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Abstract

An L(d,1)-labeling of a graphG is an assignment of nonnegative integers to the vertices such
that adjacent vertices receive labels that differ by at Idastd those at a distance of two receive
labels that differ by at least one, whete> 1. Let 29(G) denote the least such thatG admits an
L(d,1)-labeling using labels from0, 1, ..., A}. We prove that (i) ifd > 1,k >2 andmyg, ..., m;_1
are each a multiple offo+ 24 — 1, theni‘{(cmo X o0 X ka_l)gzk + 2d — 2, with equality
if 1<d<2%, and (i) ifd>1,k>1 andmy, ..., m;_1 are each a multiple of 2+ 24 — 1, then
24(CimoO- - OCmy_1) <2k + 2d — 2, with equality if 1< d < 2k.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and Preliminaries

Consider the problem of assigning frequencies to radio transmitters at various nodes in a
territory. Transmitters that are close must receive frequencies that are sufficiently apart, for
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otherwise they may be at the risk of interfering with each other. The spectrum of frequencies
is an important resource on which there are increasing demands, both civil and military.
This calls for an efficient management of the spectrum. It is assumed that transmitters are
of identical type and that signal propagation is isotropic.

The foregoing problem, with the objective of minimizing the span of frequencies, was first
placed on a graph-theoretical footing in 1980 by H#§fd. (Vertices correspond
to transmitter locations and their labels to radio frequencies, while adjacencies are de-
termined by geographical “proximity” of the transmitters.) Robg8] subsequently pro-
posed a variation to the problem in which distinction is made between transmitters that are
“close” and those that are “very close.” This enabled Griggs and#to formulate the
L(2,1)-labeling of graphs. Georges and Maltd later presented a generalization of the
concept. The topic has since been an object of extensive redéarti—12,14,15]

Formally, anL (d,1)-labeling of a graphG is an assignment of non-negative integers
to vertices ofG such that

d; d(u,v)=1,
If(u)—f(v)|>{1; 2

whered > 1. The difference between the largest label and the smallest label assigfiés! by
called thespanof f, and the minimum span over dl(d,1)-labelings ofG is called the%‘{-
numberof G, denoted byl‘ll(G). The general problem of determiniﬁé(G) is NP-hard3].
When we speak of a graph, we mean a finite, simple undirected graph having at least two
vertices. LetP,, andC,, denote a path om vertices and a cycle onvertices, respectively,
whereV (Py) = V(Cy) = {0, ...,k — 1} and where adjacencies are defined in a natural
way. For graph& = (V, E) andH = (W, F), thedirect productG x H and theCartesian
productGOH of G and H are defined as followsV (G x H) = V(GOH) =V x W,
E(Gx H)={{(a, x), (b, y)}:{a, b} € E and{x, y} € F}andE(GOH)={{(a, x), (b, y)}:
{a, b} € E andx =y, or {x, y} € F anda = b}, cf. [6]. The direct product is also known
as Kronecker product, tensor product, cardinal product and categorical product.
The result below consists of a useful lower bound&é(G), seg[1, Theorem 2.9 (ii)]

Lemma 1. If G is a graph with maximum degretandG includes a vertex withl neigh-
bors, each of which is of degret then{(G) >4 + 2d — 2, where Kd< 4. [

The central message of this paper is that the preceding lower bound corresponds to the
exact value with respect t6,,, x --- x Cy,_, and Cp,,01---0Cy,, _, Where there are
certain conditions od and onmy, - - -, mi_1. Analogous result is known with respect to
)E-numbering of the strong products of cycl@. For results with respect to Cartesian
products, sef?,7,10,11,14,15]The following fact will be useful in the sequel.

Claim 2. If a, b andn are integers with > 1, then|(a modn) — (b modn)|=(|a—b| modn)
orn — (la —b|modn). O

Section 2 deals with thé‘li-numbering of direct products of cycles while Section 3
presents the analogous result with respect to Cartesian products of cycles. Methods of
attack are similar. Concluding remarks appear in Section 4.
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2. L(d,1)-labeling of Cjpg x -+ X Cpyyy_4

Theorem 3. If d>1,k>2, andmo, ..., my_1 are each a multiple of*24 24 — 1, then
24 (Cg X -+ X Cpy_y) <2 4 2d — 2, with equality if 1<d < 2*.

Proof. Letn =2k + 24 — 1, and let a vertex = (vo, - -, vx—1) be assigned the integer

1 k—1
f) = |:§(n -1 §)Zivi:| modn.

The assignment is clearly well-defined. Lebe a vertex adjacent tg sow is of the form
(vo+ao, ..., vg_1+ar_1), whereg; € {+1, —1} andv; +q; is modulom;, 0<i <k —1.
It is clear that

1 k—1 1 k—1
fw) = |:<§(” -1 gzv,-) + (E(n -1 ;2iai>i| modn.

To show that f (v) — f(w)| >d, it is enough to show that

1 k-1 '
d< (‘E(n - 1)22@»

i=0

m0dn> <n-—d

since by Claim 2,

k=1

1 .
|f () = fw)| = ‘ém -1) 2q

i=0

k-1

1 )
modn or n — (‘E(n - 1)22@

i=0

modn) .
k-1
> 2a;

i=0

k-1
Z 2iai
i=0

k=1

Z 2iai

i=0

1 k—1 .

’E(n — l)ZZ’a,-
i=0

1
= (5(’1 -1 - p) + np.

Note that is odd and

k—1 ' k-1 .
<Y =Y 2 =2 1
i=0 =0

Hence =2p + 1 where (X p < 2*~1 — 1, and consequently,

1 1
=S -1 =S =D2p+1)

k=1
Z 2ia,'
i=0
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The desired result follows sin(%a(n — 1) — pis not a multiple ofz. To verify this claim,
first observe that

3= —pz3n-1) -2 -D>d.
On the other hand,
30 —1) = p<30n—D<n —d.

Finally, letx be a vertex at a distance of two fra@, ..., vr_1). Itis clear thatv is of the
form (vo + bo, . .., vi_1 + br_1), Whereb; € {+2, 0, —2}, by, ..., by_1 are not all zero,
andv; + b; is modulom;. Note that

1 k—1 1 k—1
fx) = |:(§(n —1) ;zfvi) + <§(n -1 ;sz,»)] modn.

k-1
We claim that} (n — 1) 3 2b; is not a multiple ofs. Since3(n — 1) andn are coprime,
i—0
-1
we need only show tha} " 2'b; is not a multiple ofu:
i=0

k=1
e Lettingr be the largest integer such thigat 0, it is easy to see that_ 2'b; is of the
=0
k-1 ’
same sign as,, so Y 2'b; # 0.
i=0
k=1 k=1 l k=1
o | Y 2K Y. 2 by < Y 2 =2k 2 < 2,
i=0 i=0 i=0
k-1 k-1
Since Y 2'b; is necessarily even andis odd, it follows that) ~ 2'b; is not a multiple of

n. Acclorodingly, two vertices that are at a distance of two fForOn each other receive different
labels.

Claims are valid even if; is of the formm; — 2 orm; — 1, sincem; itself is a multiple
of n, and the arithmetic is modula Accordingly, 2§ (Cng X - -+ X Cy_;) <28 4 2d — 2.
Further,Cp,, x - - - x Cp,_, being a regular graph of degrek, 2n application of Lemma 1
to the preceding statement Shows tHaC g X - - - X Cpy_y) =28 4+2d — 2, if 1<d <2,
O

The foregoing scheme is illustrated kig. 1 where anL(3, 1)-labeling of Py x Pig
appears toward that @fg x Cig.

3. L(d,1)-labeling of C\,,,[J- - -OCyp;_,

Theorem 4. If d>1,k>1 andmy, ..., m;_1 are each a multiple of2+ 2d — 1, then
24(Cpod -+ - OCpy_y) <2k + 2d — 2, with equality if 1< d < 2k.
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Fig. 1. L(3, 1)-labeling of Pg x P1gtoward that ofCg x C1g

Proof. Letn = 2k + 2d — 1. Fork = 1, there is a single cycl€,;,, r > 1, for which the
claim is easily seen to be true. In what follows,A¢t 2 and let a vertex = (vo, . . ., vk—1)
be assigned the integer

k—1
f) = |:Z(d + 2i)vi:| modn.

i=0

The assignment is clearly well-defined. et (wo, ..., wy—1) be a vertex adjacent tgq
sov andw differ in exactly one coordinate, saysuch that; andw; are adjacent iiC,,,,
whencelv; — w;| modn = 1.

To show that f (v) — f(w)| >d, it is enough to show that

d<(d+2i)ymodn<n —d,
since by Claim 2,
| f(v) — f(w)| = (d+ 2i)modn or n — ((d + 2i) modn).

The desired result follows sinee<d + 2i <d +2(k — 1) <n — d.

Next, letx = (xo, ..., x;—1) be a vertex at a distance of two framso either (ijv andx
differ in exactly one coordinate, saysuch thatv; — x;| mod n = 2, or (ii) v andx differ in
exactly two coordinates, sayandj, such thatv; — x;| modn =1 andjv; — x| modn =1,
wherei # j.

Let |v; — x;| modn = 2. To show thatf (v) — f(x)| >1, itis enough to show that

0<2(d 4+ 2i) modn < n,
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Fig. 2. L(3, 1)-labeling of Pg[]P1g toward that ofCg[1C1g

since by Claim 2,
| f(v) — f(x)| =2(d + 2i) modn or n — (2(d + 2i) modn).

The desired result follows since02(d + 2i) <2(d + 2(k — 1)) < n.

Now suppose thatandx differ in theith and;jth coordinates, whenge; —x;| modn=1,
[v; —x;Imodn =1 and 0<i < j <k — 1. To show thaf f (v) — f(x)|>1, itis enough to
show thatd (A + B) + 2(Ai + Bj)| is not a multiple ofz, with A, B in {1, —1} since by
Claim 2,

|f(v) — f(x)]=|d(A + B) + 2(Ai + Bj)| modn or
n— (|d(A + B) + 2(Ai + Bj)|modn).

Clearly A + B is even, sdd(A + B) + 2(Ai + Bj)| is even and hence different from If
A = B, then

O<|d(A+ B)+2(Ai + Bj)|=12d + 2(i + j)| <2d + 4k — 1) < 2n.
On the other hand, it = —B, then
O<|d(A+ B) +2(Ai + Bj)| =12 — j)|<2(k — 1) <n.

In each casgd(A + B) + 2(Ai + Bj)| cannot be a multiple of.

It follows that 4 (Cpo - - - OCp,_,) <2k 4 2d — 2. FurtherC,,, - - - [0C,,_, being a
regular graph of degreet2an application of Lemma 1 to the preceding statement shows
that ] (Cymod---OCp, ;) =2k +2d — 2,if1<d<2k. O

The foregoing schemeisiillustratedtig. 2where arl (3, 1)-labeling of Po[1 P1g appears
toward that ofCo[JC1s.
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4. Concluding remarks

It is known that ifk >2 andmo, ..., ms_1 are each a multiple of2+ 1, then the graph
Cig % -+ - x Cpy,_, admits a vertex partition into smallest independent dominatind@jets
That result easily follows from the proof of Theorem 3 fo 1. Similarly, it is known that
(i) if k=21 andmo, ..., my_1 are each amultiple of2+- 1, then the grapty,,,[1 - - - OCpy,_,
admits a vertex partition into smallest independent dominating sets, and(i) If and
mo, ..., mi_1 are each a multiple ofi2+ 3, then)ﬁ(CmOD ~-OCpy_)=2k+2[7]. These
results follow from Theorem 4 faf = 1 andd = 2, respectively.

L(d,1)-labeling and the associatdd-numbering of a graph have been studied in a
more general setting df(j, k)-labeling and?; -numbering, wherg >k >1. In particular,

Georges and Maurfi] proved thatzlﬁi(G) = c/li(G). An application of this statement to
Theorems 3 and 4 leads to the following result.

Corollary 5. Letc, d>1.

(1) If k=2 andmo, ..., m;_1 are each a multiple of*24- 24 — 1, theni‘c“d(CmO X oo X
Cmy 1) < (2% + 2d — 2), with equality if 1<d <2*.

(2) If k>1 andmo, ..., m;_1 are each a multiple of 2+ 2d — 1, then){j"(CmOD e
OCmy_y) <c(2k + 2d — 2), with equality if 1<d<2k. U

Another measure of labeling a grapghwith a condition at distance two is called the
circular-L(d,1)-labelingthat is an assignmegtof integers 0. .., r — 1 to the vertices of
G such that

d, d(u’v):].,
lg(u) — g)|, = {1; d(u,v) =2,

where|x|, : =min{|x|, r —|x|} [12]. The least for which G has a circulat® (d,1)-labeling
is denoted byr{ (G). It is easy to see that{(G)>/{(G) + 1. The following result is a
simple consequence of the constructions in the proofs of Theorems 3 and 4.

Corollary 6.

(1) Fork>2,if 1<d<2* andmy, ..., my_1 are each a multiple of*24 24 — 1, then
04 (Cog X -+ % Cpy_y) =2k +2d — 1.

(2) Fork>1, if 1<d<2k andmy, ..., m;_1 are each a multiple of 2+ 2d — 1, then
04(CpoD-+-OCpyy ) =2k +2d — 1. O

In this paper, we demonstrate that direct products of cycles and Cartesian products of
cycles admit optimal(d,1)-labelings if certain conditions are imposed é#rand on the
lengths of the cycles. Is optimality still achievable if these conditions are relaxed? To that
end, we employed a backtracking algorithm to comdﬂ(@?m x Cy) and/l‘ll(CmDCn) for
1<d <4 and 4<m, n<10. The results appear irable 1

Note that by Lemma 1 each ﬁ)f(cm x Cy) and)f(CmDCn) is greater than or equal to 6;
each ofi3(C,, x C,,) and23(C,,[IC,) is greater than or equal to 8; and eachHiC,, x C,,)
and/l‘l"(CmDCn) is greater than or equal to 10.
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Table 1

L(d,1)-numbers ofG = C;;, x C, andH = C,,,[1Cy,

m,n 22(G) i3G) 24G) 22(H) 2BH) 25 (H)
4,4 7 9 10 7 9 10
4,5 8 9 11 7 9 11
4,6 7 9 11 7 9 11
4,7 7 9 11 7 9 11
4,8 7 9 10 7 9 10
4,9 7 9 11 7 9 11
4,10 8 9 11 7 9 11
4,11 7 9 11 7 9 11
55 8 10 12 8 10 12
5,6 7 10 12 8 9 11
57 8 10 12 7 10 11
58 8 9 11 7 9 11
59 8 10 12 8 9 11
5,10 8 10 11 8 9 11
5,11 8 10 12 7 9 11
6,6 8 10 12 7 9 11
6,7 7 10 12 8 9 11
6,8 7 9 11 7 9 11
6,9 7 10 12 7 8 10
6, 10 7 10 12 7 9 11
6,11 7 10 12 8 9 11
7,7 6 9 11 6 9 11
7,8 7 9 11 7 9 11
7,9 8 9 11 8 9 11
7,10 7 9 11lor12 7 9 11
7,11 7 9 11 7 9 11
8,8 7 9 10 7 9 10
9,9 7 8 10 7 8 10
10, 10 8 10 11 7 9 11

Itis clear fromTable 1that for 2<d <4 and 4<m, n <10, if the conditions of Theorems
3 and 4 are not satisfied, then there are very few cases Wfiefg x C,) and/4(C,,[IC,,)
are equal to the lower bound.
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