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Abstract

An L(2, 1)-labeling of a grapit is an assignment of labels frof@, 1, . . ., A} to the vertices o6 such that vertices at distance
two get different labels and adjacent vertices get labels that are at least two aparndimderd(G) of G is the minimum value
Asuch thatG admits anL (2, 1)-labeling. LetG x H denote the direct product & andH. We compute thé-numbers for each
of C7; x C7j, C11; x C11j x C11, Pa x Cpy, and Ps x Cyy. We also show that fot > 6 andm > 7, A(P, x Cy) =6 if and
only if m = 7k, k > 1. The results are partially obtained by a computer search.
© 2004 Published by Elsevier B.V.
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1. Introduction

Consider the problem of assigning frequencies to radio transmitters at various nodes in a territory. Transmitters that are close
must receive frequencies that are sufficiently apart, for otherwise, they may be at the risk of interfering with each other. The
spectrum of frequencies is a very important resource on which there are increasing demands, both civil and military. This calls
for an efficient management of the spectrum. It is assumed that transmitters are all of identical type and that signal propagation
is isotropic. Further, since frequencies themselves are quantized in practice, there is no loss of generality in assuming that they
admit integer values.

The foregoing problem, with the objective of minimizing the span of frequencies, was first placed on a graph-theoretical footing
in 1980 by Halg10] who established its equivalence to generalized vertex coloring problem that is known to be computationally
hard. (Vertices correspond to transmitter locations and their labels to radio frequencies, while adjacencies are determined by
geographical “proximity” of the transmitters.) Robg28] subsequently proposed a variation to the problem in which distinction
is made between transmitters that are “close” and those that are “very close.” This enabled Griggs[@htbYfehmulate the
L(2, 1)-labeling of graphs that has since been an object of extensive re2a&;:h2,13,15,18,20,24,28,30]
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Formally, anL(2, 1)-labelingof a graphG is an assignmeritof nonnegative integers to vertices®@fsuch that,

2, dgu,v)=1,
f @) — f)]= {1; e =2

If qis the largest label df we speak of §g-(2,1)-labeling]

The difference between the largest label and the smallest label assighiedtalfed thespanof f, and the minimum span over
all L(2, 1)-labelings ofG is called thei-numberof G, denoted byl(G). The general problem of determiniigG) is NP-hard
[8]. Moreover, determining(G) is an NP-complete problem even for graghsvith diameter 29]. On the other hand, if the
graph is known to be a tree, then there is an efficient sol#hrThis result has been extended 3 to k-almost trees (for any
fixed k). For additional information concerning related complexity issues, we refét.to

The following result constitutes a useful lower bound.

Lemma 1.1(Griggs and Yelf9]). Let G be a graph with maximum degrge: 2. If G contains three vertices of degraesuch
that one of them is adjacent to the other fltenA(G) > 4 + 2.

The foregoing lower bound is achievable in many cd8¢20,24,30] In particular, this is true with respect to Cartesian
products as well as strong products of finitely many cycles, where there are certain conditions on lengths of individual cycles
[12,13] Indeed, graph& exist for whichA(G) is strictly larger than the lower bound suggested by Lemm@30J1 The present
paper presents sharp boundsienumber of direct product (defined below) of cycles and paths.

By a graph is meant a finite, simple and undirected graph having at least two vertices. Unless otherwise indicated, graphs are
also connected. Le®,, (resp.Cy,) denote a path (resp. a cycle) ornvertices, wher&/ (Py,) =V (Cp) =1{0,...,m — 1} and
where adjacencies are defined in a natural way.

For graphsG = (V, E) andH = (W, F), thedirect productG x H of G andH is defined as followsV (G x H)=V x W and
E(G x H)={{(a, x), (b, y)} : {a,b} € E and{x, y} € F}. This product (that is commutative and associative in a natural way)
is one of the most important graph products with potential applications in engineering, computer science and related disciplines.
For example, the diagonal mesh studied by Tang and Pad{d@divith respect to multiprocessor network is representable as
x-product of two odd cycles that has several attractive properties, viz., low diameter, high independence number and high odd
girth [11]. Ramirez and Melherf22] present a fault-tolerant computational array whose underlying graph is isomorphic to a
connected component @b; 1 X P2;j41.

The following statements are relevant with respecttpx C,, Cyy x Py, andPy,, x P,, and will be (implicitly) used in the
sequel:

() C2i+1 x C2j41 is nonbipartite while each of the rest is bipartite, and
(i) each ofCyp; 1 x C, andCp; 1 x P, is connected, while each of the rest consists of two connected components.
(iii) Cai11 x Py is isomorphic to a connected component®fy; 1) x Py.

LetP =vq,v2...,vp @andQ = u1,uz...,u, be disjoint paths om vertices. ThenZ, denotes the graph with the set of
verticesV (Z,) : =V(P) U V(Q). The setof edges of, isfori =1,2, ..., L”—Elj defined with:

E(P)U E(Q) U{vpjupi_1,v2iu2i 11}, n odd,

E(Zy) : =
(Zn) {E(P)UE(Q)U{UZiMZi—L vitigi+1) U {Unitn_1). n even

Letfandgbe L(2, 1)-labelings ofP, and letf o g be the assignment to the verticesaf, such that the restriction gf o g
to the first (secondp, in Z,, equals (g).

We now define graph denotdd}, , as follows. Its vertices arg-(2,1)-labelings ofp,. Verticesf, ¢ € D, 4 are adjacent if
and only if f o g isaL(2, 1)-labeling inZ,,.

The next theorem can now be very easily derived from the concepts and results presgiigd in

Theorem 1.2. (i) Cy; x P, admits a g(2,1)4abeling if and only ifD, 4 contains a closed walk of length i
(i) Coi1 x Py, admits a g(2,1)4abeling if and only ifD,, , contains a closed walk of leng# + 1.

2. Preliminaries

Let G = (V(G), E(G)) be a graph. Avalkis a sequence of vertices, vy, ..., v, and edges;v;+1, 1<i<n — 1. Apath
onn vertices is a walk om different vertices and denote®),. A walk is closedif v; = v,. A closed walk in which all vertices
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(except the first and the last) are different, tyale The cycle om vertices is denoted),. Foru, v € V(G), dg (u, v) ord(u, v)
denotes the length of a shortest walk (i.e., the number of edges on a shortest v@&lkpm u to v. These definitions extend
naturally to directed graphs.

LetGo, G1, ..., G,—1 be disjoint graphs an#fg, X1, ..., X,—1 a sequence of sets of edges such that an ed§e joins a
vertex of G; with a vertex ofG; 1 (indices modulan). A polygraph

Qp =Q2,(Go,G1,...,Gy—1; X0, X1, ..., X5—1)

is defined in the following way:
V(&) =V(GoUV(GDYU---UV(Gy_1),
E(Qu)=E(Gg)UXgUE(G)DUX1U- - UE(Gy_1) U X,_1.

Polygraphs were introduced in chemical graph theory as a model for polymddd, efind studied in, for instancf,7,19,31]
Assume that for & i <n — 1, G; is isomorphic to a fixed grapB. Let, in addition, the set&;, 0<i <n — 1, be equal to a fixed
edge seKX. Then we call the polygrapf2,, arotagraphand denote ito,, (G; X). We will also say thaty, (G; X) is a rotagraph
with consecutivdibersGg, G1, ..., G,_1. Afasciagraph?, (G; X) is a rotagraplw, (G; X) withoutedges between the fibers
G,_1 andGy.

In the rest of this section we recall concepts and results that were recently introd(it8Hand are essential for the present
work. For a graptG set

Fq(G)={f:V(G)—{0,1,...,q —1}}.

A subset of7 , (G) will be called agraph g-propertyIf g will be clear from the context or not essential, we will say, in short, a
graph property

Let Z4(G) < 7 4(G) be the set of functionkwith the following property: Letf € £,(G), then ifuv € E(G) we have
|f(u) — f(v)| =2, and ifd(u, v) = 2 we have f (u) — f(v)| > 1. Clearly,#,(G) describes the admissiblg(2, 1)-labelings
of G.

Let w, (G; X) be a rotagraph with consecutive fibeFg, G1, ..., G,_1. Then the restriction of € 7 (wn(G; X)) to

consecutive fiberX;, X; 11, ..., X; 4k (indices modula) will be denoted]‘ii+k. We say that a graph proper, is hereditary

(for rotagraphs), if for any rotagraph, (G; X) with consecutive fiber§g, G1, ..., G,_1,
[ € 2g(on(G: X)) = fIt* € 2,(¥i11(G: X)): i k=0.1,....n—1

Note that?, is a hereditary property.
A graph property?, is calledd-local (for rotagraphs)d > 1, if for any rotagraphw, (G; X), n>2d + 1, with consecutive
fibersGo, G1, ..., G,—1, and anyf € 7 ;4 (w, (G; X)),

f e 24(W431(G: X)), 0<i<n — 1= f € 24(0n(G: X)).

Note thatZ, is a 2-local property.

Let 2, be ad-local property, andb, (G; X) a rotagraph wit > 24 4- 1. We define a directed grafby, (G; X) as follows. Its
vertices are the functions from, (¥2(G:; X)), while its arcs are of two types: the first type arcs will be simply cadled, and
the second type arcs will be calldearcs Now, in D, (G; X) make an arc fromito g if and only if f restricted to the second fiber
of ¥2(G; X) equals tag restricted to the first fiber aP2(G; X). In addition, ifd > 2, then for any directed path (consisting of
arcs) of length! — 1, sayfy — fo — --- — f4, we make a-arc from f to f; whenever the composition g¥, f2, ..., fa
belongs to?, (¥ 44+1(G; X)). In the particular case wheh= 2 we interpret this as follows: If the composition ¢f and f>
belongs ta?, (¥3(G; X)) then we leave the arc frorfy to f>, otherwise we remove it.

Theorem 2.1(KlavZar and Vesd[l18]). LetZ, be a hereditaryd-local property and w, (G; X) a rotagraph withn > 24 4 1.
ThenZ, (v, (G; X)) # ¢ifand only if D4 (G; X) containg(not necessarily differepverticesfo, f1, ..., f,—1 connected with
arcs(f;, fi+1) and d-arcs(f;, fi+q—1) fori =0, 1, ..., n — 1(indices modulo

Corollary 2.2 (Klavzar and Ves€[18]). Let 2, be a hereditaryd-local property 1<d <2, andw, (G; X) a rotagraph with
n=5.Then?,(w,(G; X)) # ¢ if and only if D4(G; X) contains a directed closed walk of length n
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3. /-numbers of C7; x C7; and C13; x C13; x C11k

Determiningl(Cy, x Cp,) is important also because it yields analogous results(6y, x P,) andA(P,;, x P,) in most cases.
In the present section, we show that the lower bound of Lemma 1.1 is achieved for €ggh«of7; andC13; x C11j x C11k-

Theorem 3.1. If m = 0(mod 7 andn = 0(mod 7, theni(C,, x Cp,) =6.

Proof. By Lemma 1.1A(C,, x Cp) =6, sinceC,, x C;, is aregular graph of degree four. It, therefore, suffices to present a valid
L(2, 1)-labeling ofC,, x C, using the labelsQ.., 6, wheremandn are as stated. Let a vertéx j) of C,,, x C,, be assigned
the integerf (i, j) = (8 + 4j) mod 7. The assignment is clearly well-defined.

A vertex adjacent t@i, j) is of the form(i +a, j + b), wherea, b € {+1, —1}, andi + a (resp.j + b) is modulom (resp.n).
Note thatf (i + a, j + b) =[(8i +4j) + (8a + 4b)] mod 7. For the four cases corresponding té in {+1, —1}, (8a + 4b)
mod 7 is equal to exactly one of 2, 3, 4 and 5. Accordingk,|Z (i, j) — f(i +a, j + b)| <5.

A vertex at a distance of two fror, ;) is of the form(i + ¢, j + d), wherec,d € {+2,0, —2}, andc, d are not both
zero. Note thatf (i + ¢, j +d) =1[(8 + 4)) + (8¢ + 4d)] mod 7. Conditions o andd are such that8+ 4d is necessarily
nonzero. Furthet8c + 4d| is a multiple of 8 and at most equal to 24. Accordingly+84d is not a multiple of 7. It follows that
lfG )= fl+e j+dl=1.

Conclusions are valid eveniifresp.j) is of the formm — 2 orm — 1 (resp.n — 2 orn — 1), sincem andn are themselves
multiples of 7. O

For 0<a <6, letV, be the set of vertices of a connected componeld,pix C, that receive labed in the proof of Theorem
3.1. The set¥), ..., Vg form a vertex partition into equal-size independent sets, where elements df gdominate (5/7)th of
the vertices (including themselves) in that component. Accordingly, elements of/gachrespond to as many vertex-disjoint
K1.4's. Also, vertices in eachVy; U V1) correspond to as many edge-disjoiif 4's, 0<i < 2.

Corollary 3.2. If m>5,n>4andi >1,theni(Py x P,) = A(C7; x P,) =6.

Proof. Each ofP,, x P, andC7; x P, is of largest degree four, and satisfies Lemma 1.1. Furthe®,(ix P, is a subgraph of
C7; x Cy; for somei andj, and (i) C7; x Py is a subgraph of'7; x C7; for somej. O

Theorem 3.3. If r = 0(mod 12, s = 0(mod 1) ands = 0(mod 13, thenA(C, x Cs x Cy) = 10.

Proof. By Lemma 1.1A(C, x Cs x C;)>10 asC, x Cy x C; is a regular graph of degree eight, so it suffices to present a
valid L (2, 1)-labeling of C, x Cs x C; using the labelsQ .., 10. Let a vertexi, j, k) of C x Cs x C; be assigned the integer
(24i + 12j + 6k) mod 11. The assignment is clearly well-defined.

Analogous to the proof of Theorem 3.1, it suffices to prove that{iY24a + 12b + 6¢) mod 11< 9, whereu, b, ¢ € {+1, —1},
and (ii) (24x + 12y + 6z) mod 11> 0, wherex, y, z € {+2,0, —2} andx, y, z are not all zero.

There are atotal of eight cases corresponding i ¢ € {+1, —1}. For each, the reader may check to see®ét -+ 12b +6¢)
mod 11 is equal to exactly one of 2, 3, 4, 5, 6, 7, 8 and 9. It is next shown that 22y + 6z is nonzero and not a multiple of
11, wherex, y andz are as stated.

If x # 0, then 24 + 12y + 67 is of the same sign as if x = 0 andy # 0, then 24 + 12y + 6z is of the same sign as if
x =y =0, thenz # 0, and 24 + 12y + 67 is of the same sign as It follows that 24 + 12y + 6z # 0.

“24x+12y+6zis notamultiple of 11”is equivalent tg4x+2y+z| is notamultiple of 11.” i =0, then|4x+2y+z| <6 < 11.

If y =0, then|4x 4+ 2y + z|<10<11. If z =0, then|4x + 2y + z| = 2 - |2x + y| that is not a multiple of 11 asx2+ y
is not such. It follows that ik =0 ory = 0 orz = 0, then|4x + 2y + z| is not a multiple of 11.

If X, yandzare all nonzero and of the same sign, thén+ 2y + z| = 14 that is not a multiple of 11. On the other hand, if

y andz are all nonzero and not of the same sign, tian+ 2y + z| <11. O

Let V, be the set of vertices of a connected componertt,ok Cy x C; that receive labeh in the proof of Theorem 3.3,
0<a<10.The setd), ..., V1o form a vertex partition into equal-size independent sets. Elements ofigasdrrespond to as
many vertex-disjoink 1 g's. Also, elements of eacti/y; U V;4.1) correspond to as many edge-disjokit g's, 0<i <4.

We conclude this section with an upper boundilemumber of finitely many cycles.

Theorem 3.4.If k=2 andmy, ..., mj_1 are each a multiple a2 + 1, then2* + 2<(Cpng x - -+ x Cp,_y) <2KHL,
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Proof. Letkandmy, ..., mi_1 be as stated. The grajih,, x - - - x Cy,_, is regular of degreef2 Accordingly, lower bound
is immediate. Further, this graph admits of a vertex partition into equal-size (independent dominatinf) setsV,x such
that the (shortest) distance between any two distinct elemenisisfat least thre§l4]. Let a vertexv be assigned the integer
label Z if and only if v € V;, 0<i <2X. Itis easy to see that the resulting labeling is a val{@,1)-labeling. Accordingly,

HCmg X -+ X Cpyy_) <21 O
4. J-numbers of P4 x Cp,

In Corollary 3.2 we have seen thatP, x C7;) = 6,n>4,i>1. In this section, we demonstrate that foe 4, the result
holds for any cycle;,;:

Theorem 4.1. For anym >3, A(P4 x Cy) = 6.
Proof. By Lemma 1.1/(P4 x Cy,) > 6 for anym > 3. Hence, we need to construct labelings with labels 0, 1, 2, 3, 4, 5, 6.

Casel:m =4+ 4s,5s>0.
In this case, we repeat the following labeling:

2 23 3] 2 2 3 3
55 6 6| 55 6 6
0011 0011
3 3 4 4] 3 3 4 4

Case2:m =9+ 4s,s>0.
Now we have the following repeated solution:

001122 33 4| 2 3 3 4
2 536 4051¢6|] 051€®6
2536 4051¢6] 051°€®6
001122 33 4| 2 3 3 4

Case3:m =14+ 45,5 >0.
In this case, we have the following repeated solution:

00112233 4] 45586 6| 2 3 3 4
2536 40516 20314] 051°®¢6
2536 40516|] 20314 O0H51F¢6
00112233 4] 45586 6| 2 3 3 4

Cased:m =23+ 4s,5s >0.
In this case we proceed as follows. First, take two times the block with 9 columns and after the block with 5 columns from

Case 3. This gives a solution fer = 23. Then repeat the block with 4 columns in order to get all the remaining solutions.
Hence, we are left with the following sporadic cases:

Caseb:m =3,5,6,7,10,11, 15, 19.
Form =7 we apply Theorem 3.1. For the other cases solutions are, respectively:

»

PNWER WOoODN A

WONR OFRr IO O U U
COODA WRLRAO NWWN
JGWoOodh WORN RPOOR
P WON NOON
NOWDR WOoORLRDM PONNDN
Nooo wonNnOg
coonNA~ PUOOO
wo N D
W ok g
= 0o W
NWwo D
abhoON

R OT OO0 NOITO W
NOOR oo POOWU

WUONOD WJakrw NMNOoOO A~
R AMNW DNVNOW PFPOW®
WNUOOoO OoONTwWw Whkoow
NRPRPW PNOO PNO®
POl OCWAO TGWON
Nowo CouRr OO K

DO OoON
N DO W
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455113 45544235586 422
003 36 6 1022660022 46 6
3 6 6 004366 0032460013
114425014455 146 3 35250

5. A-numbers of P x Cp,

The result of the previous section asserts that forrapy3, 1(P4 x Cy,) = 6. For the direct productBs x Cy, the situation
is similar: For almost anyn, A(P5 x Cp,) = 6. However, there are several exceptions that make our considerations a bit more
involved. We are going to prove:

Theorem 5.1. Letm >3. Then

2(Ps x Cp) = 7, m=3,4,56,89 10 12 13 17, 18, 20, 24, 26, 34, 40,
5% =m)= 16, otherwise
Proof. By Lemma 1.1/.(P5 x Cy,) > 6 for anym > 3.
We first present solutions for the produisx Co, k > 22. Any such graph contains two isomorphic connected components;
thus, we will give solutions for one component. First, the following blocks will be called Blocks A and B, respectively.

05201642 20520164
30654205 53065420
16432053 31643205
42106316 64210631
20564164 42056416

Casel:k =22+ 85,5 >0.
L(2, 1)-labelings are obtained from the following solution fo& 22 to which we add Block A as many times as necessary.

0531350145205313501452
3165024620531650246205

1640246206316402462063
4024610531640246105316

0256135315402561353154

Case2: k =23+ 8s5,5>0.
L(2,1)-labelings are obtained from the following solution fo& 23 to which we add Block A as many times as necessary.

05010654320164205201642
32654321065420530654205

16432106543205316432053
40106543210631642106316

02564321065416420564164

Case3: k =24+ 8s,s >0.
L(2,1)-labelings are obtained from the following solution ko 24 to which we add Block B as many times as necessary.

205201642052016420520164
530654205306542053065420

316432053164320531643205
642106316421063164210631

420564164205641642056416

Cased: k =25+ 8s, s >0.
L(2,1)-labelings are obtained from the following solution kot 25 to which we add Block A as many times as necessary.

0531350145205316420531642
3165024620531642053164205

1640246206316420531642053
4024610531642053164205316

0256135315420531642053164
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Caseb: k =26+ 8s, s >0.
L(2,1)-labelings are obtained from the following solution o+ 26 to which we add Block A as many times as necessary.

05313501452050106543201642
31650246205326543210654205

16402462063164321065432053
40246105316401065432106316

025613531540256432106541614

Caseb: k =27+ 8s,5>0.
L(2,1)-labelings are obtained from the following solution fo& 27 to which we add Block A as many times as necessary.

053135014520520164205201642
316502462053065420530654205

164024620631643205316432053
402461053164210631642106316

0256135831542056416420564164

Case7:k =28+ 8s,s5s>0.
L(2,1)-labelings are obtained from the following solution kot 28 to which we add Block B as many times as necessary.

2053164205316420531642053164
5316420531642053164205316420

3164205316420531642053164205
6420531642053164205316420531

4205316420531642053164205316

Case8: k =29+ 8s,5>0.
L(2,1)-labelings are obtained from the following solution o 29 to which we add Block A as many times as necessary.

05313501452053135014520531642
31650246205316502462053164205

16402462063164024620631642053
40246105316402461053164205316

025613531540256135315420531614

By the above cases, we havePs x Cor) = 6 for k >22. If 2k = 4i + 2, then each connected componentgfx Cyy is
isomorphic toPs x Cy; hence, we also havg P5 x Cy) = 6 fork odd, andk > 23.

We next demonstrate th#s x C; admitsL(2,1)-labelings with 7 labels fot = 11, 15, 16, 19, 22, 30, 32, 36, 38. Since
solutions for 22, 30, and 38 give also solutions for 11, 15, and 19, respectively, it is enough to present solutions for the cases 16,
22, 30, 32, 36 and 38. They are, respectively, given below.

25613531 05313501452
02461054 31650246205
64024620 16402462063
16502462 40246105316
53135014 02561353154

050106543201642
326543210654205

164321065432053
401065432106316

025643210654164

2052016420520164
5306542053065420

3164320531643205
6421063164210631

4205641642056416
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053135014520531642
316502462053164205

164024620631642053
402461053164205316

025613531542053164

0531350145205201642
3165024620530654205

1640246206316432053
4024610531642106316

0256135315420564164

By the above constructions and by Corollary 3.2 we concludeiitiat x C;,;,) =6 for allmexcept form =3, 4,5, 6, 8, 9, 10,
12, 13,17, 18, 20, 24, 26, 34, and 40. To complete the proof we must show that in these remainingReages,,) = 7 holds.

We first claim that there are ndq2,1)-labelings with 7 labels foPs x Cy if k <7 ork =9, 10, 12, 13, 17, 20. The graph
Ds g consists of 1098 vertices (determined by a computer program). In order to search for cyigs éxactly one strongly
connected component (with 132 vertices) was detected. Using a simple backtracking in that component, we have established
that D5 ¢ does not contain cycles of length 2, 3, 4, 5, 6, 9, 10, 12, 13, 17 and 20. Therefore, by Theorem 1.2 there are also no
L(2,1)-labelings with 7 labels foPs x C, wherek =3, 4,5, 6, 8,9, 10, 12, 13, 17, 18, 20, 24, 26, 34, and 40.

Finally, we implemented the antivoter algoritj21l] adapted fot_(2,1)-labelings. We have obtained labelings with 8 labels
for P5 x Cy, wherek <7, andk = 8, 9, 10, 12, 13, 17, 18, 20, 24, 26, 34, and 40. Note that from a labeling with 8 labels of
Pg x Cy, alabeling with 8 labels of5 x Cy; can be constructed easily. Therefore we list only the caseswith 4, 5, 9, 13, 17.
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The antivoter algorithm that we used at the end of the above proof and some of its generalizations have proved to be reasonably
good heuristics for coloring various types of graphs including ranki@wlorable graphs, DIMACS challenge graphé], fre-
guency assignment “realistic” graphs, and otlj2ss27,29] For completeness of the presentation we briefly recall the algorithm:
get a random order of vertices;
run a greedy coloring algorithm;
while not stopping condition do

if the coloring is proper then recolor vertices of the maximum color

select a bad vertex(randomly)

assign a new color to
end while

The greedy coloring always takes the minimal color which does not violate any constraints.

6. A-numbers of P, x C,, n>6

In this section, we prove that Corollary 3.2 finds all optimal solutions (with respect to Lemma 1L} arMore precisely:

Theorem 6.1. Letn >6 andm >7. ThenA(P, x Cy) = 6if and only ifm =7k, k > 1.
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Proof. By Lemma 1.14(P, x Cy,) > 6. Hence, using Corollary 3.2, it suffices to show th@tg x C,,) > 7 if m # 7k. For this
sake we use our method of Theorem 1.2.

We know thatPg x C,, admits a 6-(2,1)-labeling if and only iDg ¢ contains a closed walk of length, if mis odd, or a
closed walk of length;, if mis even. The grapig g consists of 3638 vertices (determined by a computer program). In order to
search for cycles ig g, €xactly eight strongly connected component®gfs were detected, each of them consisting of seven
vertices and exactly one directed cycle. Therefore, all closed walksg nare of length %, k > 1, thus a 6£(2, 1)-labeling of
Pg x Cy, for m # 0 (mod 7) does not exist. [

By Theorem 6.1A(P, x Cpy)>7 form # 7k. We believe that the equality holds, but were not able to cover all the cases.
For instance, we can show that for any 6 and anyk >1 we havel(P, x C3;) = 7. In addition, for any: >> 6 we also have
APy, x Cq) =7.In general, however, the above conjecture cannot be deduced from labelings of direct products of two cycles in
the way as is Corollary 3.2 obtained from Theorem 3.1. Indeed, using backtracking we computed that there is no labeling with
labels Q1, ..., 7 for any of the graph€4 x C4, C4 x Cs, C5 x Cs, Cg x Cg, andCg x Cg.
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