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Abstract

AnL(2,1)-labeling of a graphG is an assignment of labels from{0,1, . . . , �} to the vertices ofGsuch that vertices at distance
two get different labels and adjacent vertices get labels that are at least two apart. The�-number�(G) ofG is the minimum value
� such thatG admits anL(2,1)-labeling. LetG×H denote the direct product ofG andH. We compute the�-numbers for each
of C7i × C7j , C11i × C11j × C11k , P4 × Cm, andP5 × Cm. We also show that forn�6 andm�7, �(Pn × Cm) = 6 if and
only if m= 7k, k�1. The results are partially obtained by a computer search.
© 2004 Published by Elsevier B.V.
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1. Introduction

Consider the problem of assigning frequencies to radio transmitters at various nodes in a territory. Transmitters that are close
must receive frequencies that are sufficiently apart, for otherwise, they may be at the risk of interfering with each other. The
spectrum of frequencies is a very important resource on which there are increasing demands, both civil and military. This calls
for an efficient management of the spectrum. It is assumed that transmitters are all of identical type and that signal propagation
is isotropic. Further, since frequencies themselves are quantized in practice, there is no loss of generality in assuming that they
admit integer values.

The foregoing problem,with the objective ofminimizing the spanof frequencies,was first placed onagraph-theoretical footing
in 1980 by Hale[10] who established its equivalence to generalized vertex coloring problem that is known to be computationally
hard. (Vertices correspond to transmitter locations and their labels to radio frequencies, while adjacencies are determined by
geographical “proximity” of the transmitters.) Roberts[23] subsequently proposed a variation to the problem inwhich distinction
is made between transmitters that are “close” and those that are “very close.” This enabled Griggs andYeh[9] to formulate the
L(2,1)-labeling of graphs that has since been an object of extensive research[2–8,12,13,15,18,20,24,28,30].
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Formally, anL(2,1)-labelingof a graphG is an assignmentf of nonnegative integers to vertices ofG such that,

|f (u)− f (v)|�
{
2; dG(u, v)= 1,
1; dG(u, v)= 2.

If q is the largest label off, we speak of a[[q-(2,1)-labeling]]
The difference between the largest label and the smallest label assigned byf is called thespanof f, and theminimum span over

all L(2,1)-labelings ofG is called the�-numberof G, denoted by�(G). The general problem of determining�(G) is NP-hard
[8]. Moreover, determining�(G) is an NP-complete problem even for graphsG with diameter 2[9]. On the other hand, if the
graph is known to be a tree, then there is an efficient solution[2]. This result has been extended in[3] to k-almost trees (for any
fixedk). For additional information concerning related complexity issues, we refer to[3].

The following result constitutes a useful lower bound.

Lemma 1.1 (Griggs andYeh[9] ). Let G be a graph with maximum degree��2. If G contains three vertices of degree� such
that one of them is adjacent to the other two, then�(G)�� + 2.

The foregoing lower bound is achievable in many cases[8,20,24,30]. In particular, this is true with respect to Cartesian
products as well as strong products of finitely many cycles, where there are certain conditions on lengths of individual cycles
[12,13]. Indeed, graphsGexist for which�(G) is strictly larger than the lower bound suggested by Lemma 1.1[30]. The present
paper presents sharp bounds on�-number of direct product (defined below) of cycles and paths.

By a graph is meant a finite, simple and undirected graph having at least two vertices. Unless otherwise indicated, graphs are
also connected. LetPm (resp.Cm) denote a path (resp. a cycle) onmvertices, whereV (Pm) = V (Cm) = {0, . . . , m− 1} and
where adjacencies are defined in a natural way.

For graphsG= (V ,E) andH = (W, F ), thedirect productG×H ofGandH is defined as follows:V (G×H)=V ×W and
E(G×H)= {{(a, x), (b, y)} : {a, b} ∈ E and{x, y} ∈ F }. This product (that is commutative and associative in a natural way)
is one of the most important graph products with potential applications in engineering, computer science and related disciplines.
For example, the diagonal mesh studied by Tang and Padubirdi[26] with respect to multiprocessor network is representable as
×-product of two odd cycles that has several attractive properties, viz., low diameter, high independence number and high odd
girth [11]. Ramirez and Melhem[22] present a fault-tolerant computational array whose underlying graph is isomorphic to a
connected component ofP2i+1 × P2i+1.

The following statements are relevant with respect toCm × Cn, Cm × Pn, andPm × Pn, and will be (implicitly) used in the
sequel:

(i) C2i+1 × C2j+1 is nonbipartite while each of the rest is bipartite, and
(ii) each ofC2i+1 × Cn andC2i+1 × Pn is connected, while each of the rest consists of two connected components.
(iii) C2i+1 × Pn is isomorphic to a connected component ofC2(2i+1) × Pn.

Let P = v1, v2 . . . , vn andQ = u1, u2 . . . , un be disjoint paths onn vertices. Then,Zn denotes the graph with the set of
verticesV (Zn) : =V (P ) ∪ V (Q). The set of edges ofZn is for i = 1,2, . . . , �n−1

2 � defined with:

E(Zn) : =
{
E(P ) ∪ E(Q) ∪ {v2iu2i−1, v2iu2i+1}, n odd,
E(P ) ∪ E(Q) ∪ {v2iu2i−1, v2iu2i+1} ∪ {vnun−1}, n even.

Let f andg beL(2,1)-labelings ofPn and letf ◦ g be the assignment to the vertices ofZn, such that the restriction off ◦ g
to the first (second)Pn in Zn equalsf (g).
We now define graph denotedDn,q as follows. Its vertices areq-(2,1)-labelings ofPn. Verticesf, g ∈ Dn,q are adjacent if

and only iff ◦ g is aL(2,1)-labeling inZn.
The next theorem can now be very easily derived from the concepts and results presented in[18].

Theorem 1.2. (i) C2i × Pn admits a q-(2,1)-labeling if and only ifDn,q contains a closed walk of length i.
(ii) C2i+1 × Pn admits a q-(2,1)-labeling if and only ifDn,q contains a closed walk of length2i + 1.

2. Preliminaries

LetG= (V (G),E(G)) be a graph. Awalk is a sequence of verticesv1, v2, . . . , vn and edgesvivi+1, 1� i�n− 1. A path
onn vertices is a walk onn different vertices and denotedPn. A walk is closedif v1 = vn. A closed walk in which all vertices
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(except the first and the last) are different, is acycle. The cycle onnvertices is denotedCn. Foru, v ∈ V (G), dG(u, v) ord(u, v)
denotes the length of a shortest walk (i.e., the number of edges on a shortest walk) inG from u to v. These definitions extend
naturally to directed graphs.

LetG0,G1, . . . ,Gn−1 be disjoint graphs andX0, X1, . . . , Xn−1 a sequence of sets of edges such that an edge ofXi joins a
vertex ofGi with a vertex ofGi+1 (indices modulon). A polygraph

�n = �n(G0,G1, . . . ,Gn−1; X0, X1, . . . , Xn−1)

is defined in the following way:

V (�n)= V (G0) ∪ V (G1) ∪ · · · ∪ V (Gn−1),

E(�n)= E(G0) ∪X0 ∪ E(G1) ∪X1 ∪ · · · ∪ E(Gn−1) ∪Xn−1.

Polygraphs were introduced in chemical graph theory as a model for polymers, cf.[1], and studied in, for instance,[17,19,31].
Assume that for 0� i�n− 1,Gi is isomorphic to a fixed graphG. Let, in addition, the setsXi , 0� i�n− 1, be equal to a fixed
edge setX. Then we call the polygraph�n a rotagraphand denote it�n(G;X). We will also say that�n(G;X) is a rotagraph
with consecutivefibersG0,G1, . . . ,Gn−1. A fasciagraph�n(G;X) is a rotagraph�n(G;X)withoutedges between the fibers
Gn−1 andG0.

In the rest of this section we recall concepts and results that were recently introduced in[18] and are essential for the present
work. For a graphG set

Fq(G)= {f : V (G) → {0,1, . . . , q − 1}}.

A subset ofFq(G) will be called agraph q-property. If qwill be clear from the context or not essential, we will say, in short, a
graph property.

LetLq(G) ⊆ Fq(G) be the set of functionsf with the following property: Letf ∈ Lq(G), then ifuv ∈ E(G) we have
|f (u) − f (v)|�2, and ifd(u, v) = 2 we have|f (u) − f (v)|�1. Clearly,Lq(G) describes the admissibleL(2,1)-labelings
of G.

Let �n(G;X) be a rotagraph with consecutive fibersG0,G1, . . . ,Gn−1. Then the restriction off ∈ Fq(�n(G;X)) to
consecutive fibersXi,Xi+1, . . . , Xi+k (indices modulon) will be denotedf i+k

i
. We say that a graph propertyPq ishereditary

(for rotagraphs), if for any rotagraph�n(G;X) with consecutive fibersG0,G1, . . . ,Gn−1,

f ∈ Pq(�n(G;X)) ⇒ f i+k
i

∈ Pq(�k+1(G;X)); i, k = 0,1, . . . , n− 1.

Note thatLq is a hereditary property.
A graph propertyPq is calledd-local (for rotagraphs),d�1, if for any rotagraph�n(G;X), n�2d + 1, with consecutive

fibersG0,G1, . . . ,Gn−1, and anyf ∈ Fq(�n(G;X)),

f i+d
i

∈ Pq(�d+1(G;X)), 0� i�n− 1 ⇒ f ∈ Pq(�n(G;X)).

Note thatLq is a 2-local property.
LetPq be ad-local property, and�n(G;X) a rotagraph withn�2d+1.We define a directed graphDd(G;X) as follows. Its

vertices are the functions fromPq(�2(G;X)), while its arcs are of two types: the first type arcs will be simply calledarcs, and
the second type arcs will be calledd-arcs. Now, inDd(G;X)make an arc fromf tog if and only if f restricted to the second fiber
of �2(G;X) equals tog restricted to the first fiber of�2(G;X). In addition, ifd�2, then for any directed path (consisting of
arcs) of lengthd − 1, sayf1 → f2 → · · · → fd , we make ad-arc fromf1 to fd whenever the composition off1, f2, . . . , fd
belongs toPq(�d+1(G;X)). In the particular case whend = 2 we interpret this as follows: If the composition off1 andf2
belongs toPq(�3(G;X)) then we leave the arc fromf1 to f2, otherwise we remove it.

Theorem 2.1(Klavžar and Vesel[18] ). LetPq be a hereditary, d-local property, and�n(G;X) a rotagraph withn�2d + 1.
ThenPq(�n(G;X)) �= ∅ if and only ifDd(G;X) contains(not necessarily different) verticesf0, f1, . . . , fn−1 connected with
arcs(fi , fi+1) and d-arcs(fi , fi+d−1) for i = 0,1, . . . , n− 1(indices modulo n).

Corollary 2.2 (Klavžar and Vesel[18] ). LetPq be a hereditary, d-local property, 1�d�2, and�n(G;X) a rotagraph with
n�5.ThenPq(�n(G;X)) �= ∅ if and only ifDd(G;X) contains a directed closed walk of length n.
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3. �-numbers ofC7i × C7j and C11i × C11j × C11k

Determining�(Cm×Cn) is important also because it yields analogous results for�(Cm×Pn) and�(Pm×Pn) in most cases.
In the present section, we show that the lower bound of Lemma 1.1 is achieved for each ofC7i ×C7j andC11i ×C11j ×C11k .

Theorem 3.1. If m ≡ 0(mod 7) andn ≡ 0(mod 7), then�(Cm × Cn)= 6.

Proof. By Lemma 1.1,�(Cm×Cn)�6, sinceCm×Cn is a regular graph of degree four. It, therefore, suffices to present a valid
L(2,1)-labeling ofCm × Cn using the labels 0, . . . ,6, wheremandn are as stated. Let a vertex(i, j) of Cm × Cn be assigned
the integerf (i, j)= (8i + 4j) mod 7. The assignment is clearly well-defined.
A vertex adjacent to(i, j) is of the form(i+ a, j + b), wherea, b ∈ {+1,−1}, andi+ a (resp.j + b) is modulom (resp.n).

Note thatf (i + a, j + b) = [(8i + 4j)+ (8a + 4b)] mod 7. For the four cases corresponding toa, b in {+1,−1}, (8a + 4b)
mod 7 is equal to exactly one of 2, 3, 4 and 5. Accordingly, 2� |f (i, j)− f (i + a, j + b)|�5.
A vertex at a distance of two from(i, j) is of the form(i + c, j + d), wherec, d ∈ {+2,0,−2}, andc, d are not both

zero. Note thatf (i + c, j + d) = [(8i + 4j)+ (8c + 4d)] mod 7. Conditions onc andd are such that 8c + 4d is necessarily
nonzero. Further,|8c+ 4d| is a multiple of 8 and at most equal to 24. Accordingly, 8c+ 4d is not a multiple of 7. It follows that
|f (i, j)− f (i + c, j + d)|�1.

Conclusions are valid even ifi (resp.j) is of the formm − 2 orm − 1 (resp.n − 2 orn − 1), sincemandn are themselves
multiples of 7. �

For 0�a�6, letVa be the set of vertices of a connected component ofCm ×Cn that receive labela in the proof of Theorem
3.1. The setsV0, . . . , V6 form a vertex partition into equal-size independent sets, where elements of eachVa dominate (5/7)th of
the vertices (including themselves) in that component. Accordingly, elements of eachVa correspond to as many vertex-disjoint
K1,4’s. Also, vertices in each(V2i ∪ V2i+1) correspond to as many edge-disjointK1,4’s, 0� i�2.

Corollary 3.2. If m�5, n�4 andi�1, then�(Pm × Pn)= �(C7i × Pn)= 6.

Proof. Each ofPm ×Pn andC7i ×Pn is of largest degree four, and satisfies Lemma 1.1. Further, (i)Pm ×Pn is a subgraph of
C7i × C7j for somei andj, and (ii)C7i × Pn is a subgraph ofC7i × C7j for somej. �

Theorem 3.3. If r ≡ 0(mod 11), s ≡ 0(mod 11) andt ≡ 0(mod 11), then�(Cr × Cs × Ct )= 10.

Proof. By Lemma 1.1,�(Cr × Cs × Ct )�10 asCr × Cs × Ct is a regular graph of degree eight, so it suffices to present a
validL(2,1)-labeling ofCr ×Cs ×Ct using the labels 0, . . . ,10. Let a vertex(i, j, k) of Cr ×Cs ×Ct be assigned the integer
(24i + 12j + 6k) mod 11. The assignment is clearly well-defined.
Analogous to the proof of Theorem3.1, it suffices to prove that (i) 2�(24a+12b+6c)mod 11�9, wherea, b, c ∈ {+1,−1},

and (ii) (24x + 12y + 6z) mod 11>0, wherex, y, z ∈ {+2,0,−2} andx, y, z are not all zero.
There are a total of eight cases corresponding toa, b, c ∈ {+1,−1}. For each, the readermay check to see that(24a+12b+6c)

mod 11 is equal to exactly one of 2, 3, 4, 5, 6, 7, 8 and 9. It is next shown that 24x + 12y + 6z is nonzero and not a multiple of
11, wherex, y andzare as stated.

If x �= 0, then 24x + 12y + 6z is of the same sign asx; if x = 0 andy �= 0, then 24x + 12y + 6z is of the same sign asy; if
x = y = 0, thenz �= 0, and 24x + 12y + 6z is of the same sign asz. It follows that 24x + 12y + 6z �= 0.

“24x+12y+6z is not amultiple of 11” is equivalent to “|4x+2y+z| is not amultiple of 11.” Ifx=0, then|4x+2y+z|�6<11.
If y = 0, then|4x + 2y + z|�10<11. If z = 0, then|4x + 2y + z| = 2 · |2x + y| that is not a multiple of 11 as 2x + y

is not such. It follows that ifx = 0 ory = 0 or z= 0, then|4x + 2y + z| is not a multiple of 11.
If x, y andzare all nonzero and of the same sign, then|4x + 2y + z| = 14 that is not a multiple of 11. On the other hand, ifx,

y andzare all nonzero and not of the same sign, then|4x + 2y + z|<11. �

Let Va be the set of vertices of a connected component ofCr × Cs × Ct that receive labela in the proof of Theorem 3.3,
0�a�10. The setsV0, . . . , V10 form a vertex partition into equal-size independent sets. Elements of eachVa correspond to as
many vertex-disjointK1,8’s. Also, elements of each(V2i ∪ V2i+1) correspond to as many edge-disjointK1,8’s, 0� i�4.
We conclude this section with an upper bound on�-number of finitely many cycles.

Theorem 3.4. If k�2 andm0, . . . , mk−1 are each a multiple of2
k + 1, then2k + 2��(Cm0 × · · · × Cmk−1)�2k+1.
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Proof. Let k andm0, . . . , mk−1 be as stated. The graphCm0 × · · · × Cmk−1 is regular of degree 2k . Accordingly, lower bound
is immediate. Further, this graph admits of a vertex partition into equal-size (independent dominating) setsV0, . . . , V2k such
that the (shortest) distance between any two distinct elements ofVi is at least three[14]. Let a vertexv be assigned the integer
label 2i if and only if v ∈ Vi , 0� i�2k . It is easy to see that the resulting labeling is a validL(2,1)-labeling. Accordingly,
�(Cm0 × · · · × Cmk−1)�2k+1. �

4. �-numbers ofP4 × Cm

In Corollary 3.2 we have seen that�(Pn × C7i ) = 6, n�4, i�1. In this section, we demonstrate that forn = 4, the result
holds for any cycleCm:

Theorem 4.1. For anym�3, �(P4 × Cm)= 6.

Proof. By Lemma 1.1,�(P4 × Cm)�6 for anym�3. Hence, we need to construct labelings with labels 0, 1, 2, 3, 4, 5, 6.
Case1:m= 4+ 4s, s�0.
In this case, we repeat the following labeling:

2 2 3 3 | 2 2 3 3
5 5 6 6 | 5 5 6 6
0 0 1 1 | 0 0 1 1
3 3 4 4 | 3 3 4 4

Case2:m= 9+ 4s, s�0.
Now we have the following repeated solution:

0 0 1 1 2 2 3 3 4 | 2 3 3 4
2 5 3 6 4 0 5 1 6 | 0 5 1 6
2 5 3 6 4 0 5 1 6 | 0 5 1 6
0 0 1 1 2 2 3 3 4 | 2 3 3 4

Case3:m= 14+ 4s, s�0.
In this case, we have the following repeated solution:

0 0 1 1 2 2 3 3 4 | 4 5 5 6 6 | 2 3 3 4
2 5 3 6 4 0 5 1 6 | 2 0 3 1 4 | 0 5 1 6
2 5 3 6 4 0 5 1 6 | 2 0 3 1 4 | 0 5 1 6
0 0 1 1 2 2 3 3 4 | 4 5 5 6 6 | 2 3 3 4

Case4:m= 23+ 4s, s�0.
In this case we proceed as follows. First, take two times the block with 9 columns and after the block with 5 columns from

Case 3. This gives a solution form= 23. Then repeat the block with 4 columns in order to get all the remaining solutions.
Hence, we are left with the following sporadic cases:

Case5:m= 3,5,6,7,10,11,15,19.
Form= 7 we apply Theorem 3.1. For the other cases solutions are, respectively:

6 2 1 4 2 5 3 3 3 2 4 4 5 6
5 3 0 6 2 5 0 6 0 6 6 2 2 0
5 3 0 0 0 6 1 4 2 3 0 0 6 5
6 2 1 2 4 4 1 3 1 5 5 3 3 4

0 0 2 2 3 3 4 4 3 3 0 0 1 1 0 4 4 5 3 4 2
5 4 4 0 0 1 1 0 0 5 6 4 5 3 6 2 2 1 0 0 6
1 1 6 6 5 5 6 6 2 2 2 3 6 2 5 0 6 6 5 3 4
6 3 3 2 2 3 3 4 4 6 1 0 0 1 4 0 3 3 1 2 5

1 4 4 2 6 6 4 1 3 6 2 3 3 5 6
2 6 6 0 0 2 3 6 4 5 0 6 1 0 3
0 0 3 3 5 5 0 0 1 2 0 4 4 6 5
3 5 5 1 1 3 2 4 5 3 6 2 2 1 4
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4 5 5 1 1 3 4 5 5 4 4 2 3 5 5 6 4 2 2
0 0 3 3 6 6 1 0 2 2 6 6 0 0 2 2 4 6 6
3 6 6 0 0 4 3 6 6 0 0 3 2 4 6 0 0 1 3
1 1 4 4 2 5 0 1 4 4 5 5 1 4 6 3 3 5 5 �

5. �-numbers ofP5 × Cm

The result of the previous section asserts that for anym�3, �(P4 × Cm)= 6. For the direct productsP5 × Cm the situation
is similar: For almost anym, �(P5 × Cm) = 6. However, there are several exceptions that make our considerations a bit more
involved. We are going to prove:

Theorem 5.1. Letm�3.Then,

�(P5 × Cm)=
{
7; m= 3,4,5,6,8,9,10,12,13,17,18,20,24,26,34,40,
6; otherwise.

Proof. By Lemma 1.1,�(P5 × Cm)�6 for anym�3.
We first present solutions for the productsP5×C2k , k�22.Any such graph contains two isomorphic connected components;

thus, we will give solutions for one component. First, the following blocks will be called Blocks A and B, respectively.

0 5 2 0 1 6 4 2 2 0 5 2 0 1 6 4
3 0 6 5 4 2 0 5 5 3 0 6 5 4 2 0
1 6 4 3 2 0 5 3 3 1 6 4 3 2 0 5
4 2 1 0 6 3 1 6 6 4 2 1 0 6 3 1
2 0 5 6 4 1 6 4 4 2 0 5 6 4 1 6

Case1: k = 22+ 8s, s�0.
L(2,1)-labelings are obtained from the following solution fork = 22 to which we add Block A as many times as necessary.

0 5 3 1 3 5 0 1 4 5 2 0 5 3 1 3 5 0 1 4 5 2
3 1 6 5 0 2 4 6 2 0 5 3 1 6 5 0 2 4 6 2 0 5
1 6 4 0 2 4 6 2 0 6 3 1 6 4 0 2 4 6 2 0 6 3
4 0 2 4 6 1 0 5 3 1 6 4 0 2 4 6 1 0 5 3 1 6
0 2 5 6 1 3 5 3 1 5 4 0 2 5 6 1 3 5 3 1 5 4

Case2: k = 23+ 8s, s�0.
L(2,1)-labelings are obtained from the following solution fork = 23 to which we add Block A as many times as necessary.

0 5 0 1 0 6 5 4 3 2 0 1 6 4 2 0 5 2 0 1 6 4 2
3 2 6 5 4 3 2 1 0 6 5 4 2 0 5 3 0 6 5 4 2 0 5
1 6 4 3 2 1 0 6 5 4 3 2 0 5 3 1 6 4 3 2 0 5 3
4 0 1 0 6 5 4 3 2 1 0 6 3 1 6 4 2 1 0 6 3 1 6
0 2 5 6 4 3 2 1 0 6 5 4 1 6 4 2 0 5 6 4 1 6 4

Case3: k = 24+ 8s, s�0.
L(2,1)-labelings are obtained from the following solution fork = 24 to which we add Block B as many times as necessary.

2 0 5 2 0 1 6 4 2 0 5 2 0 1 6 4 2 0 5 2 0 1 6 4
5 3 0 6 5 4 2 0 5 3 0 6 5 4 2 0 5 3 0 6 5 4 2 0
3 1 6 4 3 2 0 5 3 1 6 4 3 2 0 5 3 1 6 4 3 2 0 5
6 4 2 1 0 6 3 1 6 4 2 1 0 6 3 1 6 4 2 1 0 6 3 1
4 2 0 5 6 4 1 6 4 2 0 5 6 4 1 6 4 2 0 5 6 4 1 6

Case4: k = 25+ 8s, s�0.
L(2,1)-labelings are obtained from the following solution fork = 25 to which we add Block A as many times as necessary.

0 5 3 1 3 5 0 1 4 5 2 0 5 3 1 6 4 2 0 5 3 1 6 4 2
3 1 6 5 0 2 4 6 2 0 5 3 1 6 4 2 0 5 3 1 6 4 2 0 5
1 6 4 0 2 4 6 2 0 6 3 1 6 4 2 0 5 3 1 6 4 2 0 5 3
4 0 2 4 6 1 0 5 3 1 6 4 2 0 5 3 1 6 4 2 0 5 3 1 6
0 2 5 6 1 3 5 3 1 5 4 2 0 5 3 1 6 4 2 0 5 3 1 6 4



ARTICLE IN PRESS
P.K. Jha et al. /Discrete Applied Mathematics ( ) – 7

Case5: k = 26+ 8s, s�0.
L(2,1)-labelings are obtained from the following solution fork = 26 to which we add Block A as many times as necessary.

0 5 3 1 3 5 0 1 4 5 2 0 5 0 1 0 6 5 4 3 2 0 1 6 4 2
3 1 6 5 0 2 4 6 2 0 5 3 2 6 5 4 3 2 1 0 6 5 4 2 0 5
1 6 4 0 2 4 6 2 0 6 3 1 6 4 3 2 1 0 6 5 4 3 2 0 5 3
4 0 2 4 6 1 0 5 3 1 6 4 0 1 0 6 5 4 3 2 1 0 6 3 1 6
0 2 5 6 1 3 5 3 1 5 4 0 2 5 6 4 3 2 1 0 6 5 4 1 6 4

Case6: k = 27+ 8s, s�0.
L(2,1)-labelings are obtained from the following solution fork = 27 to which we add Block A as many times as necessary.

0 5 3 1 3 5 0 1 4 5 2 0 5 2 0 1 6 4 2 0 5 2 0 1 6 4 2
3 1 6 5 0 2 4 6 2 0 5 3 0 6 5 4 2 0 5 3 0 6 5 4 2 0 5
1 6 4 0 2 4 6 2 0 6 3 1 6 4 3 2 0 5 3 1 6 4 3 2 0 5 3
4 0 2 4 6 1 0 5 3 1 6 4 2 1 0 6 3 1 6 4 2 1 0 6 3 1 6
0 2 5 6 1 3 5 3 1 5 4 2 0 5 6 4 1 6 4 2 0 5 6 4 1 6 4

Case7: k = 28+ 8s, s�0.
L(2,1)-labelings are obtained from the following solution fork = 28 to which we add Block B as many times as necessary.

2 0 5 3 1 6 4 2 0 5 3 1 6 4 2 0 5 3 1 6 4 2 0 5 3 1 6 4
5 3 1 6 4 2 0 5 3 1 6 4 2 0 5 3 1 6 4 2 0 5 3 1 6 4 2 0
3 1 6 4 2 0 5 3 1 6 4 2 0 5 3 1 6 4 2 0 5 3 1 6 4 2 0 5
6 4 2 0 5 3 1 6 4 2 0 5 3 1 6 4 2 0 5 3 1 6 4 2 0 5 3 1
4 2 0 5 3 1 6 4 2 0 5 3 1 6 4 2 0 5 3 1 6 4 2 0 5 3 1 6

Case8: k = 29+ 8s, s�0.
L(2,1)-labelings are obtained from the following solution fork = 29 to which we add Block A as many times as necessary.

0 5 3 1 3 5 0 1 4 5 2 0 5 3 1 3 5 0 1 4 5 2 0 5 3 1 6 4 2
3 1 6 5 0 2 4 6 2 0 5 3 1 6 5 0 2 4 6 2 0 5 3 1 6 4 2 0 5
1 6 4 0 2 4 6 2 0 6 3 1 6 4 0 2 4 6 2 0 6 3 1 6 4 2 0 5 3
4 0 2 4 6 1 0 5 3 1 6 4 0 2 4 6 1 0 5 3 1 6 4 2 0 5 3 1 6
0 2 5 6 1 3 5 3 1 5 4 0 2 5 6 1 3 5 3 1 5 4 2 0 5 3 1 6 4

By the above cases, we have�(P5 × C2k) = 6 for k�22. If 2k = 4i + 2, then each connected component ofP5 × C2k is
isomorphic toP5 × Ck ; hence, we also have�(P5 × Ck)= 6 for k odd, andk�23.
We next demonstrate thatP5 × Ck admitsL(2,1)-labelings with 7 labels fork = 11, 15, 16, 19, 22, 30, 32, 36, 38. Since

solutions for 22, 30, and 38 give also solutions for 11, 15, and 19, respectively, it is enough to present solutions for the cases 16,
22, 30, 32, 36 and 38. They are, respectively, given below.

2 5 6 1 3 5 3 1 0 5 3 1 3 5 0 1 4 5 2
0 2 4 6 1 0 5 4 3 1 6 5 0 2 4 6 2 0 5
6 4 0 2 4 6 2 0 1 6 4 0 2 4 6 2 0 6 3
1 6 5 0 2 4 6 2 4 0 2 4 6 1 0 5 3 1 6
5 3 1 3 5 0 1 4 0 2 5 6 1 3 5 3 1 5 4

0 5 0 1 0 6 5 4 3 2 0 1 6 4 2
3 2 6 5 4 3 2 1 0 6 5 4 2 0 5
1 6 4 3 2 1 0 6 5 4 3 2 0 5 3
4 0 1 0 6 5 4 3 2 1 0 6 3 1 6
0 2 5 6 4 3 2 1 0 6 5 4 1 6 4

2 0 5 2 0 1 6 4 2 0 5 2 0 1 6 4
5 3 0 6 5 4 2 0 5 3 0 6 5 4 2 0
3 1 6 4 3 2 0 5 3 1 6 4 3 2 0 5
6 4 2 1 0 6 3 1 6 4 2 1 0 6 3 1
4 2 0 5 6 4 1 6 4 2 0 5 6 4 1 6
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0 5 3 1 3 5 0 1 4 5 2 0 5 3 1 6 4 2
3 1 6 5 0 2 4 6 2 0 5 3 1 6 4 2 0 5
1 6 4 0 2 4 6 2 0 6 3 1 6 4 2 0 5 3
4 0 2 4 6 1 0 5 3 1 6 4 2 0 5 3 1 6
0 2 5 6 1 3 5 3 1 5 4 2 0 5 3 1 6 4

0 5 3 1 3 5 0 1 4 5 2 0 5 2 0 1 6 4 2
3 1 6 5 0 2 4 6 2 0 5 3 0 6 5 4 2 0 5
1 6 4 0 2 4 6 2 0 6 3 1 6 4 3 2 0 5 3
4 0 2 4 6 1 0 5 3 1 6 4 2 1 0 6 3 1 6
0 2 5 6 1 3 5 3 1 5 4 2 0 5 6 4 1 6 4

By the above constructions and by Corollary 3.2 we conclude that�(P5×Cm)=6 for allmexcept form=3, 4, 5, 6, 8, 9, 10,
12, 13, 17, 18, 20, 24, 26, 34, and 40. To complete the proof we must show that in these remaining cases�(P5×Cm)= 7 holds.
We first claim that there are noL(2,1)-labelings with 7 labels forP5 × C2k if k <7 or k = 9, 10, 12, 13, 17, 20. The graph

D5,6 consists of 1098 vertices (determined by a computer program). In order to search for cycles inD5,6 exactly one strongly
connected component (with 132 vertices) was detected. Using a simple backtracking in that component, we have established
thatD5,6 does not contain cycles of length 2, 3, 4, 5, 6, 9, 10, 12, 13, 17 and 20. Therefore, by Theorem 1.2 there are also no
L(2,1)-labelings with 7 labels forP5 × Ck wherek = 3, 4, 5, 6, 8, 9, 10, 12, 13, 17, 18, 20, 24, 26, 34, and 40.

Finally, we implemented the antivoter algorithm[21] adapted forL(2,1)-labelings. We have obtained labelings with 8 labels
for P5 × Ck , wherek <7, andk = 8, 9, 10, 12, 13, 17, 18, 20, 24, 26, 34, and 40. Note that from a labeling with 8 labels of
P5×Ck a labeling with 8 labels ofP5×C2k can be constructed easily. Therefore we list only the cases withk=3,4,5,9,13,17.

1 6 5 4 7 5 2 2 2 7 3 1
2 7 4 4 0 5 1 6 0 0 4 7
0 7 4 7 0 6 1 4 4 6 5 0
0 6 3 7 2 6 3 7 1 1 3 2
1 5 2 0 3 5 4 7 3 5 6 1

2 6 5 7 4 2 5 3 7 2 7 6 2 2 5 1 6 2 2 6 3 5
2 7 3 2 5 1 7 0 0 2 4 5 0 7 6 3 4 4 0 7 1 6
4 0 0 1 7 0 3 5 4 0 0 7 1 4 0 0 1 7 0 3 1 4
6 6 7 4 4 5 3 7 1 7 2 3 1 4 2 5 3 6 5 5 6 3
3 3 1 2 2 6 1 7 2 5 5 6 7 5 2 6 3 1 2 2 7 1

6 6 5 7 1 3 5 2 3 3 5 2 4 7 5 1 1
4 1 2 7 1 3 6 1 5 7 6 0 0 2 5 3 4
7 0 3 5 0 4 7 1 4 0 2 4 7 3 6 0 7
5 0 3 6 0 4 7 0 3 6 2 5 1 1 7 0 2
5 1 2 7 1 2 6 5 3 6 1 7 3 5 4 4 3 �

The antivoter algorithm that we used at the end of the above proof and some of its generalizations have proved to be reasonably
good heuristics for coloring various types of graphs including randomk-colorable graphs, DIMACS challenge graphs[16], fre-
quency assignment “realistic” graphs, and others[25,27,29]. For completeness of the presentation we briefly recall the algorithm:

get a random order of vertices;
run a greedy coloring algorithm;
while not stopping condition do

if the coloring is proper then recolor vertices of the maximum color
select a bad vertexv (randomly)
assign a new color tov

end while
The greedy coloring always takes the minimal color which does not violate any constraints.

6. �-numbers ofPn × Cm, n�6

In this section, we prove that Corollary 3.2 finds all optimal solutions (with respect to Lemma 1.1) forn�6. More precisely:

Theorem 6.1. Letn�6 andm�7.Then�(Pn × Cm)= 6 if and only ifm= 7k, k�1.
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Proof. By Lemma 1.1,�(Pn×Cm)�6. Hence, using Corollary 3.2, it suffices to show that�(P6×Cm)�7 if m �= 7k. For this
sake we use our method of Theorem 1.2.
We know thatP6 × Cm admits a 6-(2,1)-labeling if and only ifD6,6 contains a closed walk of lengthm, if m is odd, or a

closed walk of lengthm2 , if m is even. The graphD6,6 consists of 3638 vertices (determined by a computer program). In order to
search for cycles inD6,6, exactly eight strongly connected components ofD6,6 were detected, each of them consisting of seven
vertices and exactly one directed cycle. Therefore, all closed walks inD6,6 are of length 7k, k�1; thus a 6-L(2,1)-labeling of
P6 × Cm for m /≡ 0(mod 7) does not exist. �

By Theorem 6.1,�(Pn × Cm)�7 for m �= 7k. We believe that the equality holds, but were not able to cover all the cases.
For instance, we can show that for anyn�6 and anyk�1 we have�(Pn × C3k) = 7. In addition, for anyn�6 we also have
�(Pn×C4)= 7. In general, however, the above conjecture cannot be deduced from labelings of direct products of two cycles in
the way as is Corollary 3.2 obtained from Theorem 3.1. Indeed, using backtracking we computed that there is no labeling with
labels 0,1, . . . ,7 for any of the graphsC4 × C4, C4 × C5, C5 × C5, C5 × C6, andC6 × C6.
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