right) \Rightarrow f_{i}^{i+k} \in \mathscr{P}_{q}\left(\Psi_{k+1}(G ; X)\right) ; \quad i, k=0,1, \ldots, n-1
$$

Note that \mathscr{L}_{q} is a hereditary property.
A graph property \mathscr{P}_{q} is called d-local (for rotagraphs), $d \geqslant 1$, if for any rotagraph $\omega_{n}(G ; X), n \geqslant 2 d+1$, with consecutive fibers $G_{0}, G_{1}, \ldots, G_{n-1}$, and any $f \in \mathscr{F}_{q}\left(\omega_{n}(G ; X)\right)$,

$$
f_{i}^{i+d} \in \mathscr{P}_{q}\left(\Psi_{d+1}(G ; X)\right), 0 \leqslant i \leqslant n-1 \Rightarrow f \in \mathscr{P}_{q}\left(\omega_{n}(G ; X)\right)
$$

Note that \mathscr{L}_{q} is a 2-local property.
Let \mathscr{P}_{q} be a d-local property, and $\omega_{n}(G ; X)$ a rotagraph with $n \geqslant 2 d+1$. We define a directed graph $D_{d}(G ; X)$ as follows. Its vertices are the functions from $\mathscr{P}_{q}\left(\Psi_{2}(G ; X)\right)$, while its arcs are of two types: the first type arcs will be simply called arcs, and the second type arcs will be called d-arcs. Now, in $D_{d}(G ; X)$ make an arc from f to g if and only if f restricted to the second fiber of $\Psi_{2}(G ; X)$ equals to g restricted to the first fiber of $\Psi_{2}(G ; X)$. In addition, if $d \geqslant 2$, then for any directed path (consisting of arcs) of length $d-1$, say $f_{1} \rightarrow f_{2} \rightarrow \cdots \rightarrow f_{d}$, we make a d-arc from f_{1} to f_{d} whenever the composition of $f_{1}, f_{2}, \ldots, f_{d}$ belongs to $\mathscr{P}_{q}\left(\Psi_{d+1}(G ; X)\right)$. In the particular case when $d=2$ we interpret this as follows: If the composition of f_{1} and f_{2} belongs to $\mathscr{P}_{q}\left(\Psi_{3}(G ; X)\right)$ then we leave the arc from f_{1} to f_{2}, otherwise we remove it.

Theorem 2.1 (Klavžar and Vesel [18]). Let \mathscr{P}_{q} be a hereditary, d-local property, and $\omega_{n}(G ; X)$ a rotagraph with $n \geqslant 2 d+1$. Then $\mathscr{P}_{q}\left(\omega_{n}(G ; X)\right) \neq \emptyset$ if and only if $D_{d}(G ; X)$ contains (not necessarily different) vertices $f_{0}, f_{1}, \ldots, f_{n-1}$ connected with $\operatorname{arcs}\left(f_{i}, f_{i+1}\right)$ and d-arcs $\left(f_{i}, f_{i+d-1}\right)$ for $i=0,1, \ldots, n-1$ (indices modulo n).

Corollary 2.2 (Klavžar and Vesel [18]). Let \mathscr{P}_{q} be a hereditary, d-local property, $1 \leqslant d \leqslant 2$, and $\omega_{n}(G ; X)$ a rotagraph with $n \geqslant 5$. Then $\mathscr{P}_{q}\left(\omega_{n}(G ; X)\right) \neq \emptyset$ if and only if $D_{d}(G ; X)$ contains a directed closed walk of length n.

3. λ-numbers of $C_{7 i} \times C_{7 j}$ and $C_{11 i} \times C_{11 j} \times C_{11 k}$

Determining $\lambda\left(C_{m} \times C_{n}\right)$ is important also because it yields analogous results for $\lambda\left(C_{m} \times P_{n}\right)$ and $\lambda\left(P_{m} \times P_{n}\right)$ in most cases. In the present section, we show that the lower bound of Lemma 1.1 is achieved for each of $C_{7 i} \times C_{7 j}$ and $C_{11 i} \times C_{11 j} \times C_{11 k}$.

Theorem 3.1. If $m \equiv 0(\bmod 7)$ and $n \equiv 0(\bmod 7)$, then $\lambda\left(C_{m} \times C_{n}\right)=6$.
Proof. By Lemma 1.1, $\lambda\left(C_{m} \times C_{n}\right) \geqslant 6$, since $C_{m} \times C_{n}$ is a regular graph of degree four. It, therefore, suffices to present a valid $L(2,1)$-labeling of $C_{m} \times C_{n}$ using the labels $0, \ldots, 6$, where m and n are as stated. Let a vertex (i, j) of $C_{m} \times C_{n}$ be assigned the integer $f(i, j)=(8 i+4 j)$ mod 7 . The assignment is clearly well-defined.

A vertex adjacent to (i, j) is of the form $(i+a, j+b)$, where $a, b \in\{+1,-1\}$, and $i+a$ (resp. $j+b$) is modulo m (resp. n). Note that $f(i+a, j+b)=[(8 i+4 j)+(8 a+4 b)] \bmod 7$. For the four cases corresponding to a, b in $\{+1,-1\},(8 a+4 b)$ $\bmod 7$ is equal to exactly one of $2,3,4$ and 5 . Accordingly, $2 \leqslant|f(i, j)-f(i+a, j+b)| \leqslant 5$.

A vertex at a distance of two from (i, j) is of the form $(i+c, j+d)$, where $c, d \in\{+2,0,-2\}$, and c, d are not both zero. Note that $f(i+c, j+d)=[(8 i+4 j)+(8 c+4 d)] \bmod 7$. Conditions on c and d are such that $8 c+4 d$ is necessarily nonzero. Further, $|8 c+4 d|$ is a multiple of 8 and at most equal to 24 . Accordingly, $8 c+4 d$ is not a multiple of 7 . It follows that $|f(i, j)-f(i+c, j+d)| \geqslant 1$.

Conclusions are valid even if i (resp. j) is of the form $m-2$ or $m-1$ (resp. $n-2$ or $n-1$), since m and n are themselves multiples of 7 .

For $0 \leqslant a \leqslant 6$, let V_{a} be the set of vertices of a connected component of $C_{m} \times C_{n}$ that receive label a in the proof of Theorem 3.1. The sets V_{0}, \ldots, V_{6} form a vertex partition into equal-size independent sets, where elements of each V_{a} dominate (5/7)th of the vertices (including themselves) in that component. Accordingly, elements of each V_{a} correspond to as many vertex-disjoint $K_{1,4}$'s. Also, vertices in each $\left(V_{2 i} \cup V_{2 i+1}\right)$ correspond to as many edge-disjoint $K_{1,4}$'s, $0 \leqslant i \leqslant 2$.

Corollary 3.2. If $m \geqslant 5, n \geqslant 4$ and $i \geqslant 1$, then $\lambda\left(P_{m} \times P_{n}\right)=\lambda\left(C_{7 i} \times P_{n}\right)=6$.
Proof. Each of $P_{m} \times P_{n}$ and $C_{7 i} \times P_{n}$ is of largest degree four, and satisfies Lemma 1.1. Further, (i) $P_{m} \times P_{n}$ is a subgraph of $C_{7 i} \times C_{7 j}$ for some i and j, and (ii) $C_{7 i} \times P_{n}$ is a subgraph of $C_{7 i} \times C_{7 j}$ for some j.

Theorem 3.3. If $r \equiv 0(\bmod 11), s \equiv 0(\bmod 11)$ and $t \equiv 0(\bmod 11)$, then $\lambda\left(C_{r} \times C_{s} \times C_{t}\right)=10$.
Proof. By Lemma 1.1, $\lambda\left(C_{r} \times C_{S} \times C_{t}\right) \geqslant 10$ as $C_{r} \times C_{S} \times C_{t}$ is a regular graph of degree eight, so it suffices to present a valid $L(2,1)$-labeling of $C_{r} \times C_{s} \times C_{t}$ using the labels $0, \ldots, 10$. Let a vertex (i, j, k) of $C_{r} \times C_{s} \times C_{t}$ be assigned the integer $(24 i+12 j+6 k) \bmod 11$. The assignment is clearly well-defined.

Analogous to the proof of Theorem 3.1, it suffices to prove that (i) $2 \leqslant(24 a+12 b+6 c) \bmod 11 \leqslant 9$, where $a, b, c \in\{+1,-1\}$, and (ii) $(24 x+12 y+6 z) \bmod 11>0$, where $x, y, z \in\{+2,0,-2\}$ and x, y, z are not all zero.

There are a total of eight cases corresponding to $a, b, c \in\{+1,-1\}$. For each, the reader may check to see that $(24 a+12 b+6 c)$ $\bmod 11$ is equal to exactly one of $2,3,4,5,6,7,8$ and 9 . It is next shown that $24 x+12 y+6 z$ is nonzero and not a multiple of 11 , where x, y and z are as stated.

If $x \neq 0$, then $24 x+12 y+6 z$ is of the same sign as x; if $x=0$ and $y \neq 0$, then $24 x+12 y+6 z$ is of the same sign as y; if $x=y=0$, then $z \neq 0$, and $24 x+12 y+6 z$ is of the same sign as z. It follows that $24 x+12 y+6 z \neq 0$.
" $24 x+12 y+6 z$ is not a multiple of 11 " is equivalent to " $|4 x+2 y+z|$ is not a multiple of 11 ." If $x=0$, then $|4 x+2 y+z| \leqslant 6<11$. If $y=0$, then $|4 x+2 y+z| \leqslant 10<11$. If $z=0$, then $|4 x+2 y+z|=2 \cdot|2 x+y|$ that is not a multiple of 11 as $2 x+y$ is not such. It follows that if $x=0$ or $y=0$ or $z=0$, then $|4 x+2 y+z|$ is not a multiple of 11 .

If x, y and z are all nonzero and of the same sign, then $|4 x+2 y+z|=14$ that is not a multiple of 11 . On the other hand, if x, y and z are all nonzero and not of the same sign, then $|4 x+2 y+z|<11$.

Let V_{a} be the set of vertices of a connected component of $C_{r} \times C_{s} \times C_{t}$ that receive label a in the proof of Theorem 3.3, $0 \leqslant a \leqslant 10$. The sets V_{0}, \ldots, V_{10} form a vertex partition into equal-size independent sets. Elements of each V_{a} correspond to as many vertex-disjoint $K_{1,8}$'s. Also, elements of each ($V_{2 i} \cup V_{2 i+1}$) correspond to as many edge-disjoint $K_{1,8}$'s, $0 \leqslant i \leqslant 4$.

We conclude this section with an upper bound on λ-number of finitely many cycles.
Theorem 3.4. If $k \geqslant 2$ and m_{0}, \ldots, m_{k-1} are each a multiple of $2^{k}+1$, then $2^{k}+2 \leqslant \lambda\left(C_{m_{0}} \times \cdots \times C_{m_{k-1}}\right) \leqslant 2^{k+1}$.

Proof. Let k and m_{0}, \ldots, m_{k-1} be as stated. The graph $C_{m_{0}} \times \cdots \times C_{m_{k-1}}$ is regular of degree 2^{k}. Accordingly, lower bound is immediate. Further, this graph admits of a vertex partition into equal-size (independent dominating) sets $V_{0}, \ldots, V_{2^{k}}$ such that the (shortest) distance between any two distinct elements of V_{i} is at least three [14]. Let a vertex v be assigned the integer label $2 i$ if and only if $v \in V_{i}, 0 \leqslant i \leqslant 2^{k}$. It is easy to see that the resulting labeling is a valid $L(2,1)$-labeling. Accordingly, $\lambda\left(C_{m_{0}} \times \cdots \times C_{m_{k-1}}\right) \leqslant 2^{k+1}$.

4. λ-numbers of $\boldsymbol{P}_{\mathbf{4}} \times \boldsymbol{C}_{\boldsymbol{m}}$

In Corollary 3.2 we have seen that $\lambda\left(P_{n} \times C_{7 i}\right)=6, n \geqslant 4, i \geqslant 1$. In this section, we demonstrate that for $n=4$, the result holds for any cycle C_{m} :

Theorem 4.1. For any $m \geqslant 3, \lambda\left(P_{4} \times C_{m}\right)=6$.
Proof. By Lemma 1.1, $\lambda\left(P_{4} \times C_{m}\right) \geqslant 6$ for any $m \geqslant 3$. Hence, we need to construct labelings with labels $0,1,2,3,4,5,6$. Case 1: $m=4+4 s, s \geqslant 0$.
In this case, we repeat the following labeling:

2	2	3	3	$:$	2	2	3
3							
5	5	6	6	5	5	6	6
0	0	1	1	$:$	0	0	1
1							
3	3	4	4	3	3	4	4

Case 2: $m=9+4 s, s \geqslant 0$.
Now we have the following repeated solution:

0	0	1	1	2	2	3	3	4	2	3	3	4
2	5	3	6	4	0	5	1	6	0	5	1	6
2	5	3	6	4	0	5	1	6	0	5	1	6
0	0	1	1	2	2	3	3	4	2	3	3	4

Case 3: $m=14+4 s, s \geqslant 0$.
In this case, we have the following repeated solution:

0	0	1	1	2	2	3	3	4	4	5	5	6	6	2	3	3	4
2	5	3	6	4	0	5	1	6	\mid	2	0	3	1	4		0	5
1	6																
2	5	3	6	4	0	5	1	6	\mid	2	0	3	1	4		0	5
0	0	1	1	2	2	3	3	4	6	4	5	5	6	6		2	3
0	4																

Case 4: $m=23+4 s, s \geqslant 0$.
In this case we proceed as follows. First, take two times the block with 9 columns and after the block with 5 columns from Case 3. This gives a solution for $m=23$. Then repeat the block with 4 columns in order to get all the remaining solutions.

Hence, we are left with the following sporadic cases:
Case 5: $m=3,5,6,7,10,11,15,19$.
For $m=7$ we apply Theorem 3.1. For the other cases solutions are, respectively:

6	2	1			4	2	5	3	3			3	2	4	4	5	6				
5	3	0			6	2	5	0	6			0	6	6	2	2	0				
5	3	0			0	0	6	1	4			2	3	0	0	6	5				
6	2	1			2	4	4	1	3			1	5	5	3	3	4				
0	0	2	2	3	3	4	4	3	3			0	0	1	1	0	4	4	5		2
5	4	4	0	0	1	1	0	0	5			6	4	5	3	6	2	2	1		6
1	1	6	6	5	5	6	6	2	2			2	3	6	2	5	0	6	6		4
6	3	3	2	2	3	3	4	4	6			1	0	0	1	4	0	3	3		5
1	4	4	2	6	6	4	1	3	6	2	3	3	5	6							
2	6	6	0	0	2	3	6	4	5	0	6	1	0	3							
0	0	3	3	5	5	0	0	1	2	0	4	4	6	5							
3	5	5	1	1	3	2	4	5	3	6	2	2	1	4							

4	5	5	1	1	3	4	5	5	4	4	2	3	5	5	6	4	2	2
0	0	3	3	6	6	1	0	2	2	6	6	0	0	2	2	4	6	6
3	6	6	0	0	4	3	6	6	0	0	3	2	4	6	0	0	1	3
1	1	4	4	2	5	0	1	4	4	5	5	1	4	6	3	3	5	5

5. λ-numbers of $\boldsymbol{P}_{\mathbf{5}} \times \boldsymbol{C}_{\boldsymbol{m}}$

The result of the previous section asserts that for any $m \geqslant 3, \lambda\left(P_{4} \times C_{m}\right)=6$. For the direct products $P_{5} \times C_{m}$ the situation is similar: For almost any $m, \lambda\left(P_{5} \times C_{m}\right)=6$. However, there are several exceptions that make our considerations a bit more involved. We are going to prove:

Theorem 5.1. Let $m \geqslant 3$. Then,

$$
\lambda\left(P_{5} \times C_{m}\right)= \begin{cases}7 ; & m=3,4,5,6,8,9,10,12,13,17,18,20,24,26,34,40 \\ 6 ; & \text { otherwise }\end{cases}
$$

Proof. By Lemma 1.1, $\lambda\left(P_{5} \times C_{m}\right) \geqslant 6$ for any $m \geqslant 3$.
We first present solutions for the products $P_{5} \times C_{2 k}, k \geqslant 22$. Any such graph contains two isomorphic connected components; thus, we will give solutions for one component. First, the following blocks will be called Blocks A and B, respectively.

05201642	20520164
30654205	53065420
16432053	31643205
42106316	64210631
20564164	42056416

Case 1: $k=22+8 s, s \geqslant 0$.
$L(2,1)$-labelings are obtained from the following solution for $k=22$ to which we add Block A as many times as necessary.

```
053135 014452053135 014 4 2
    316502446205316502446205
1640246206316402462063
    402461005316402461005316
02561353154002561353 1 54
```

Case 2: $k=23+8 s, s \geqslant 0$.
$L(2,1)$-labelings are obtained from the following solution for $k=23$ to which we add Block A as many times as necessary.

$$
\begin{aligned}
& 05010654320164205201642 \\
& 32654321065420530654205 \\
& 16432106543205316432053 \\
& 40106543210631642106316 \\
& 02564321065416420564164
\end{aligned}
$$

Case 3: $k=24+8 s, s \geqslant 0$.
$L(2,1)$-labelings are obtained from the following solution for $k=24$ to which we add Block B as many times as necessary.

```
205201164205201164200520164
    5 306542005 30654420530065420
31643220531644320553164 3 2 0 5
    642106 31164211063116421106 3 1
420564164205641642056416
```

Case 4: $k=25+8 s, s \geqslant 0$.
$L(2,1)$-labelings are obtained from the following solution for $k=25$ to which we add Block A as many times as necessary.

```
053135001452 0 5 311642 0 5 3 1 64 2
    3165024620053164205 3166420 5
1640246206 31642053 1644205 3
    4024461055311642005311642205 3 1 6
025613531542053164205 3164
```

Case 5: $k=26+8 s, s \geqslant 0$.
$L(2,1)$-labelings are obtained from the following solution for $k=26$ to which we add Block A as many times as necessary.

```
05 3 1 3 5 0 14 5 2 0 5 0 1 0 6 54 3 2 0 1 6 4 2
    3165024620053265432100654 2 0 5
1640246206316432100654320 5 3
    4024610531164010 6 54 3 2 1 0 6 3 1 6
0256135 3 1 540 2 564 3 2 1 0 6 54 1 64
```

Case 6: $k=27+8 s, s \geqslant 0$.
$L(2,1)$-labelings are obtained from the following solution for $k=27$ to which we add Block A as many times as necessary.

```
05313 5 0 14 5 2 0 5 2 0 1 64 2 0 5 2 0 1 64 2
    3165024620 5 3 0 6 54 2 0 5 300654 2 0 5
    1640246206 3 1 64 3 2 0 5 3 16443 2 0 5 3
    402461053164 2 1 0 6 3 1 64 2 1 0 6 3 1 6
0256135 3 1 54 2 0 5 64 164 2 0 5 64 1 64
```

Case 7: $k=28+8 s, s \geqslant 0$.
$L(2,1)$-labelings are obtained from the following solution for $k=28$ to which we add Block B as many times as necessary.

```
205 3 1 64 205 3 1 64 2 0 5 3 1 64 2 0 5 3 1 64
    5 3 1 64 2 0 5 3 164 2 0 5 3 1 64 2 0 5 3 1 64 2 0
314642053164 2 05 3 1 64 2005 3 1 64 2 0 5
    64205 3 1 64 2005 3 1 64 2 0 5 3 1 64 2 0 5 3 1
420531642053164205 3 1 64 2 0 5 3 1 6
```

Case 8: $k=29+8 s, s \geqslant 0$.
$L(2,1)$-labelings are obtained from the following solution for $k=29$ to which we add Block A as many times as necessary.

```
05313 5 0 1 4 5 2 0 5 3 1 3 5 0 1 4 5 2 0 5 3 1 64 2
    3165 024 6 2 0 5 3 1 6 5 0 24 6 2 0 5 3 1 64 2 0 5
    164024620631640246206 3 1 64 20 5 3
    40246105 31 64024610 5 3 1 64 2 0 5 3 1 6
0256135 3 1 5 4 0 2 5 6 1 3 5 3 1 5 4 2 0 5 3 1 64
```

By the above cases, we have $\lambda\left(P_{5} \times C_{2 k}\right)=6$ for $k \geqslant 22$. If $2 k=4 i+2$, then each connected component of $P_{5} \times C_{2 k}$ is isomorphic to $P_{5} \times C_{k}$; hence, we also have $\lambda\left(P_{5} \times C_{k}\right)=6$ for k odd, and $k \geqslant 23$.

We next demonstrate that $P_{5} \times C_{k}$ admits $L(2,1)$-labelings with 7 labels for $k=11,15,16,19,22,30,32,36,38$. Since solutions for 22,30 , and 38 give also solutions for 11,15 , and 19 , respectively, it is enough to present solutions for the cases 16 , $22,30,32,36$ and 38 . They are, respectively, given below.

```
25613531
    02461054
64024620
    16502462
53135014
05313501452
    31650246205
    16402462063
    40246105316
531350144 02561353154
05 0 1 0 6 54 3 2 0 1 64 2
    326543210654205
164321065432053
    401106654321106316
025643210654164
205201164205201644
    5306542053065420
3164320531643205
    642106 3164210631
4205641642056416
```

```
05 3 1 3 5 0 1 4 5 2 0 5 3 1 64 2
    3165024462053164205
    164024620631642053
    40246105 3 1 64205316
    02561353154205 3 1 64
    05313501452052011642
    31650246205 30654205
    1640246206316432053
    40246105 31642106316
    0256135315420564164
```

By the above constructions and by Corollary 3.2 we conclude that $\lambda\left(P_{5} \times C_{m}\right)=6$ for all m except for $m=3,4,5,6,8,9,10$, $12,13,17,18,20,24,26,34$, and 40 . To complete the proof we must show that in these remaining cases $\lambda\left(P_{5} \times C_{m}\right)=7$ holds.

We first claim that there are no $L(2,1)$-labelings with 7 labels for $P_{5} \times C_{2 k}$ if $k<7$ or $k=9,10,12,13,17,20$. The graph $D_{5,6}$ consists of 1098 vertices (determined by a computer program). In order to search for cycles in $D_{5,6}$ exactly one strongly connected component (with 132 vertices) was detected. Using a simple backtracking in that component, we have established that $D_{5,6}$ does not contain cycles of length $2,3,4,5,6,9,10,12,13,17$ and 20 . Therefore, by Theorem 1.2 there are also no $L(2,1)$-labelings with 7 labels for $P_{5} \times C_{k}$ where $k=3,4,5,6,8,9,10,12,13,17,18,20,24,26,34$, and 40 .

Finally, we implemented the antivoter algorithm [21] adapted for $L(2,1)$-labelings. We have obtained labelings with 8 labels for $P_{5} \times C_{k}$, where $k<7$, and $k=8,9,10,12,13,17,18,20,24,26,34$, and 40 . Note that from a labeling with 8 labels of $P_{5} \times C_{k}$ a labeling with 8 labels of $P_{5} \times C_{2 k}$ can be constructed easily. Therefore we list only the cases with $k=3,4,5,9,13,17$.

The antivoter algorithm that we used at the end of the above proof and some of its generalizations have proved to be reasonably good heuristics for coloring various types of graphs including random k-colorable graphs, DIMACS challenge graphs [16], frequency assignment "realistic" graphs, and others [25,27,29]. For completeness of the presentation we briefly recall the algorithm:
get a random order of vertices;
run a greedy coloring algorithm;
while not stopping condition do
if the coloring is proper then recolor vertices of the maximum color
select a bad vertex v (randomly)
assign a new color to v
end while
The greedy coloring always takes the minimal color which does not violate any constraints.

6. λ-numbers of $P_{n} \times C_{m}, n \geqslant 6$

In this section, we prove that Corollary 3.2 finds all optimal solutions (with respect to Lemma 1.1) for $n \geqslant 6$. More precisely:

Theorem 6.1. Let $n \geqslant 6$ and $m \geqslant 7$. Then $\lambda\left(P_{n} \times C_{m}\right)=6$ if and only if $m=7 k, k \geqslant 1$.

Proof. By Lemma 1.1, $\lambda\left(P_{n} \times C_{m}\right) \geqslant 6$. Hence, using Corollary 3.2, it suffices to show that $\lambda\left(P_{6} \times C_{m}\right) \geqslant 7$ if $m \neq 7 k$. For this sake we use our method of Theorem 1.2.

We know that $P_{6} \times C_{m}$ admits a 6-(2,1)-labeling if and only if $D_{6,6}$ contains a closed walk of length m, if m is odd, or a closed walk of length $\frac{m}{2}$, if m is even. The graph $D_{6,6}$ consists of 3638 vertices (determined by a computer program). In order to search for cycles in $D_{6,6}$, exactly eight strongly connected components of $D_{6,6}$ were detected, each of them consisting of seven vertices and exactly one directed cycle. Therefore, all closed walks in $D_{6,6}$ are of length $7 k, k \geqslant 1$; thus a 6- $L(2,1)$-labeling of $P_{6} \times C_{m}$ for $m \not \equiv 0(\bmod 7)$ does not exist.

By Theorem 6.1, $\lambda\left(P_{n} \times C_{m}\right) \geqslant 7$ for $m \neq 7 k$. We believe that the equality holds, but were not able to cover all the cases. For instance, we can show that for any $n \geqslant 6$ and any $k \geqslant 1$ we have $\lambda\left(P_{n} \times C_{3 k}\right)=7$. In addition, for any $n \geqslant 6$ we also have $\lambda\left(P_{n} \times C_{4}\right)=7$. In general, however, the above conjecture cannot be deduced from labelings of direct products of two cycles in the way as is Corollary 3.2 obtained from Theorem 3.1. Indeed, using backtracking we computed that there is no labeling with labels $0,1, \ldots, 7$ for any of the graphs $C_{4} \times C_{4}, C_{4} \times C_{5}, C_{5} \times C_{5}, C_{5} \times C_{6}$, and $C_{6} \times C_{6}$.

References

[1] D. Babić, A. Graovac, B. Mohar, T. Pisanski, The matching polynomial of a polygraph, Discrete Appl. Math. 15 (1986) 11-24.
[2] G.J. Chang, D. Kuo, The L(2,1)-labeling on graphs, SIAM J. Discrete Math. 9 (1996) 309-316.
[3] J. Fiala, T. Kloks, J. Kratochvíl, Fixed-parameter complexity of λ-labelings, Discrete Appl. Math. 113 (2001) 59-72.
[4] J. Georges, D.W. Mauro, Generalized vertex labelings with a condition at distance two, Congr. Numer. 109 (1995) 141-159.
[5] J. Georges, D.W. Mauro, On the size of graphs labeled with a condition at distance two, J. Graph Theory 22 (1996) 47-57.
[6] J. Georges, D.W. Mauro, Some results on λ_{k}^{j}-numbers of the products of complete graphs, Congr. Numer. 140 (1999) $141-160$.
[7] J.P. Georges, D.W. Mauro, M.I. Stein, Labeling products of complete graphs with a condition at distance two, SIAM J. Discrete Math. 14 (2001) 28-35.
[8] J.P. Georges, D.W. Mauro, M.A. Whittlesey, Relating path coverings to vertex labellings with a condition at distance two, Discrete Math. 135 (1994) 103-111.
[9] J.R. Griggs, R.K. Yeh, Labelling graphs with a condition at distance two, SIAM J. Discrete Math. 5 (1992) 586-595.
[10] W.K. Hale, Frequency assignment: theory and application, Proc. IEEE 68 (1980) 1497-1514.
[11] W. Imrich, S. Klavžar, Product Graphs: Structure and Recognition, Wiley, New York, 2000.
[12] P.K. Jha, Optimal L(2,1)-labeling of Cartesian products of cycles, with an application to independent domination, IEEE Trans. Circuits and Systems-I: Fund. Theory and Appl. 47 (2000) 1531-1534.
[13] P.K. Jha, Optimal L(2,1)-labeling of Strong products of cycles, IEEE Trans. Circuits and Systems-I: Fund. Theory and Appl. 48 (2001) 498-500.
[14] P.K. Jha, Smallest independent dominating sets in Kronecker products of cycles, Discrete Appl. Math. 113 (2001) $303-306$.
[15] P.K. Jha, A. Narayanan, P. Sood, K. Sundaram, V. Sunder, On L(2,1)-labeling of the Cartesian product of a cycle and a path, Ars Combin. 55 (2000) 81-89.
[16] D.S. Johnson, M. Trick (Eds.), Cliques, Coloring and Satisfiability, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26, American Mathematical Society, Providence, RI, 1996 (DIMACS coloring benchmarks available via ftp at rutgers.dimacs.edu).
[17] M. Juvan, B. Mohar, J. Žerovnik, Distance-related invariants on polygraphs, Discrete Appl. Math. 80 (1997) 57-71.
[18] S. Klavžar, A. Vesel, Computing graph invariants on rotagraphs using dynamic algorithm approach: the case of (2,1)-colorings and independence numbers, Discrete Appl. Math. 129 (2003) 449-460.
[19] S. Klavžar, J. Žerovnik, Algebraic approach to fasciagraphs and rotagraphs, Discrete Appl. Math. 68 (1996) 93-100.
[20] D. Liu, R.K. Yeh, On distance-two labelings of graphs, Ars Combin. 47 (1997) 13-22.
[21] A.D. Petford, D.J.A. Welsh, A randomized 3-colouring algorithm, Discrete Math. 74 (1989) 253-261.
[22] J. Ramirez, R. Melhem, Computational arrays with flexible redundancy, Computer 20 (1987) 55-65.
[23] F.S. Roberts, T-colorings of graphs: recent results and open problems, Discrete Math. 93 (1991) 229-245.
[24] D. Sakai, Labeling chordal graphs: distance-two condition, SIAM J. Discrete Math. 7 (1994) 133-140.
[25] J. Shawe-Taylor, J. Žerovnik, Analysis of the mean field annealing algorithm for graph colouring, J. Artif. Neural Networ. 2 (1995) 329-340.
[26] K.W. Tang, S.A. Padubirdi, Diagonal and toroidal mesh networks, IEEE Trans. Comput. 43 (1994) 815-826.
[27] S. Ubéda, J. Žerovnik, A randomized algorithm for graph coloring applied to channel assignment problem, in: V. Rupnik, L. Zadnik Stirn, S. Drobne (Eds.), Proceedings of the Fourth International Symposium on Operational Research, Slovenian Society INFORMATIKA—Section for Operational Research, Ljubljana, 1997, pp. 361-366.
[28] J. Van den Heuvel, R.A. Leese, M.A. Shepherd, Graph labeling and radio channel assignment, J. Graph Theory 29 (1998) $263-283$.
[29] A. Vesel, J. Žerovnik, Improved lower bound on the Shannon capacity of C_{7}, Inform. Process. Lett. 81 (2002) $277-282$.
[30] M.A. Whittlesey, J.P. Georges, D.W. Mauro, On the λ-number of Q_{n} and related graphs, SIAM J. Discrete Math. 8 (1995) $499-506$.
[31] J. Žerovnik, Deriving formulas for domination numbers of fasciagraphs and rotagraphs, in: G. Ciobanu, G. Páun (Eds.), Fundamentals of Computation Theory, Lecture Notes in Computer Science, vol. 1684, Springer, Berlin, 1999, pp. 559-568.

[^0]: E-mail addresses: pkjha@eeyore.stcloudstate.edu (P.K. Jha), sandi.klavzar@uni-mb.si (S. Klavžar), vesel@uni-mb.si (A. Vesel).
 ${ }^{1}$ Supported by the Ministry of Education, Science and Sport of Slovenia under the grant 0101-504.

