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Abstract

Geodesic convex sets, Steiner convex sets, and J-convex (alias induced path
convex) sets of lexicographic products of graphs are characterized. The geodesic
case in particular rectifies [4, Theorem 3.1].
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1 Introduction

Several types of convexity are present in graphs, the most prominent among them are
convexities derived from path properties: the geodesic convexity, the induced path
convexity, and the all-paths convexity. For a survey on convexities in graphs related to
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path properties we refer to [10], see also the proceedings [6] for several related papers
on convexities in graphs as well as on other discrete structures.

The geodesic interval I(u, v) of a graph G is the set consisting of vertices lying on all
geodesics (shortest paths) between u and v. The interval function I and the associated
geodesic convexity is a fundamental tool in metric graph theory and is well studied,
see [2, 19] and references therein.

The notion of a Steiner tree of a multiset of vertices W can be considered as a
generalization of the geodesic because when W consists of two different vertices, then
a Steiner tree of W is a geodesic between these two vertices. Thus the concept of the
Steiner interval of W which contains of the set of all vertices lying on all Steiner trees of
W generalizes the interval function I. Steiner intervals on multisets in this sense were
introduced in [3]. In this paper certain betweenness properties of the interval function
I are extended to Steiner intervals. Steiner intervals on ordinary vertex subsets have
been studied in several papers, see [13, 17, 21].

Induced paths of a given graph also lead to a graph convexity. The induced path
interval between vertices u and v of a graph G is denoted with J(u, v), that is,

J(u, v) = {z ∈ V (G) | z lies on some induced u, v-path in G} .

The induced path convexity is also known as monophonic convexity [13] and as minimal
path convexity [12]. The latter paper gives a characterization of the convex hull with
respect to induced path convexity. The induced path convex sets are called J-convex
sets for short. The betweenness and other similar properties are discussed in [7, 8, 18],
for the hull number and an algorithm for the J-convex hull see [1].

In this paper we are interested in the convexity properties of the lexicographic
product of graphs. This graph operation is one of the four standard graph products [15]
and is of continuous interest, see the recent investigations [11, 14, 16, 20, 22].

The natural question to consider is what are convex subsets of G ◦ H. For the
geodesic convexity, the question was considered in [4] where it was proved (at least in one
direction) that if neither of G and H is complete, then the only proper subgraphs that
are convex are complete subgraphs. What about the cases when G or H is complete? No
answer was given for the first case, and for the second case, that is, for the lexicographic
products G ◦Km, it was claimed [4, Theorem 3.1] that Y ⊆ G ◦Km is geodesic convex
if and only if pG(Y ) is geodesic convex. However, any G-layer Gu, where u is an
arbitrary vertex of Km, projects onto a convex subgraph of G but Gu is not convex
in G ◦ Km. (The error in the proof of [4, Theorem 3.1] appears in this part “The
converse of the theorem is obvious.”) In Section 2 we clarify the situation and give
the complete solution to this problem. In Sections 3 and 4 we respectively characterize
Steiner convex sets and J-convex sets of lexicographic product, while in the remaining
of this section we recall the graph distance and basic properties of the lexicographic
product of graphs.

All graphs considered in this paper are connected, simple, and finite. The distance
dG(u, v) between vertices u and v of a graph G is the length of a shortest path between
u and v in G. If the graph G is clear from the context, we simply write d(u, v).
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The lexicographic product of graphs G and H is the graph G◦H (also denoted with
G[H]) with the vertex set V (G) × V (H), vertices (g1, h1) and (g2, h2) are adjacent if
either g1g2 ∈ E(G) or g1 = g2 and h1h2 ∈ E(H). G ◦ H is called nontrivial if both
factors are graphs on at least two vertices. The lexicographic product is associative
but not commutative. The one vertex graph is the unit for the operation and G ◦ H
is connected if and only if G is connected. For more fundamental properties of the
lexicographic product see [15].

For a vertex h ∈ V (H), set Gh = {(g, h) ∈ V (G ◦ H) | g ∈ V (G)}. The set Gh

is called a G-layer of G ◦ H. By abuse of notation we will also consider Gh as the
corresponding induced subgraph. Then Gh is isomorphic to G. For g ∈ V (G), the
H-layer gH is defined as gH = {(g, h) ∈ V (G ◦ H) | h ∈ V (H)}. We will again also
consider gH as an induced subgraph and note that it is isomorphic to H. A map pG :
V (G◦H) → V (G), pG((g, h)) = g, is the projection onto G and pH : V (G◦H) → V (H),
pH((g, h)) = h, the projection onto H.

2 Geodesic convexity

In order to characterize convex subgraphs of lexicographic products, the following con-
cepts will be useful. A vertex u of a graph G is a Λ-vertex if u is adjacent to two
nonadjacent vertices. (The notation reflects the fact that u is the middle vertex of an
induced path on three vertices.) Note that all the other vertices of G have complete
neighborhoods. An induced subgraph Y of the lexicographic product G ◦ H will be
called Λ-complete if gH ∩ Y = gH holds for any Λ-vertex g of pG(Y ).

Theorem 2.1 Let G ◦ H be a nontrivial, connected lexicographic product. Then a
proper, non-complete induced subgraph Y of G ◦ H is (geodesic) convex if and only if
the following conditions hold:

(i) pG(Y ) is convex in G,
(ii) Y is Λ-complete, and
(iii) H is complete.

Proof. Suppose first that (i)-(iii) hold. Since H is complete, any vertices (g, h1)
and (g, h2) that belong to Y are adjacent and hence clearly IG◦H((g, h1), (g, h2)) ⊆
V (Y ). Consider next vertices (g1, h1), (g2, h2) ∈ V (Y ), where g1 6= g2. Let P be a
(g1, h1), (g2, h2)-shortest path in G ◦H. Then pG(P ) is a shortest g1, g2-path in G. Let
(g, h) be an arbitrary inner vertex of P . Since pG(Y ) is convex, gH ∩Y 6= ∅. Moreover,
since (g, h) is an inner vertex of the shortest path P and Y is Λ-complete, gH∩Y = gH.
Therefore (g, h) ∈ IG◦H((g1, h1), (g2, h2)) and hence P ⊆ Y . We conclude that Y is
convex.

Conversely, let Y be a convex subgraph of G ◦ H. Since Y is not complete (by
theorem’s assumption), Y contains an induced path P = (g1, h1), (g2, h2), (g3, h3). We
distinguish two cases.
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Case 1: g1 = g3.
Since dY ((g1, h1), (g3, h3)) = 2, H is not complete in this case. Let g be an arbitrary
neighbor of g1 in G. Then gH is a subset of IG◦H((g1, h1), (g3, h3)) and hence, since Y
is convex, gH ⊆ Y . Clearly, dG◦H((g, h1)(g, h3)) = 2, and again for any neighbor x of
g ∈ NG(g1), the layer xH is a subset of Y . Since G ◦ H is connected and thus G is
connected, by induction of the distance from g1 in G, we conclude that Y = G ◦ H, a
contradiction with theorem’s assumption.

Case 2: g1 6= g3.
Since P is induced and g2 is a common neighbor of g1 and g3 in G, we have dG(g1, g3) =
2. In particular, G is not complete. Clearly g2H is included in IG◦H((g1, h1), (g3, h3))
and thus g2H ⊆ Y . If H is not complete there exists an induced path of length 2 in g2H
and we can continue as in Case 1 to conclude that Y = G ◦ H. Thus we have proved
that H is complete.

Consider next pG(Y ) and let g be a Λ-vertex of pG(Y ). Then there exists an induced
path g1, g, g2 in pG(Y ) and vertices (g1, h1), (g, h), (g2 , h2) that all belong to Y . Since
Y is convex, gH ⊆ Y . We conclude that Y is Λ-complete.

Finally, if pG(Y ) would not be convex in G, Y would not be convex. �

A subgraph X of a graph G is 2-convex if, together with any vertices u and v
of X with dG(u, v) = 2, all common neighbors of u and v belong to X. The above
proof might suggest that we could replace convexity of pG(Y ) in condition (i) with
2-convexity. To see that this is not the case, consider any subgraph H of a graph G
that is 2-convex but not convex (for instance, Pn as the subgraph of C2n, n ≥ 3) and
the lexicographic product G◦Kn, n ≥ 1. Then H ◦Kn is a 2-convex subgraph of G◦Kn

that fulfills conditions (ii) and (iii) of the theorem, but it is not convex.

3 Steiner convexity

Let us formally define a Steiner tree and k-Steiner intervals, for (k ≥ 2). In a connected
graph G = (V,E), a Steiner tree of a (multi)set W ⊆ V , is a minimum order tree in G
that contains all vertices of W . The number of edges in a Steiner tree T of W is called
the Steiner distance of W , denoted d(W ), while the size of T describes the number of
vertices in T (i.e. d(W )+1). The k-Steiner interval is a mapping S : V ×· · ·×V −→ 2V

such that S(u1, u2, . . . , uk) consists of all vertices in G that lie on some Steiner tree with
respect to {u1, . . . , uk}, where u1, . . . , uk are not necessarily distinct vertices of G (in
this way S is an extension of I, as S(u, v, . . . , v) = I(u, v)). A subset W of V is k-Steiner
convex if S(u1, u2, . . . , uk) ⊆ W for every k-tuple (u1, u2, . . . , uk) in W × · · · × W . We
say that W is Steiner convex if W is k-Steiner convex for every k ≥ 2. Clearly V and
K, with 〈K〉 ∼= Kn, are Steiner convex and are called trivial Steiner convex sets.

In this section we characterize Steiner convex sets in lexicographic products. The
result is parallel to Theorem 2.1 and the proof will use this theorem. However, the
results are not equivalent as we will demonstrate with a family of examples at the end
of the section. First a lemma:
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Lemma 3.1 Let g1, g2, . . . , gk be different vertices of a connected graph G. Then for
any (not necessarily different) vertices h1, h2, . . . , hk of a graph H, a Steiner tree of
g1, g2, . . . , gk (in G) and a Steiner tree of (g1, h1), (g2, h2), . . . , (gk, hk) (in G ◦H) have
the same size.

Proof. Let g1, g2, . . . , gm, m ≥ k, be the vertices of a Steiner tree T of g1, g2, . . . , gk.
Select arbitrary vertices hk+1, . . . , hm of H and define the subgraph T̂ of G◦H as follows.
Its vertices are (g1, h1), (g2, h2), . . . , (gm, hm), and (gi, hi) is adjacent to (gj , hj) if and

only if gi is in T adjacent to gj . Since g1, g2, . . . , gm are different vertices, T̂ is a tree

of the same size as T . Clearly, T̂ connects the vertices (g1, h1), (g2, h2), . . . , (gk, hk).
Moreover, T̂ is a Steiner tree, for otherwise pG(T̂ ) would yield a smaller size tree in G
than T . (Note that since all gi’s are different, no Steiner tree contains an edge of an
H-layer.) �

Theorem 3.2 Let G ◦ H be a nontrivial, connected lexicographic product. Then a
proper, non-complete induced subgraph Y of G ◦ H is Steiner convex if and only if the
following conditions hold:

(i) pG(Y ) is Steiner convex in G,
(ii) Y is Λ-complete, and
(iii) H is complete.

Proof. Suppose (i)-(iii) hold for a proper, non-complete induced subgraph Y of G◦H.
Let S = {(g1, h1), (g2, h2), . . . , (gk, hk)} be an arbitrary set of vertices of Y . We may
assume that the notation is selected such that the vertices g1, . . . , gj , j ≤ k, form a
largest set of different vertices of pG(Y ). Then

pG({(g1, h1), (g2, h2), . . . , (gj , hj)} = pG({(g1, h1), (g2, h2), . . . , (gk, hk)})

and SIpG(Y )(g1, g2, . . . , gj) ⊆ V (pG(Y )) since pG(Y ) is Steiner convex in G. Let T be
a Steiner tree (in G) of g1, g2, . . . , gj and let its size be ℓ. By Lemma 3.1, the size of

a Steiner tree T̂ of (g1, h1), (g2, h2), . . . , (gj , hj) is also ℓ. Furthermore, every Steiner
tree for these vertices is contained in Y because of the Steiner convexity of pG(Y ),
Lemma 3.1, and the assumption that Y is Λ-complete. For every additional vertex
(gi, hi), j < i ≤ k, we need to add exactly one edge either of the type (gi, hi)(gi, hp)
or of the type (gi, hi)(gt, ht), where gigt ∈ E(G). This tree T ′ has size ℓ + k − j and
pG(T ′) = pG(T̂ ).

Let T ′′ be an arbitrary Steiner tree of S. For any gi such that giH∩T ′′ 6= ∅, contract
all the vertices from giH ∩ T ′′ into a single vertex. Then the size of the contraction is
at least ℓ. But then the size of T ′′ must be at least ℓ + k − j and is hence equal to
ℓ + k − j. Therefore every Steiner tree of Y must be of the same form as T ′ described
above. We conclude that Y is Steiner convex.

Conversely, let Y be a Steiner convex subset of G ◦ H. Then Y is also geodesic
convex. Hence by Theorem 2.1, pG(Y ) is geodesic convex in G, Y is Λ-complete, and
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H is complete. We thus only need to see that pG(Y ) is also Steiner convex in G.
Suppose not. Let g /∈ pG(Y ) be a vertex from a Steiner tree T of size ℓ of vertices
g1, g2, . . . , gk ∈ pG(Y ). By Lemma 3.1 there exists a Steiner tree of size ℓ on vertices
(g1, h1), (g2, h2), . . . , (gk, hk) in G◦H that contains the vertex (g, h) for some h ∈ V (H).
Since Y is Steiner convex, (g, h) ∈ Y and consequently g ∈ pG(Y )—a contradiction and
the proof is complete. �

In [9], a family of graphs Gk, k ≥ 2, was constructed with the property that Gk has
a k-Steiner convex subset that is not k + 1-Steiner convex, see Figure 1 for G2. Note
that the outer cycle C of G2 is geodesic convex but not 3-Steiner convex and thus not
Steiner convex. Hence by Theorems 2.1 and 3.2, K = C ◦ Kn is geodesic convex but
not Steiner convex in G2 ◦ Kn for any n ≥ 2.

Figure 1: Graph G2

4 Induced path convexity

In this final section we characterize the J-convex sets of lexicographic products. The
characterization is parallel but not equivalent to Theorems 2.1 and 3.2.

Theorem 4.1 Let G ◦ H be a nontrivial, connected lexicographic product. Then a
proper, non-complete induced subgraph Y of G◦H is J-convex if and only if the following
conditions hold:

(i) pG(Y ) is J-convex in G,
(ii) Y is Λ-complete, and
(iii) H is complete.

Proof. Suppose first that (i)-(iii) hold. Since H is complete, any vertices (g, h1)
and (g, h2) that belong to Y are adjacent and hence clearly JG◦H((g, h1), (g, h2)) ⊆
V (Y ). Consider next vertices (g1, h1), (g2, h2) ∈ V (Y ), where g1 6= g2. Let P be a
(g1, h1), (g2, h2)-induced path in G◦H. Then no edge of P lies in an H-layer and hence
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pG(P ) is an induced g1, g2-path in G. Let (g, h) be an arbitrary inner vertex of P . Since
pG(Y ) is J-convex, gH ∩Y 6= ∅. Moreover, since (g, h) is an inner vertex of the induced
path P and Y is Λ-complete, gH ∩ Y = gH. Therefore (g, h) ∈ JG◦H((g1, h1), (g2, h2))
and hence P ⊆ Y . We conclude that Y is J-convex.

Conversely, let Y be a J-convex subgraph of G ◦ H. Since Y is not complete (by
theorem’s assumption), Y contains an induced path on three vertices (g1, h1), (g2, h2),
(g3, h3). Note that induced paths of length 2 are also isometric and we can use the
same proof as for Theorem 2.1 to see that H is complete (and that G is not).

Consider next pG(Y ) and let g be a Λ-vertex of pG(Y ). Then there exist an induced
path g1, g, g2 in pG(Y ) and vertices h1, h2 in V (H), such that (g1, h1)(g, h)(g2, h2) is an
induced path in Y for every h ∈ V (H). Since Y is J-convex, gH ⊆ Y . We conclude
that Y is Λ-complete.

Finally, if pG(Y ) would not be J-convex in G, Y would not be J-convex. �

To round off the paper, we conclude with yet another path convexity in graphs.
The all-paths interval

A(u, v) = {w ∈ V | w lies on some u, v-path in G}

naturally leads to the all-paths convexity [5, 10]. If G is 2-connected the only non-trivial
all-paths convex sets are V (G) and the singletons. Since a non-trivial lexicographic
product G ◦ H is 2-connected as soon as G is connected, the all-paths convexity is
trivial in G ◦ H. Hence we can give the following concluding observation.

Remark 4.2 Let G be a connected graph and H a graph on at least two vertices. Then
the only all-paths convex sets in G◦H are the empty set, the singletons, and V (G◦H).
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