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a b s t r a c t

The Maker–Breaker domination game (MBD game) is a two-player game played on a
graph G by Dominator and Staller. They alternately select unplayed vertices of G. The
goal of Dominator is to form a dominating set with the set of vertices selected by him
while that of Staller is to prevent this from happening. In this paper MBD game critical
graphs are studied. Their existence is established and critical graphs are characterized
for most of the cases in which the first player can win the game in one or two moves.
© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

It is usually said that the Maker–Breaker game was introduced by Erdős and Selfridge in [10], but it appeared already
earlier in a paper of Hales and Jewett [16]. Anyhow, this is a two-person game played on an arbitrary hypergraph H. The
layers named Maker and Breaker alternately select an unplayed vertex of H during the game. Maker aims to occupy
ll the vertices of some hyperedge, on the other hand, Breaker’s goal is to prevent Maker from doing it. The game has
een extensively researched, both in general and in specific cases, cf. the book [17], the recent paper [19], and references

therein.
In this paper, we are interested in the domination version of the Maker–Breaker game which was introduced in 2020

y Duchêne, Gledel, Parreau, and Renault [9]. The Maker–Breaker domination game (MBD game for short) is a game played
n a graph G = (V (G), E(G)) by two players named Dominator and Staller. These names were chosen so that the players
re named in line with the previously intensively researched domination game [1,2]. Just as in the general case, the two

players alternately select unplayed vertices of G. The aim of Dominator is to select all the vertices of some dominating
set of G, while Staller aims to select at least one vertex from every dominating set of G. There are two variants of this
game depending on which player has the first move. A D-game is the MBD game in which Dominator has the first move
and an S-game is the MBD game in which Staller has the first move.

The following graph invariants are naturally associated with the MBD game [3,15]. The Maker–Breaker domination
umber, γMB(G), is the minimum number of moves of Dominator to win the D-game on Gwhen both players play optimally.
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That is, γMB(G) is the minimum number of moves of Dominator such that he wins in this number of moves no matter how
taller is playing. If Dominator has no winning strategy in the D-game, then set γMB(G) = ∞. The Staller-Maker–Breaker
omination number, γSMB(G), is the minimum number of moves of Staller to win the D-game on G when both players play
ptimally, where γSMB(G) = ∞ if Staller has no winning strategy. In a similar manner, γ ′

MB(G) and γ ′

SMB(G) are the two
arameters associated with the S-game. Briefly, we will call γMB(G), γ ′

MB(G), γSMB(G), and γ ′

SMB(G) the MBD numbers of G.
In the seminal paper [9] it was proved, among other things, that deciding the winner of the MBD game can be solved

efficiently on trees, but it is PSPACE-complete even for bipartite graphs and split graphs. In [8] the authors give a complex
linear algorithm for the Maker–Maker version of the game played on forests. The paper [3] focuses on γSMB(G) and γ ′

SMB(G)
and among other results establishes an appealing exact formula for γ ′

SMB(G) where G is a path. In [4], for every positive
integer k, trees T with γSMB(T ) = k are characterized and exact formulas for γSMB(G) and γ ′

SMB(G) derived for caterpillars.
In the main result of [12], γMB and γ ′

MB are determined for Cartesian products of K2 by a path. In [7], the MBD game is
further studied on Cartesian products of paths, stars, and complete bipartite graphs. The total version of the MBD game
was introduced in [14] and further investigated in [11].

It is known from [7, Lemma 2.3] that all the four graph invariants associated with the MBD game are monotonic for
dding and deleting an edge. This motivates us to introduce MBD game critical graphs as respectively the graphs for
hich γMB, γ ′

MB, γSMB, γ ′

SMB changes as soon as an arbitrary edge is removed/added. For the classical domination game,
his aspect has already been studied in [5,18,20,21]. In the preliminaries, additional definitions are listed and known
esults about the MBD game needed later on are stated. In Section 3, γMB- and γ ′

MB-critical graphs are formally defined. In
the same section the existence of the γMB- and γ ′

MB-critical graphs is established and explicit constructions are provided
or both cases. In the subsequent section 1-γMB-critical, 1-γ ′

MB-critical, and 2-γMB-critical graphs are characterized, while
-γ ′

MB-critical graphs are characterized among bipartite graphs. Finally, γSMB- and γ ′

SMB-critical graphs are formally defined
nd characterized for graphs G with γSMB(G), γ ′

SMB(G) ∈ {1, 2} in Section 5.

2. Preliminaries

Let G = (V (G), E(G)) be a graph. The order of G is denoted by n(G). For a vertex v ∈ V (G), its open neighborhood
s denoted by N(v) and its closed neighborhood by N[v]. The degree of v is deg(v) = |N(v)|. The minimum and the
maximum degree of G are respectively denoted by δ(G) and ∆(G). An isolated vertex is a vertex of degree 0, a leaf is a
ertex of degree 1. A support vertex is a vertex adjacent to a leaf and a strong support vertex is a vertex that is adjacent to

at least two leaves. A set S ⊆ V (G) is x-free for x ∈ V (G) if x /∈ S. As usual, Kn and Pn denote the complete graph and the
ath of order n, while Km,n is the complete bipartite graph of order m + n.
A dominating set of G is a set D ⊆ V (G) such that each vertex from V (G)\D has a neighbor in D. The domination number

γ (G) of G is the minimum cardinality of a dominating set of G. If X is a dominating set of G with |X | = γ (G), then X is
a γ -set of G. A vertex of degree n(G) − 1 is a dominating vertex. If G is a connected bipartite graph, then a vertex x is a
bipartite dominating vertex if x is adjacent to all the vertices of the bipartition set of G which does not contain x. An edge
of a graph G is a dominating edge if it is adjacent to all the other edges of G.

The outcome o(G) of the MBD game played on G can be one of D, S , and N , where o(G) = D, if Dominator has a winning
strategy no matter who starts the game; o(G) = S , if Staller has a winning strategy no matter who starts the game; and
o(G) = N , if the first player has a winning strategy. See [9] that the fourth possible option for the outcome never happens.
We also add that in an optimal strategy of Dominator to achieve γMB(G) or γ ′

MB(G), it is never an advantage for him to
skip a move. Moreover, if Staller skips a move it can never disadvantage Dominator [15, Lemma 2.3]. The same holds for
he games in which Staller wins [3, Lemma 2.6].

In the rest of the preliminaries, we recall known results needed later. For X ⊆ V (G), let G|X denote the graph G in
hich vertices from X are considered as being already dominated. Then we have:

Theorem 2.1 (Continuation Principle [15]). Let G be a graph with A, B ⊆ V (G). If B ⊆ A then γMB(G|A) ≤ γMB(G|B) and
′

MB(G|A) ≤ γ ′

MB(G|B).

Proposition 2.2 ([3]). If G is a graph, then the following properties hold.

1. If o(G) = D then o(G + e) = D for every e /∈ E(G).
2. If o(G) = S then o(G − e) = S for every e ∈ E(G).
3. If o(G) = N then o(G + e) ∈ {N ,D} for every e /∈ E(G).
4. If o(G) = N then o(G − e) ∈ {N , S} for every e ∈ E(G).

Lemma 2.3 ([7]). If G is a graph, then the following properties hold.

(i) γMB(G) ≤ γMB(G − e) for every e ∈ E(G).
(ii) γ ′

MB(G) ≤ γ ′

MB(G − e) for every e ∈ E(G).
(iii) γSMB(G) ≤ γSMB(G + e) for every e /∈ E(G).
(iv) γ ′

SMB(G) ≤ γ ′

SMB(G + e) for every e /∈ E(G).
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Fig. 1. The graph Gk which is a connected (k + 1)-γMB-critical graph.

3. MBD game critical graphs

In this section, we introduce MBD game critical graphs. It is known from [3] that the outcome of the MBD game of a
graph G may change when an edge is removed or added. By Lemma 2.3, the MBD number of a graph G never decreases
by removing an edge. This motivates us to define the MBD game critical graphs as follows.

Definition 3.1. If G is a graph and τ ∈ {γMB, γ
′

MB}, then G is τ -critical, if τ (G) < τ (G − e), for any e ∈ E(G).

Note that in view of Lemma 2.3(i) and (ii), if G is τ -critical, where τ ∈ {γMB, γ
′

MB}, then τ (G) < ∞. If G is τ -critical and
τ (G) = k, where τ ∈ {γMB, γ

′

MB}, then we say that G is a k-τ -critical.
Let γMB(G) = k. Iteratively removing edges e with the property γMB(G − e) = k we arrive at a k-γMB-critical spanning

ubgraph of G. Analogous conclusion holds for a k-γ ′

MB-critical graph. So such critical graphs clearly exists. In the rest of
the section we prove that also connected critical graphs exist.

Consider graphs Gk, k ≥ 1, constructed as follows. First, take the disjoint union of k copies of K2,2 with respective
bipartitions {xi, x′

i}, {yi, y
′

i}, where i ∈ [k]. Then add vertex w and make it adjacent to xi and x′

i for i ∈ [k]. Finally, add a
vertex w′ and the edge w w′. See Fig. 1.

Proposition 3.2. If k ≥ 1, then Gk is a (k + 1)-γMB-critical graph.

Proof. We first note that γ (Gk) = k + 1, so that γMB(Gk) ≥ k + 1. Assume now that Dominator starts the game on Gk by
selecting the vertex w. Then in the rest of the game, he can select one of the vertices xi and x′

i for each i ∈ [k]. It follows
that γMB(Gk) ≤ k + 1.

To show that γMB(Gk − e) > k + 1 for any edge e ∈ E(Gk), by the symmetry of Gk it suffices to consider three typical
edges. Let first e = w w′. Then Dominator must start the game by playing w′. Since the domination number of the large
component of Gk − w w′ is k + 1, it follows that γMB(Gk − w w′) ≥ k + 2. Consider next the edge e = wx1. Clearly, w is
an optimal first move of Dominator. Now Staller replies with the move x1. Since x1, y1, and y′

1 are not yet dominated,
Dominator will need two moves to dominate them. This in turn implies that γMB(Gk − wx1) ≥ k + 2. Consider finally
the edge e = x1y1. In this case, we again see that w is an optimal first move of Dominator and if now Staller replies by
playing x′

1 we can see as in the previous case that γMB(Gk − x1y1) ≥ k + 2. □

To show that there exist connected k-γ ′

MB-critical graphs, consider graphs Hk, k ≥ 1, obtained as follows. First, take
he disjoint union of k+ 1 copies of K2,3 whose respective bipartitions are {xi, x′

i}, {yi, y
′

i, y
′′

i }, where i ∈ [k+ 1]. Then add
ll possible edges between xk+1 and x1, x′

1, . . . , xk, x
′

k, and between x′

k+1 and x1, x′

1, . . . , xk, x
′

k. See Fig. 2.

Proposition 3.3. If k ≥ 1, then Hk is a (k + 1)-γ ′

MB-critical graph.

Proof. Since γ (Hk) = k + 1 and because during the S-game Dominator is able to select one vertex from each of the sets
xi, x′

i}, i ∈ [k + 1], we infer that γ ′

MB(Hk) = k + 1.
To show that Hk is (k+ 1)-γ ′

MB-critical, by the symmetry of Hk it suffices to consider three typical edges of Hk. Assume
first that e = xk+1yk+1. Then in the S-game played on Hk − xk+1yk+1, Staller’s strategy is that she first selects the vertex
x′ . Then Dominator must reply by choosing the vertex y for otherwise Staller wins in her next move by selecting
k+1 k+1
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Fig. 2. The graph Hk which is a connected (k + 1)-γ ′

MB-critical graph.

yk+1. Then Staller selects xk+1 as her second move. Because y′

k+1 and y′′

k+1 are adjacent only to both xk+1 and x′

k+1, Staller
will be able to win the game in her third move by either selecting y′

k+1 or y′′

k+1. As a consequence, γ ′

MB(Hk−xk+1yk+1) = ∞.
The next typical edge to be considered is e = x1xk+1. Then Staller in her strategy first selects the vertex x′

k+1. This move
forces Dominator to play xk+1. As her second move, Staller then plays x1 which in turn forces Dominator to play x′

1. But
now since x1 is not yet dominated, we can conclude that in the rest of the game, Dominator must play at least k more
moves. Hence also in this case, at least k+2 vertices will be selected by him. The last typical edge to be considered is the
edge x1y1. In this case, Staller first selects x′

1 which forces Dominator to play y1 (otherwise Staller will win in her next
move). Now Staller plays x1 and then she wins in her next move. Hence γ ′

MB(Hk − x1y1) = ∞. □

4. Critical graphs with small MBD numbers

In this section, we describe critical graphs for the cases in which Dominator wins the game in one or two moves.

Proposition 4.1. A connected graph G is 1-γMB-critical if and only if G = K1,n, n ≥ 1.

Proof. First, assume that G is connected and 1-γMB-critical. Then G contains a dominating vertex, say u. If possible, suppose
hat there exists an edge e of G that is not incident with u. Then γMB(G − e) = 1, which leads to a contradiction. Hence
very edge of G is incident with u. Thus G is isomorphic to K1,n, n ≥ 1.
Conversely, let G be a star K1,n for n ≥ 1. Clearly, G is connected and γMB(G) = 1. Deletion of any edge of G results in

 disconnected graph and hence Dominator cannot win this game in one move. Therefore G is 1-γMB-critical. □

Let K ′

2,n, n ≥ 1, be the complete split graph (cf. [13]) consisting of a clique of order 2 and an independent set of order
, where every vertex in the independent set is adjacent to both vertices of the clique. (We use this notation because K ′

2,n
can be obtained from K2,n by adding a single edge.)

Theorem 4.2. A connected graph G is 1-γ ′

MB-critical if and only if G = K ′

2,n, n ≥ 1.

Proof. Assume that G is a 1-γ ′

MB-critical graph. Therefore, Dominator can win this game by selecting one vertex in his
irst move as a second player. Thus G has at least two dominating vertices say u and v. Now we show that e = uv is a
ominating edge. Suppose on the contrary that there exists an edge f = xy such that x, y /∈ {u, v}. Then γ ′

MB(G − f ) = 1,
hich is a contradiction. Therefore, every edge of G is incident with either u or v or both. Hence the edge e = uv is a
ominating edge of G. Since u and v are dominating vertices, every vertex other than u and v has degree two in G. It
ollows that G = K ′

2,n for some n ≥ 1.
Conversely, assume that G = K ′

2,n for some n ≥ 1. Then G has two dominating vertices and hence γ ′

MB(G) = 1. Moreover,
G− e has at most one dominating vertex for every e ∈ E(G). Thus in the S-game played on G− e, Dominator needs at least
two moves because Staller can choose the dominating vertex of G− e in her first move if there is such a vertex. Therefore
G is 1-γ ′

MB-critical. □
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Fig. 3. Connected 2-γMB-critical graphs.

Theorem 4.3. A connected graph G is 2-γMB-critical if and only if G is obtained from a star K1,n, n ≥ 1, with center u and a
2,m, m ≥ 2, whose bipartition is {x1, x2}, {y1, y2, . . . , ym}, by adding the edges ux1 and ux2 (see Fig. 3).

Proof. Assume that G is connected and 2-γMB-critical. Since γMB(G) = 2, Dominator cannot finish the game in one move
nd hence G has no dominating vertex.
Let u be an optimal first move of Dominator in the D-game played on G. Suppose that there exists an edge e with both

end-vertices in N(u). Then, Dominator can win the D-game on G− e in two moves using the same strategy as that of the
D-game on G which is a contradiction with the fact that G is a 2-γMB-critical graph. Thus N(u) is an independent set.

Further, we prove that |V (G) \ N[u]| ≥ 2. Since u is not a dominating vertex, |V (G) \ N[u]| ≥ 1. If possible suppose
hat there exists exactly one vertex x ∈ V (G) \ N[u]. Since G is connected, x is adjacent to at least one vertex, say w, in
N(u). Let e = uw be an edge of G and consider a D-game on G− e. Dominator selects u as his first move in G− e. The only
undominated vertices of G are x and w. Therefore, Dominator can finish this game in his next move by selecting either x
or w depending on the Staller’s move and this contradicts that G is 2-γMB-critical.

Since Dominator has a winning strategy with two moves, there exists a, b ∈ V (G) \ {u} that are both adjacent to all
ertices from V (G) \ N(u). If both a, b are from V (G) \ N(u), then γMB(G − e) = 2 holds for any edge e between N(u) and
(G) \ N[u] (at least one such edge must exist, since G is connected), which contradicts the fact that G is 2-γMB-critical.
hus assume that a ∈ N(u). Since γMB(G−ua) > 2, Dominator cannot finish the D-game played on G−ua by first selecting
and then in his second move one vertex from {a, b} (that was not selected by Staller in her first move). This is possible
nly if Staller in her first move selects a and ab /∈ E(G). Since a dominates all vertices of V (G) \ N[u], this implies that
∈ N(u). Hence all vertices of G that dominate the whole G − N(u) are from N(u). Hence in the D-game played on G
ominator’s optimal second move will be a vertex from N(u).
Let a and b be two vertices of N(u) that dominate all vertices in V (G) \ N[u]. Suppose that there exists a vertex

∈ V (G) \ N[u] that is adjacent to y ∈ V (G) \ {a, b}. Then γMB(G − xy) = 2, a contradiction. Hence vertices in V (G) \ N[u]
ave degree 2 in G and are adjacent to a and b.
Finally, we show that |N(u)| ≥ 3. If possible suppose that a and b are the only neighbors of u in G. Let e = ua. Then

γMB(G − e) = 2. Indeed, Dominator can select b as his first optimal move in a D-game played on G − e. The only vertex
undominated after this move is a. Therefore Dominator can finish the game by selecting a vertex in V (G) \ N[u] as his
ext move. Hence we again get a contradiction. Thus |N[u]| ≥ 3.
By the above properties of the graph G we can deduce that vertices in {u} ∪ (N(u) \ {a, b}) induce K1,n for some n ≥ 1,

ertices in the set {a, b} ∪ (V (G) \ N[u]) induce K2,m for m ≥ 2 and au, bu are the only edges between K1,n and K2,m in G.
Conversely, let G be a graph obtained from K1,n, n ≥ 1, with center u, and from K2,m, m ≥ 2, with bipartition {x1, x2},

{y1, y2, . . . , ym}, by adding the edges ux1 and ux2. Clearly, G is connected and Dominator can finish a D-game on G by
electing u as his first move and then selecting either x1 or x2 with respect to the Staller’s first move. So γMB(G) = 2.
Let e be a pendant edge incident to u. Clearly, the graph G − e has an isolated vertex. Dominator selects this isolated

vertex as his first optimal move in a D-game on G − e. And the remaining part of G − e has no dominating vertices.
Therefore Dominator needs at least three moves to finish a D-game on G − e.

Now let e = ux1. Consider a D-game on G− e. Since u is a support vertex Dominator first selects u. Then Staller selects
1. If Dominator selects x2 as his next move then x1 remains undominated. And if Dominator selects a vertex in V (G)\N[u],
hen there is an undominated vertex in V (G) \ N[u]. Therefore Dominator needs at least three moves to finish the game
n G − e. A similar argument also holds for e = ux2.

Now let e be an edge whose one end vertex is x1 and the other end vertex lies in V (G) \ N[u]. Consider a D-game on
−e. Clearly, u and x2 are support vertices. Definitely, Staller can select one of these support vertices in her turn. Therefore
ominator must select the pendant vertex adjacent to the support vertex selected by Staller. Clearly, this restriction does
ot allow Dominator to finish the game on G − e in two moves. Hence γ (G − e) > 2 in this case and this is the same
MB
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when e is an edge between x2 and V (G) \ N[u].
From all these cases we conclude that G is 2-γMB-critical. □

For 2-γ ′

MB-critical graphs we do not have a complete characterization but can give the following necessary conditions.

Proposition 4.4. If G is connected 2-γ ′

MB-critical graph, then the following properties hold.

(i) n(G) ≥ 5.
(ii) δ(G) ≥ 2.
(iii) ∆(G) ≤ n(G) − 2.

Moreover, all the bounds are sharp.

Proof. (i) Let G be a connected 2-γ ′

MB-critical graph. Since γ ′

MB(G) = 2, G has at least four vertices (note that Staller
has two moves and Dominator has two moves). Suppose that G is 2-γ ′

MB-critical connected graph with n(G) = 4. Then G
contains 2K2 as strict spanning subgraph and thus G cannot be 2-γ ′

MB-critical.
(ii) Suppose on the contrary that δ(G) = 1. Let u ∈ V (G) such that deg(u) = 1 and let v be the only neighbor of u. Since
is connected and has at least 5 vertices by (i), we have deg(v) ≥ 2.
Now consider an S-game on G. The vertex v is an optimal first move of Staller, cf. [9]. Therefore Dominator must play

as his first reply, otherwise, Staller will win this game by selecting u. Since γ ′

MB(G) = 2, Dominator can dominate all the
vertices of G other than u and v in his next move. Hence there exist a, b ∈ V (G) \ {u, v} that dominate all the vertices of
V (G)\ {u, v} or, equivalently, the subgraph of G induced by V (G)\ {u, v} has two dominating vertices. Let e be an arbitrary
edge incident with v but not with u. Then γ ′

MB(G − e) = 2, a contradiction with G being 2-γ ′

MB-critical. Thus we conclude
that δ(G) ≥ 2.

(iii) Let G be connected and 2-γ ′

MB-critical. Since γ ′

MB(G) ̸ = 1, G has at most one dominating vertex. For the purpose of
contradiction assume that G contains a dominating vertex u, i.e. deg(u) = n(G) − 1. It is known from [6, Proposition 4.2]
that γ ′

MB(G) = 2 implies that there exists a vertex v ̸ = u such that {v , v1} and {v , v2} are two u-free γ -sets. Since
deg(v) < n − 1, there is a vertex w in G which is not adjacent to v. We consider two cases for the remaining part.

Case 1: w /∈ {v1, v2}.
Since {v , v1} and {v , v2} are two u-free γ -sets of G, the vertex w must be dominated by both v1 and v2. Let e = uw.

onsider an S-game on G − e. If Staller first selects u, then Dominator can select all the vertices from either {v , v1} or
{v , v2} and win the game in two moves.

If Staller first selects a vertex other than u, then Dominator must select u. In this case, the only undominated vertex is
w. Since w is dominated by all the vertices from the set A = {w , v1, v2}, Dominator can select any vertex of A (depending
on Staller’s move) and win the game in two moves. This contradicts that G is 2-γ ′

MB-critical.

Case 2: w ∈ {v1, v2}.
In this case, v1v2 must be an edge of G. Let e = uv1. Consider an S-game on G−e. If Staller selects a vertex from the set

{v1, v2}, then Dominator selects the other one. Now Dominator selects one vertex from {u, v} (depending on the Staller’s
ove) and wins the game in his second move. This leads to a contradiction to the assumption that G is 2-γ ′

MB-critical.
ow, if Staller selects u, then Dominator can select all the vertices from either {v , v1} or {v , v2} in his first two moves
nd finishes the game in two moves, a contradiction.
To prove that all three bounds are sharp, consider the complete bipartite graphs K2,n, n ≥ 3, which are connected and

-γ ′

MB-critical. □

To conclude the section we characterize connected bipartite graphs that are 2-γ ′

MB-critical. The result will follow from
the following two lemmas.

Lemma 4.5. Let G be a bipartite graph with bipartition V1, V2, where |Vi| ≥ 3, i ∈ [2]. If G has exactly two bipartite dominating
vertices in each Vi, i ∈ [2], and every vertex has degree two except bipartite dominating vertices, then G is 2-γ ′

MB-critical.

Proof. Let G be a graph satisfying the above properties. Let vi,1 and vi,2 be the bipartite dominating vertices of Vi, i ∈ [2].
learly, {v1,1, v2,1}, and {v1,1, v2,2} are two v1,2-free γ -sets of cardinality 2. Also {v1,2, v2,1}, and {v1,2, v2,2} are two v1,1-free

γ sets of cardinality 2. Therefore Dominator can select two vertices from one set irrespective of Staller’s move and win the
game in two moves. Thus γ ′

MB(G) = 2. Now we show that G is critical. Any edge of G either has two bipartite dominating
vertices as endpoints or has exactly one bipartite dominating vertex as an endpoint. Let first e = v1,1v2,1. Consider an
S-game on G−e. Clearly, the only bipartite dominating vertices in G−e are v1,2 and v2,2. In her strategy Staller first selects
one of the bipartite dominating vertices, say v1,2. If the first optimal move of Dominator is in V2, then by Theorem 2.1,
2,2 is an optimal first move of Dominator. Now all the vertices in V2 except v2,2 are undominated. Thus Staller selects v1,1

as her next move. Any vertex in V1 \ {v1,1, v1,2} dominates only v2,1 and v2,2 in V2. But V2 has at least three vertices and
Dominator cannot finish the game in two moves. Now assume that an optimal first move of Dominator is in V1. Let the
first optimal move of Dominator be v after the same first move of Staller. Now Staller selects v . So the undominated
1,1 2,1
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vertices are v2,1 and all vertices in V1 except v1,1. Since G is bipartite, Dominator needs at least two more moves to finish
he game in this case. Finally, assume that Dominator selects an unplayed vertex other than v1,1 in V1 after the same
irst move of Staller. This vertex only Dominates itself and both the vertices v2,1 and v2,2. It is clear that there are still
ndominated vertices in both V1 and V2. Therefore Dominator needs at least three moves to finish the game. Hence we
an conclude that γ ′

MB(G − e) > 2.
If e is an edge between any two bipartite dominating vertices, then γ ′

MB(G − e) > 2 is proved by similar arguments as
above.

Finally, let e = ab be an edge, where exactly one of its end vertices, say a, is a bipartite dominating vertex. Clearly, b
is the leaf of G − e. Therefore Staller first selects the support vertex of G − e and then Dominator must select the leaf b
f G− e as his first move. We can see that there are still undominated vertices in both V1 and V2. So Dominator needs at
east two more moves to finish the game. Thus we can conclude that γ ′

MB(G − e) > 2.
Therefore G is a connected 2-γ ′

MB-critical graph. □

Lemma 4.6. Let G be a connected bipartite graph with bipartition V1, V2. If G is 2-γ ′

MB-critical, then G is either K2,m for m ≥ 3,
or |Vi| ≥ 3 for i ∈ [2] and G has exactly two bipartite dominating vertices in each Vi, i ∈ [2] and all other vertices of G are of
degree 2.

Proof. Let V1 = {v1,1, . . . , v1,m} and V2 = {v2,1, . . . , v2,n}. First assume that G is 2-γ ′

MB-critical. If |Vi| = 1 for some i ∈ [2],
then Proposition 4.4 implies that |Vj| ≥ 4 for j ∈ [2] \ {i} and thus G = K1,ℓ, ℓ ≥ 4. Hence γ ′

MB(G) = ∞, a contradiction
ith G being 2-γ ′

MB-critical. Therefore, since n(G) ≥ 5 by Proposition 4.4, we may without loss of generality assume that
V1| ≥ 2 and |V2| ≥ 3.

First assume that |Vi| = 2 for some i ∈ [2] and consequently |Vj| ≥ 3 for j ∈ [2] \ {i}. Since δ(G) ≥ 2 by Proposition 4.4,
ny vertex x ∈ Vj is adjacent to both vertices of Vi. Hence G is isomorphic to K2,m, where m = |Vj| ≥ 3. In the rest of the
roof we may thus assume that |Vi| ≥ 3 for i ∈ [2].
Suppose that Vi has at most one bipartite dominating vertex, say vi,1 for some i ∈ [2]. Then Staller selects vi,1 in her

first move and she is able to select her second vertex so that Dominator cannot finish the game within two moves, a
contradiction. Therefore, each Vi has at least two bipartite dominating vertices.

Suppose that Vi for some i ∈ [2] contains three bipartite dominating vertices, say vi,1, vi,2, and vi,3. Let vj,1 and vj,2
be two bipartite dominating vertices of Vj. Consider the edge e = vi,3vj,3. Then vi,1, vj,1, vi,2, vj,2 are bipartite dominating
vertices in G−e. Therefore Dominator has a strategy to win the game on G−e in two moves by selecting one of the bipartite
dominating vertices in each Vi, i ∈ [2], no matter how Staller plays. Thus γ ′

MB(G− e) = 2 and hence G is not 2-γ ′

MB-critical,
a contradiction. Therefore each Vi, i ∈ [2], has exactly two bipartite dominating vertices, say v1,1, v2,1, v1,2, v2,2.

Finally suppose that there is an edge e in G with both of its end vertices in V (G) \ {v1,1, v2,1, v1,2, v2,2}. Therefore the
vertices v1,1, v2,1, v1,2, v2,2 are bipartite dominating vertices in G−e and hence γ ′

MB(G−e) = 2, a contradiction with G being
2-γ ′

MB-critical. Therefore at least one end point of each edge of G is a bipartite dominating vertex and thus degG(x) = 2
for any x ∈ V (G) \ {v1,1, v2,1, v1,2, v2,2}. □

If n,m ≥ 3, then let Bn,m be the bipartite graph with a bipartition V1, V2, where |V1| = n, |V2| = m. The set V1 contains
xactly two vertices of degree m, the set V2 contains exactly two vertices of degree n, while all the other vertices of
n,m are of degree 2. This uniquely defines Bn,m. With this definition in hand the following characterization of connected
ipartite 2-γ ′

MB-critical graphs can be deduced from Lemmas 4.5 and 4.6.

Theorem 4.7. A connected bipartite graph G is 2-γ ′

MB-critical if and only if either G = K2,m, m ≥ 3, or G = Bn,m, n,m ≥ 3.

A bit surprisingly, there exist also connected, non bipartite 2-γ ′

MB-critical graphs. Let G be a graph obtained from two
disjoint copies of K3 and a vertex x by connecting x with exactly one vertex in each copy of K3. The graph G is 2-γ ′

MB-critical
raphs. In view of this example and of Proposition 4.4 and Lemma 4.5, we conclude the section with:

Problem 4.8. Characterize 2-γ ′

MB-critical graphs.

5. SMBD game critical graphs

In this section, we introduce SMBD game critical graphs. By Lemma 2.3(iii), (iv), the SMBD number of a graph never
ecreases by adding an edge to the graph. Hence, in this case we define critical graphs as follows.

Definition 5.1. If G is a graph and τ ∈ {γSMB, γ
′

SMB}, then G is τ -critical, if τ (G) < τ (G + e), for any edge e /∈ E(G).

Note that in view of Lemma 2.3(iii) and (iv), if G is τ -critical, where τ ∈ {γSMB, γ
′

SMB}, then τ (G) < ∞. If G is τ -critical
nd τ (G) = k, where τ ∈ {γSMB, γ

′

SMB}, then we say that G is a k-τ -critical.
Let γSMB(G) = k. Iteratively adding edges e /∈ E(G) with the property γSMB(G + e) = k we arrive at a k-γSMB-critical

raph. Hence, any graph G with γSMB(G) = k is a spanning subgraph of a k-γSMB-critical graph. Analogous conclusion holds
for a k-γ ′ -critical graph. So such critical graphs clearly exists.
SMB
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Fig. 4. Graphs G′

5 ∪ K1 and G′′

5 .

Proposition 5.2. If G is a graph, then the following holds.

(i) G is 1-γSMB-critical if and only if G = 2K1 or G = Kn ∪ 2K1, n ≥ 1.
(ii) G is 1-γ ′

SMB-critical if and only if G = Kn ∪ K1, n ≥ 1.

Proof. (i) Assume that G = 2K1 or G = Kn ∪ 2K1, n ≥ 1. Since G has at least two isolated vertices, γSMB(G) = 1. Moreover,
any edge e /∈ E(G) is incident to at least one of the isolated vertices. Therefore, G+ e contains at most one isolated vertex
and hence γSMB(G + e) ≥ 2 for any e /∈ E(G). Thus G is 1-γSMB-critical.

Conversely, assume that G is 1-γSMB-critical, that is, γSMB(G) = 1 and γSMB(G + e) ≥ 2 for any e /∈ E(G). Hence G has at
least two isolated vertices, and for any e /∈ E(G), the graph G + e has at most one isolated vertex. Therefore, if e /∈ E(G),
then e is incident to at least one of the isolated vertices. This is possible only when G is either 2K1 or Kn ∪ 2K1 for n ≥ 1.

(ii) Assume that G is Kn ∪ K1 for n ≥ 1. Since G has an isolated vertex, γ ′

SMB(G) = 1. Moreover, any edge e /∈ E(G) is
incident to the vertex of K1. Therefore, G + e has no isolated vertices and hence γ ′

SMB(G + e) ≥ 2 for any e /∈ E(G). Thus G
is 1-γ ′

SMB-critical.
Conversely, assume that G is 1-γ ′

SMB-critical, that is, γ
′

SMB(G) = 1 and γ ′

SMB(G + e) ≥ 2 for any e /∈ E(G). Thus G has at
least one isolated vertex and for any e /∈ E(G) it follows that G + e has no isolated vertices. Therefore, G has an isolated
vertex x such that any edge e /∈ E(G) is incident to x. This is possible only when G = Kn ∪ K1, n ≥ 1. □

To describe 2-γ ′

SMB-critical graphs and 2-γ ′

SMB-critical graphs, we define the following two families of graphs. A graph
′
n is a graph obtained from Kn by attaching exactly two pendent vertices to a vertex of Kn, and a graph G′′

n is obtained
rom Kn by respectively attaching exactly two pendent vertices to two different vertices of Kn. See Fig. 4.

For the proof of the next result we recall from [6, Proposition 4.4] that if G is a graph with δ(G) ≥ 1, then γSMB(G) = 2
if and only if G has at least two strong support vertices, and that γ ′

SMB(G) = 2 if and only if G has a strong support vertex.

Theorem 5.3. If G is a graph, then the following holds.

(i) G is 2-γSMB-critical if and only if G = G′
n ∪ K1, n ≥ 1, or G = G′′

n , n ≥ 2.
(ii) G is 2-γ ′

SMB-critical if and only if G = G′
n, n ≥ 1.

Proof. (i) Assume that G is 2-γSMB-critical. That is, γSMB(G) = 2 and γSMB(G+ e) > 2 for any edge e /∈ E(G). Hence G either
as exactly one strong support vertex and exactly one isolated vertex, or δ(G) ≥ 1 and G has exactly two strong support
ertices.
First, assume that G has exactly one strong support vertex u with two leaf neighbors u1, u2 and isolated vertex v. Since

γSMB(G + e) > 2 for any edge e /∈ E(G), it follows that G + e has either no strong support vertices or no isolated vertices.
Hence any edge e /∈ E(G) is either incident with v or with a vertex from {u1, u2}. Thus G = G′

∪ K1. Assume now that
has exactly two strong support vertices and δ(G) ≥ 1. Since G is critical, G + e has at most one strong support vertex.
his is possible only when any edge e /∈ E(G) is incident with at least one pendant vertex of G that eliminates at least one
trong support vertex. Thus G = G′′

n .
Conversely assume that G = G′

n∪K1, n ≥ 1, or G = G′′
n , n ≥ 2. Then G has either a strong support vertex and an isolated

ertex, or two strong support vertices. Therefore γSMB(G) = 2. Since any edge e /∈ E(G) is incident to either the isolated
vertex or a pendant vertex, the graph G+ e has either at most one strong support vertex and no isolated vertices, or one
isolated vertex and no strong support vertices. Therefore γSMB(G + e) > 2. Thus G is 2-γSMB-critical.

(ii) Assume that G is 2-γ ′

SMB-critical, that is, γ
′

SMB(G) = 2 and γ ′

SMB(G + e) > 2 for any edge e /∈ E(G). Hence δ(G) = 1
nd G has exactly one strong support vertex. Moreover, any edge e /∈ E(G) is incident to a pendant vertex so that G + e
as no strong support vertices. Hence G = G′

n.
Conversely assume that G = G′

n. Since G has a strong support vertex with exactly two leaf neighbors, γ ′

SMB(G) = 2. As
ny edge e /∈ E(G) is incident with at least one of the pendant vertices, G + e has no strong support vertices and hence
′

SMB(G + e) > 2. Thus G is 2-γ ′

SMB-critical. □
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Recall that G|X denotes the graph G in which vertices from X ⊆ V (G) are considered as being already dominated. For
v ∈ V (G), let Gv be a graph obtained from G|N[v] by deleting all dominated vertices x ∈ V (G|N[v]) with N[x] ⊆ N[v].
Assume now that G is 2-γSMB-critical, so that in view of Theorem 5.3, G is K1 ∪ G′

n for some n ≥ 1, or G′′
n for n ≥ 2. Then

here exists a vertex v ∈ V (G) (an isolated vertex or a strong support vertex of G) such that Gv is 2-γ ′

SMB-critical. We
onder if this holds also for k-γSMB-critical graphs with k ≥ 3:

Question 5.4. Let G be a k-γSMB-critical graph, k ≥ 3. Is it true that there exists a vertex v ∈ V (G) such that Gv is γ ′

SMB-critical?
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