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Abstract

A labeling of vertices of a benzenoid system B is proposed that reflects the graph distance
in B and is significantly shorter than the labeling obtained from a hypercube embedding of B.
The new labeling corresponds to an embedding of B into the integer lattice Z? and is shown
to be optimal for all practical purposes. A coordinatization algorithm is presented and it is

demonstrated that it can be easily carried out by hand.

*Supported in part by the Ministry of Science of Slovenia under the grant P1-0297.



-638-

1 Introduction

Benzenoid systems (molecular graphs of benzenoid hydrocarbons) are one of the most studied
classes of graphs within the chemical graph theory, we refer to the books (6, 12] dedicated to
these systems and a sample of papers on different aspects of these graphs (7, 9, 10, 14, 21-29].
It is therefore not surprising that many names have been given to benzenoid systems, notably
hexagonal systems. (For the list of all names see [10].)

One of the important features of benzenoid systems is that they can be isometrically embed-
ded into hypercubes, the fact first observed in [18]. This observation led to many investigations
of benzenoid systems [2, 4, 5, 15, 19], to investigations of other chemical graphs that can also
be isometrically embedded into hypercubes, for instance of phenylenes, see [13], and to more
general embeddings of (chemical) graphs [3].

It clearly turned out that an isometric embedding of a benzenoid system into a hypercube
has many advantages. There is, however, one drawback of this approach. The number of
coordinates of an embedding of a benzenoid system B into a hypercube is equal to the number
of the elementary cuts of B. Therefore, if B is not very small, the vertex labels become large.
Hence for bigger benzenoid systems the investigations are not easily carried out “by hand”. In
this paper we propose another labeling of benzenoid systems that also reflects the vertex distance
but is significantly shorter than the labeling obtained from the isometric hypercube embedding.

To be more precise, we label vertices u of a benzenoid system B with labels
fu) = (Gi(u), €2(u),..., La(u)), G(u),... ta(u) € Z,

such that g
dp(u,v) = Y |i(u) - Li(v)],
i=1

where dp(u,v) is the usual shortest path distance in B. Such embeddings of graphs into Z¢ are
called lattice embeddings. The minimum possible d for which there exists a lattice embedding
of B is called the lattice dimension of B and denoted dimy,(B). It is well known, cf. [11], thata
graph G has a lattice embedding if and only if G is an isometric subgraph of a hypercube. As
the latter is true for benzenoid systems (18], the lattice dimension is well-defined for them.
The paper is organized as follows. In the next section we introduce the concepts needed

in this paper, in particular, we define benzenoid systems, present their fundamental trees, and
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recall the 3-trees embedding from [2]. Then, m Section 3, we give a lower and an upper bound
for the lattice dimension of a benzenoid system B. The two bounds are expressed in the number
of leaves of the fundamental trees of B and coincide in one half of the cases, while in the other
cases they differ by 1. Hence for all practical purposes the proposed labelings are optimal. In
Section 4 the labeling algorithm is deseribed. We conclude with an example of such a labeling

and with some remarks.
2 Preliminaries

Benzenoid systems are graphs constructed as follows [12]. Let Z be a circuit on the benzenoid
(graphite) lattice. Then a benzenoid system is formed by the vertices and edges of the lattice
lying on Z and in the interior of Z. Let e be an edge of a benzenoid system B lying on its
perimeter Z. Then the elementary cut C. corresponding to e is the set of all edges of B such
that with every edge [ € C., also the opposite edge with respect to a hexagon containing f
belongs to C.. Note that the set of elementary cuts partitions the edge set of B.

Let B be a benzenoid system. Then its edges can be naturally partitioned into three sets
E,, E,, and Ej3 consisting of (geometrically) parallel edges. In other words, E; is the union of
elementary cuts in the same direction. For i = 1,2,3 let B; be the graph obtained from B by
removing all the edges of E;. Let T; be the graph whose vertices are the connected components
of B; (note that these components are paths), two such components P' and P” being adjacent
in 7; if there are vertices u € P’ and v € P" such that uv € E;. Every T} is a tree, see [2, 4].
We call the trees T}, Ty, and T3 the fundamental trees of the benzenoid system B. An example
of a benzenoid system B, the graphs B;, and the fundamental trees of B are shown in Figure 1.
Chepoi 2] introduced fundamental trees and used them to calculate the diameter of benzenoids
system. Later Chepoi and Klavzar [4] followed with a linear time algorithm for computation of
the Wiener index.

A graph H is an isometric subgraph of G if dg(u,v) = dg(u,v) for any vertices v,v € H.
In addition, a graph H isometrically embeds into a graph G if H is isomorphic to an isometric
subgraph of G.

The Cartesian product GO H of graphs G and H is the graph with vertex set V(G) x V(H)
and (a,z)(b,y) € E(GOH) whenever either ab € E(G) and z = y, or @ = b and zy € E(H).
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Figure 1: A benzenoid system B, the graphs B;, B2, Bs, and the fundamental trees Ty, Tp, T3

The Cartesian product is associative, hence the product of several factors is well-defined. In
particular, the Cartesian product T} (175 O T has ordered triples (u1, ug, u3), u; € T;, as vertices,
and two such triples (u,u2,u3) and (v), v, v3) are adjacent if and only if for some ¢, w;v; € E(T5),
and u; = v; for j # i.

With these definitions we can now formulate the following result that is essential for our

investigations.

Theorem 2.1 (Chepoi (2]} Let B be a benzenoid system and Ty,Ts, Ty its fundamental trees.

Then B isomelrically embeds into the Cartesian product Ty O T2 0T,

We recall that the distance function is additive on Cartesian products of graphs, see [17].

More precisely, let G and H be arbitrary graphs, and (g, h), (¢, &) vertices of GO H. Then

denu((a,h), (¢ H) = dalg, d') + du(h, ). )

Finally, recall that a set of pairwise nonadjacent edges of a graph G is called a matching of G.
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3 Lattice dimension of benzenoid systems

The infinite benzenoid lattice (also known as the mosaic (6%)) can be embedded into cubical
lattice Z3, see [8]. Therefore, every benzenoid system which is an isometric subgraph of the
infinite benzenoid lattice embeds into Z* and has lattice dimension 3. An example of a benzenoid

system B that embeds isometrically into Z* is shown in Figure 2.
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Figure 2: Example of benzenocid system which embeds isometrically into Z3

However, as soon as B is not an isometric subgraph of the infinite benzenoid lattice, dimy,(B) >
3. In order to determine the lattice dimension of such benzenocid systems we will use a recent
result of Eppstein from [11]. To describe it, the following concepts are needed.

For an edge e = uv of B let Wy, and W,, be the connected components of B\ C,, where
u € Wy, and v € W,,,. These subgraphs are called semicubes of B. The semicube graph Sc(B)
of B is the graph whose vertices are all the semicubes of B, two semicubes Wy, and Wy, being
adjacent if W, U W,y = B and W, "Wy, # 0.

Let B be a benzenoid system. Then its isometric dimension dimi(B) is the number of
elementary cuts of B. In other words, dimj(B) = |Sc(B)|/2.

Then Eppstein [11] proved (in a more general setting) the following theorem.
Theorem 3.1 [11] Let B be a benzenoid system. Then
dim,(B) = dimy(B) — |M]|,

where M is any maximum matching in Sc(B).
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For our main theorem we need the following three lemmata. A proof of the second one can be
found in [1, Lemma 2.3], while the last result has been independently discovered several times,

probably for the first time in [16], see also [20].

Lemma 3.2 Let B be a benzenoid system and Wy, a semicube of B. Then W, is an isolated

verter of Sc(B) if and only if W, is a leaf of a fundamental tree of B.

Proof. We observe first that W, is an isolated vertex of Sc(B) if and only if no elementary cut
of B is completely contained in W,,. Consequently, W, is an isolated vertex of Se(B) if and
anly if Wy, is a path that lies on the perimeter of B. But this is equivalent to the fact that Wy,

is a leaf of the fundamental tree of B that corresponds to the direction of wv. a
Lemma 3.3 Let G and H be isometric subgraphs of hypercubes. Then dim (GO H) = dimy,(G)+
dimy, (H).
Since the Cartesian product is associative, Lemma 3.3 holds for any finite number of factors.
Lemma 3.4 Let T be a tree. Then dimp(T) = [t/2], where t is the number of leaves of T
Now everything is ready for the next theorem.

Theorem 3.5 Let B be a benzenoid system and let t; be the number of leaves of the fundamental

tree T;, 1 <1< 3. Then

ty to t3 . i to ty
Ll abn ey 29 2 <« [E2 e bl
[2 Fogreh 21 < dim(B) < [QW + {2} + {21
Proof. By Theorem 3.1, dimg,(B) = dim(B) — |M|, where M is any maximum matching in

Sec(B). Let r be the number of isolated vertices of Sc(B). Then
|M] < (ISe(B)] —1)/2
and by Lemma 3.2 we infer that

M| < (1Se(B)| — (b + t2 + 13))/2.
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Therefore,

dim(B) = dimy(B) - |M| = |Se(B)|/2 — |M]

v

[Se(B)/2 — ((ISe(B)| = (tv + t2 + 13))/2)

(t + 12 +13)/2,

and since the lattice dimension is an integer, the lower bound is proved.
Let B be isometrically embedded into the Cartesian produnet Ty LT3 O T; of its fundamental
trees. Since B is an isometric subgraph we infer that dimy,(B) < dimg,(T) 0T, O7Tx). Therefore,

Lemma 3.3 implies that
dimp(B) < dimp (T 0T O T3) = dimg, (71 ) + dimy (T3) + dimg,(T3) .
Lemma 3.4 completes the proof. m]

Note that Theorem 3.5 gives the exact lattice dimension of B if at least two of ¢, tg, and ¢3
are even. If at least two of these integers are odd, the theorem approximates the dimension up
to 1. So for practical (chemical) purposes the result is completely satisfactory. We do, however,
conjecture, that the lower bound is actually always the exact dimension. (See the last example
in the final section.) In what follows we use the embedding of a benzenoid system into the
Cartesian product of its fundamental trees to obtain lattice coordinates. Thus we always attain

the upper bound from Theorem 3.5.
4 Labelling algorithm

Let B be a benzenoid system. As before, let ¢;, 1 < ¢ < 3, be the number of leaves of the

fundamental tree T; of B. In this section we present a simple procedure how to assigns labels

SERERE

to the vertices of B such that the labeling is a lattice embedding of B into Z".

of length

The algorithm first determines the fundamental trees Ty, T3, and T3 as described in Section 2.
Then, the labeling of B is obtained by simply concatenating the corresponding labelings of the
fundamental trees. Hence, it remains to describe an algorithin that labels trees. We review in a

simple way the labeling algorithm from [16]. For this some preparation is needed.
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Let T be a tree. For vertices u and v of T we denote by P(u,v) the (unique) u, v-path. The
inner degree of a path of T is defined as ,(deg(v) — 2), where the summation runs over the
inner vertices of P. Let T a subtrec of T. For a vertex w € T'\ T we define the w,T"-path as
the path between « and the closest vertex to « that lies in 77,

Let T' be a tree with k leaves. We will write £(v) = €1(v)€a(v) ... {121(v) to denote the label
of a vertex v and e, for the i-th unit vector {of length [£/2]). Now the labeling algorithm can

be described as follows.

Algorithm A (Lattice Coordinates of a Tree)
Input: Tree T with k leaves.

Output: Lattice coordinates of vertices of T' of length [k/2].

0. Set T' be the empty graph.

1. Find leaves u and v of T such that the inner degree of P(u,v) is maximum.
. For 2 € P(u,v) set #{z) =t0...0, where t = d(u,z).

LT —T'U Plu,v); i — 2.

= - B N

. While 77 # T' do
4.1. Find leaves u and v of T, u,v € T \ T”, such that the inner degrees of the u, T'-path
P(u,y) and the v, T"-path P(v,z) are two largest ones.
4.2. For x € P(u,y) set £{(zx) = £(y) +te;, where t = d(z,y).
4.3. For r € P(v, z) set {(z) = €(z) — t e;, where t = d(x, 2).
44. T~ T'UP(u,y) UP({v,z); i — i+ 1.

The coordinatization algorithm needs some comments.
e Note that the vertices y and z from Step 4.1 may coincide.

e If k is odd, then in the last step of the algorithm there is only one leaf left. In this case

the path P(v, 2) is empty and nothing is done in Step 4.3.

e If we wish to have nonnegative coordinates only, we add to the ith coordinates of labels

—(minyer £:{v})). We will do so in our example.

To get lattice coordinates of some vertex u of a benzenoid system simply concatenate labels

wuy, 1y and ug according to which component of B; vertex u belongs. That this algorithm indeed
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3 Lattice dimension of benzenoid systems

The infinite benzenoid lattice (also known as the mosaic {6%)) can be embedded into cubical
lattice Z3, sce [8]. Therefore, every benzenoid system which is an isometric subgraph of the
infinite benzenoid lattice embeds into Z* and has lattice dimension 3. An example of a benzenoid

system B that embeds isometrically into Z* is shown in Figure 2.
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Figure 2: Example of benzenoid system which embeds isometrically into Z3

However, as soon as B is not an isometric subgraph of the infinite benzenoid lattice, dimy,(B) >
3. In order to determine the lattice dimension of such benzenoid systems we will use a recent
result of Eppstein from [11]. To describe it, the following concepts are needed.

For an edge e = wv of B let Wy, and W, be the connected components of B\ (', where
u € Wy, and v € Wy, These subgraphs are called semicubes of B. The semicube graph Sc(B)
of B is the graph whose vertices are all the semicubes of B, two semicubes W, and W, being
adjacent if Wy, U W, = B and Wy, N W, # 0.

Let B be a benzenoid system. Then its isometric dimmension dim(3) is the number of
elementary cuts of B. In other words, dimi(B) = |Sc(B)|/2.

Then Eppstein [11] proved (in a more general setting) the following theorem.
Theorem 3.1 [11] Let B be a benzenoid system. Then
dimy,(B) = dim(B) — |M]|,

where M is any mazimum matching in Sc{B).
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The lattice embeddings of all three fundamental trees are presented in Figure 4, where also
the final result is shown - the lattice embedding of B. In the figure the boldface label 4114310
of a vertex from B is obtained by concatenation of the boldface labels 411, 4, and 310 from
the corresponding fundamental trees.
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Figure 4: Lattice embedding of B.

‘We next give the smallest benzenoid system B with the lattice dimension smaller than the
dimension found by our algorithm. The system B is shown in Figure 5. Since [3/2] + [2/2] +
[3/2] = 5, our algorithm finds an embedding into Z5. On the other hand, dim;,(B) = 4. To
see this observe first that for the semicubes Wy, and Wy, of Sc(B) (see Figure 5) we have
Wy UWey = B and Wy, N Wy, # 0. Hence they are adjacent in the semicube graph Sc(B).
Moreover, there exists a maximum matching in Se¢(B) including the edge W, W,, and the

remaining edges obtained by embedding trees Ty \ W,,, and T3 \ W), into Z.
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Figure 5. Semicubes Wy, and Wy, of Se(B) correspond to the leaves of the fundamental trecs
T} and T that are colored black.

Similarly we can lower the dimension for one if at least two fundamental trees have an odd

number of leaves, where each of the trees has a leaf with the neighbor of degree at least three.

As already mentioned, we conjecture that the lower bound from Theorem 3.5 is actually

always the exact dimension. Another natural strengthening of presented results would be to

find faster algorithm for lattice embeddings of trees.
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