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Abstract. The vertex set of the resonance graph of a hexagonal graph G consists of

1-factors of G, two 1-factors being adjacent whenever their symmetric difference forms

the edge set of a hexagon of G. A decomposition theorem for the resonance graphs of

catacondensed hexagonal graph is proved. The theorem intrinsically uses the Cartesian

product of graphs. A canonical binary coding of 1-factors of catacondensed hexagonal

graphs is also described. This coding together with the decomposition theorem leads to

an algorithm that returns a Hamilton path of a catacondensed hexagonal graph.
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1. INTRODUCTION

By a hexagonal graph we mean a simple 2-connected plane graph in which all inner

faces are hexagons (and all hexagons are faces), such that two hexagons are either dis-

joint or have exactly one common edge, and no three hexagons share a common edge.

Hexagonal graphs are sometimes also called fusenes. They generalize benzenoid graphs

that are defined as 2-connected subgraphs of the hexagonal lattice. A hexagonal graph G

is catacondensed if any triple of hexagons of G has empty intersection, cf. Fig. 2.

Catacondensed hexagonal/benzenoid graphs form a well studied class of graphs. Among

many different topics studied on this class of graphs we briefly mention counting the num-

ber of Kekulé structures [18, 19], the theory of elementary edge-cuts [9, 11], the Schultz

index (or molecular topological index, MTI) [3] and the coding problem of Kekulé struc-

tures [12]. For more information on hexagonal graphs and related concepts we refer to

the book [8].

Let G be a hexagonal graph. Then the vertex set of the resonance graph of G consists

of the 1-factors of G, two 1-factors being adjacent whenever their symmetric difference

forms the edge set of a hexagon of G. For instance, the construction of the resonance

graph of the phenanthrene is presented in Fig. 1.
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Figure 1: Phenanthrene G, 1-factors F1, F2, F3, F4, F5 of G, and its resonance graph R(G).



The concept of the resonance graph was introduced independently in mathematics

(under the name Z-transformation graphs) by Zhang, Guo, and Chen [22] and in chemistry

first by Gründler [6, 7] and later by El-Basil [4, 5] as well as by Randić with co-workers

[16, 17]. In fact, the model appears to be very natural in chemistry, see the arguments

from the introduction of [12] and references therein.

It turned out that resonance graphs of benzenoid/hexagonal graphs posses a lot of

structure. Zhang, Guo, and Chen [22] proved that the resonance graph of a benzenoid

graph with at least one 1-factor is connected, bipartite, and has, except in one special case,

girth 4. Chen and Zhang [1] followed with a theorem asserting the resonance graph of a

catacondensed benzenoid graph contains a Hamilton path, while in [15] it is established

that the resonance graphs of the catacondensed benzenoid graphs belong to the class of

median graphs. (In fact, the main result of the paper is slightly more general—it holds

for the class of the so-called even ring systems.) The latter result turned out to be very

useful, as it led (i) to an algorithm that assigns a unique and quite short binary code to

every 1-factor of a catacondensed benzenoid graph [12] and (ii) to a simple method for

determining the so-called Clar number of such graphs [14].

We also mention that the enumeration of benzenoid graphs whose resonance graphs

have a vertex of degree one has been treated in [21]. The concept of the resonance graph

has been extended (and studied) in [23, 24] in the natural way to plane bipartite graphs.

For instance, in [23] it has been shown that the block graph of the resonance graph of a

plane elementary bipartite graph is a path.

In this paper we closely examine the structure of the resonance graphs of hexagonal

graphs. In the next section we give definitions and concepts needed in this paper. In

particular we describe the Cartesian product of graphs that plays a crucial role in our

main result. This result—decomposition theorem—is presented and illustrated with two

examples in Section 3, while its proof is given in Section 4. We follow with a section

describing a canonical binary coding of 1-factors of a catacondensed hexagonal graph.

Combining this coding with the decomposition theorem an algorithm is presented in

Section 6 that returns a Hamilton path of a catacondensed hexagonal graph. The paper

is concluded with two open problems.

2. PRELIMINARIES

A hexagon of a catacondensed hexagonal graph can share an edge with at most three

other hexagons. According to this, we will say that a hexagon is of degree tree, two, or

one, respectively. If A and B are incident hexagons of a catacondensed hexagonal graph,

then the two edges of A that have exactly one vertex on B are called the link of A to B.



A hexagon of degree one is also called pendant. The edge of a pendant hexagon that is

shared with another hexagon will be called a join edge. In Fig. 2 we see a catacondensed

hexagonal graph G that is not a benzenoid graph. Its hexagons A, B, and C are of degree

two, tree, and one, respectively, while the edges f and g form the link of A to B.
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Figure 2: Catacondensed hexagonal graph G.

Let a hexagon A of a catacondensed hexagonal graph be adjacent to exactly two other

hexagons. Then A possesses two vertices of degree 2. A is called angularly connected, if

these two vertices are adjacent.

Let e be an edge of a hexagonal graph G. Then the cut Ce corresponding to e is the

set of edges so that with every edge e′ of Ce also the opposite edge with respect to a

hexagon containing e′ belongs to Ce. (As hexagonal graphs admits isometric embeddings

into hypercubes [11], Ce can also be described as the equivalence class of the Djoković-

Winkler [2, 20] relation Θ containing e, cf. [10].)

A matching of a graph G is a set of pairwise independent edges. A matching is a 1-

factor, if it covers all the vertices of G. For a graph G, let F(G) be the set of its 1-factors.

In addition, if e1, e2, . . . , en are fixed edges of G, let F(G; e1, e2, . . . , en) denotes the set of

those 1-factors of G that contain the fixed edges.

Let G be a hexagonal graph. Then the vertex set of the resonance graph R(G) of

G consists of all 1-factors of G, two 1-factors being adjacent whenever their symmetric

difference is the edge set of a hexagon of G. We also set R(K2) = R(K1) = K1.

The Cartesian product G2H of graphs G and H is the graph with the vertex set

V (G) × V (H) and (a, x)(b, y) ∈ E(G2H) whenever ab ∈ E(G) and x = y , or, if a = b

and xy ∈ E(H). In Fig. 3 the Cartesian product of the path on 6 vertices P6 and the

claw graph K1,3 is depicted.

It is well known that the Cartesian product is associative, cf. [10, Proposition 1.36].

Hence the Cartesian product of graphs G1, G2, . . . , Gk can be written as G12G22 · · ·2Gk.
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Figure 3: P62K1,3

The vertex set of such a product is then the set of all k-tuples (u1, u2, . . . , uk), where

ui ∈ Gi, while (u1, u2, . . . , uk) is adjacent to (v1, v2, . . . , vk) whenever there is an index

j such that ujvj is an edge of Gj and ui = vi for all i 6= j. The n-cube Qn (or the

n-dimensional hypercube) is the graph whose vertices are all binary words of length n,

two words being adjacent whenever they differ in precisely one place. In other words, Qn

is just the Cartesian product of n copies of the complete graph on two vertices K2.

Let H be a fixed subgraph of a graph G, H ⊆ G. The peripheral expansion pe(G; H)

of G with respect to H is the graph obtained from the disjoint union of G and an iso-

morphic copy of H , in which every vertex of the copy of H is joined by an edge with the

corresponding vertex of H ⊆ G. Note that the ends of the newly introduced edges induce

a subgraph of pe(G; H) isomorphic to H2K2.

Finally, for X ⊆ V (G) let G[X] denotes the subgraph of G induced by the set X.

3. DECOMPOSITION THEOREM

In this section we present our main theorem and illustrate it with a couple of examples.

Before we state the result, some preparation is needed.

Let G be a catacondensed hexagonal graph and e the edge of G with ends of degree

two. Let e = e0, e1, . . . , en be the edges of the cut Ce, and let A1 = A, A2, . . . , An be

the corresponding hexagons. Let e+ and e− be the edges of An incident to en, where

e+ is the right edge looking from e = e0 to en while e− is the left edge. We say that

e+ and e− are the right and the left turn-edge of Ce, respectively. Remove now from G

the hexagons A1, . . . , An, except the turn-edges e+ and e−. Then the remaining graph

consists of two connected components Ge+ and Ge−, where e+ ∈ Ge+ and e− ∈ Ge−.

Note that any of Ge+ and Ge− is either a catacondensed hexagonal graph or a K2. If Ge+

is a catacondensed hexagonal graph, we repeat the described construction on Ge+, where



the construction begins with e+. In this way we obtain two connected subgraph of G

denoted Ge++ and Ge+−. Similarly, if Ge− is a catacondensed hexagonal graph, then we

repeat the construction on Ge−, starting with e−, to obtain connected subgraphs Ge−+

and Ge−−. In the case that Ge+ = K2 we set Ge++ = K1 and Ge+− = K1, and if Ge− = K2

we set Ge−+ = K1 and Ge−− = K1. These notations are illustrated in Fig. 4.
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Figure 4: Subgraphs Ge+, Ge−, Ge++, Ge+−, Ge−+, Ge−− of G.

Now we are ready to state:

Theorem 1 Let G be a catacondensed hexagonal graph and e the edge with ends of degree

two with |Ce| = n + 1, where n ≥ 1. Let Y = R(G)[F(G; e)], X = R(G)[F(G; e, e+, e−)],

and X1 the copy of X in the first Y -layer of Y 2Pn. Then

R(G) = pe(Y 2Pn; X1) .

Moreover,

(i) Y = R(Ge+)2R(Ge−) and

(ii) X1 = X = R(Ge++)2R(Ge+−)2R(Ge−+)2R(Ge−−).



Theorem 1 is proved in the next section, in the rest of this section we illustrate it with two

examples. For the first example consider the graph G from Fig. 4. The construction of

R(G) is illustrated in Fig. 5. The graph Y = R(Ge+)2R(Ge−) contains 40 vertices hence

it is not drawn and therefore neither is R(G). The black vertices present the vertices of

X1 that are expanded from Y .
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Figure 5: The decomposition theorem for the graph G of Fig. 4.

In the second example we consider the starphene graphs HSj,k,l, j, k, l ≥ 1, the defini-

tion of which should be clear from the example in Fig. 6. Let e be the edge of a pendant

hexagon A corresponding to the parameter j opposite to the join edge of A, cf. Fig. 6.

Then |Ce| = j + 2, |Ce+| = k + 2 and |Ce−| = l + 2.
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Figure 6: A starphene graph HS3,1,2 and its resonance graph.



Let HSj,k,l be a starphene graph and let edges e, e+, and e− belong to the segments

of length j, k, and l, respectively. Then R(Ge+) = Pk+1, R(Ge−) = Pl+1 and n = j + 1.

The resonance graphs of components Ge++, Ge+−, Ge−+, Ge−− are all isomorphic to the

one vertex graph K1. So, by the Theorem 1,

R(HSj,k,l) = pe(Y 2Pn; X1) = pe(Pj+12Pk+12Pl+1; X1) ,

where X1 is the one vertex graph K1. We will show in Section 5 how one determines the

position of the peripheral expansion of X1.

4. PROOF OF THE DECOMPOSITION THEOREM

We now prove Theorem 1 and begin with two lemmas. The first one is proved in [13]

for the case of catacondensed benzenoid graphs. Analogous proof works for catacondensed

hexagonal graphs, but to make the paper self-contained we repeat the argument.

Lemma 2 R(G)[F(G; e)] = R(Ge+)2R(Ge−).

Proof. A 1-factor F ∈ F(G; e) is fixed on all the hexagons intersected by Ce except on the

hexagon containing e+ and e−. If Ge+ = K2 (or Ge− = K2) then e+ ∈ F (or e− ∈ F ).

The edge en does not belong to F , for otherwise F cannot be extended to a 1-factor of G.

If follows that, selecting a 1-factor F ′ of Ge+ and a 1-factor F ′′ of Ge−, there is a unique

way to extend it to a 1-factor from F(G; e). By the definition of the Cartesian product,

the lemma follows easily. 2

Lemma 3 R(G)[F(G; e, e+, e−)] = R(Ge++)2R(Ge+−)2R(Ge−+)2R(Ge−−).

Proof. A 1-factor F from F(G; e, e+, e−) is fixed on all hexagons intersected by Ce.

Moreover, F is also fixed on all hexagons intersected by Ce+, except on the hexagon

containing the turn-edges according to e+. Analogous conclusion holds for hexagons

intersected by Ce−.

Using analogous arguments as in Lemma 2 it follows that, selecting 1-factors F ′
1 ∈

F(Ge++), F ′′
1 ∈ F(Ge+−), F ′

2 ∈ F(Ge−+), and F ′′
2 ∈ F(Ge−−), there is a unique way to

extend them to a 1-factor of F(G; e, e+, e−). The conclusion now follows by the definition

of the Cartesian product. 2

Using Lemma 2 and Lemma 3 we now prove Theorem 1. Note first that

F(G) = F(G; e0) + F(G; e1) + · · ·+ F(G; en) , (1)



that is, the sets of 1-factors F(G; ei), 0 ≤ i ≤ n, partition the set of all 1-factors of G.

Assume n = 1. Then R(G)[F(G; e0)] = Y by Lemma 2, where e = e0. Since

R(G)[F(G; e1)] = R(G)[F(G; e0, e+, e−)], Lemma 3 gives us R(G)[F(G; e1)] = X1. Each

1-factor from F(G; e1) is adjacent to exactly one 1-factor from F(G; e0), since we have

edges of the hexagon A1 in their symmetric difference and thus

R(G) = R(G)[F(G; e0) + F(G; e1)] = pe(Y2P1; X1) .

Let n = 2. Then again e = e0. Since 1-factors from F(G; e0) and F(G; e1) are fixed on

the hexagon A1, the corresponding resonance graphs are isomorphic. Hence by Lemma 2,

R(G)[F(G; e1)] = R(G)[F(G; e0)] = Y . The rest of the proof now follows the same lines

as in the case n = 1.

Suppose that n ≥ 3. Then for i = 1, 2, . . . , n − 2, a 1-factor Fi ∈ F(G; ei) is adjacent

(in R(G)) to exactly one 1-factor Fi−1 ∈ F(G; ei−1) and to exactly one 1-factor Fi+1 ∈

F(G; ei+1). Moreover, Fi−1 and Fi+1 are the only 1-factors from F(G) \F(G; ei) that are

adjacent to Fi. So the symmetric difference of Fi−1 and Fi is the edge set of Ai, while the

symmetric difference of Fi and Fi+1 is the edge set of Ai+1, cf. Fig. 7.

Consider next a 1-factor F0 ∈ F(G; e0). It is adjacent to precisely one 1-factor F1 ∈

F(G; e1) and their symmetric difference is the edge set of A1. Similarly, Fn−1 ∈ F(G; en−1)

is in the resonance graph induced by the vertices from F(G) \ (F(G; en) + F(G; en−1))

adjacent to exactly one 1-factor Fn−2 ∈ F(G; en−2), so that the edges of An−2 form the

symmetric difference of Fn−1 and Fn−2.

For i = 0, 1, . . . , n−1, any 1-factor from F(G; ei) is fixed on hexagons A1, A2, . . . , An−1.

Thus the resonance graphs induced by the sets F(G; ei), i = 0, 1, . . . , n − 1, are all

isomorphic. Hence Lemma 2 yields

R(G)[F(G; ei)] = R(Ge+)2R(Ge−) , i = 0, 1, . . . , n − 1 .

From the above considerations we conclude that

R(G)[F(G; e0) + F(G; e1) + . . . + F(G; en−1)] = R(Ge+)2R(Ge−)2Pn = Y 2Pn . (2)

Consider now a 1-factor Fn ∈ F(G; en). It is adjacent to exactly one 1-factor F from

F(G; e0) + F(G; e1) + . . . + F(G; en−1). The 1-factor F belongs to F(G; en−1) and the

symmetric difference of Fn and F is the edge set of An, cf. Fig 7. Since Fn is fixed exactly

on the same hexagons as an arbitrary 1-factor from F(G; en−1, e+, e−), we infer that

R(G)[F(G; en)] = R(G)[F(G; en−1, e+, e−)] . (3)

By (1),

R(G) = R(G)[F(G; e0) + F(G; e1) + . . . + F(G; en)] ,
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Figure 7: Decomposition of R(G).

hence combining this equality with (2) and (3) we get

R(G) = pe(Y 2Pn; R(G)[F(G; en−1, e+, e−)]) . (4)

Finally, a 1-factor from F(G; en−1, e+, e−) is fixed on the same hexagons as a 1-factor

from F(G; e0, e+, e−), thus the corresponding resonance graphs are isomorphic. Hence,

using Lemma 3, where e0 = e, we have

R(G)[F(G; en−1, e+, e−)] = R(Ge++)2R(Ge+−)2R(Ge−+)2R(Ge−−) = X1

so the theorem is established by plugging the last equality into (4). 2

We conclude the section by noting that Theorem 1 can be generalized to any edge

belonging to the cut Ce, except the edge incident with edges e+ and e−.

5. CANONICAL BINARY CODING

We have already mentioned that in [12] an algorithm is given by means of which to

every 1-factor of a catacondensed benzenoid graph (with h hexagons) a binary code (of

length h) is assigned. The algorithm is based on the results from [13, 15] where it is

proved that the resonance graph R(G) of a catacondensed benzenoid graph G can be

isometrically embedded into the h-dimensional hypercube Qh, where h is the number of

hexagons of G. Moreover, it is not difficult to see that the same approach can be applied

to catacondensed hexagonal graphs as well.

In this section we first summarize the basis of the above algorithm. Furthermore, since

the role of the digits in the coding algorithm can vary, we describe a procedure that gives

the so-called canonical coding. This coding will then be applied in the next section to the

Hamilton path problem.



Let A be a pendant hexagon of a catacondensed hexagonal graph G. Let G′ be the

graph obtained from G by removing A (but not the join edge). Suppose that G′ contains

h−1 hexagons and that we have already embedded R(G′) into Qh−1. Let S(G′) be the set

of the binary strings of length h−1 corresponding to the embedding of R(G′). In order to

establish the embedding of G we distinguish three cases with respect to the corresponding

1-factors as shown in Fig. 8.
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Figure 8: Possible intersections of a 1-factor with A.

The corresponding set of strings of length h is obtained by concatenating 0 to each

x ∈ S(G′) if (a) or (b) is the case, and by concatenating 1 to each x ∈ S(G′) if (c) is the

case. In other words, we add 1 if there is the link of A to the neighboring hexagon and

0 if the link is not present. Since G′ is a catacondensed hexagonal graph, the method

can be applied as a recursive procedure repeated until a single hexagon remains. The two

1-factors of a single hexagon are shown in Fig. 9. Their set of strings consists of digits 0

and 1, where 1 pertains to the 1-factor on the left-hand side and 0 to the 1-factor at the

right-hand side. We call the above coding of 1-factors of G the canonical coding.
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Figure 9: 1-factors and codes of a hexagon.

To see the benefits of the canonical coding consider the linear chain Lh with h

hexagons. Let e be the edge of Lh as shown in Fig. 10, and let e = e0, e1, . . . , en be

the consecutive edges of the cut Ce. It is straightforward to conclude that 1i0h−i is the

canonical code of the 1-factor containing ei, where 1i0h−i denotes the string obtained by

concatenating the string of i ones with the string of h − i zeros. In Fig. 10 these obser-

vations are illustrated on the linear chain L4. In conclusion, the number of ones in the



canonical code corresponds to the index of the edge ei, and the coding returns

000 . . . 00, 100 . . . 00, 110 . . . 00, . . . , 111 . . . 10, 111 . . . 11 .
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Figure 10: 1-factors and codes of four linear hexagons.

The situation for a (general) catacondensed hexagonal graph G is more involved.

Recall first that the sets of 1-factors F(G; ei), 0 ≤ i ≤ n, partition the set of all 1-factors

of G. Furthermore, by Theorem 1, R(G)[F(G; ei)] = Y , 0 ≤ i ≤ n − 1. Thus, if y is the

canonical code of a vertex of Y , then the corresponding vertex in F(G; ei), 0 ≤ i ≤ n−1, is

coded with 1i0n−iy. Moreover, since Y = R(Ge+)2R(Ge−), the set of codes of Y consists

of strings y = y+y−, where y+ and y− are the canonical codes of vertices of R(Ge+) and

R(Ge−), respectively.

Loosely speaking, the code x = 1i0n−iy+y− of a vertex of F(G; ei), 0 ≤ i ≤ n − 1, (a

vertex in a copy of Y in terms of Theorem 1) is composed of three parts: the substring

1i0n−i defines a position of a copy of Y in Y 2Pn, while the substrings y+ and y− define

a contribution of R(Ge+) and R(Ge−).

To determine the code of a vertex in F(G; en) note first that it starts with n 1’s. In

addition, since by Theorem 1 F(G; en) = X = F(G; en−1, e+, e−), it follows that the rest

of the digits are composed of two substrings that start with 0: the first is the code of a

vertex of R(Ge+) and the second is the code of a vertex of R(Ge−). More formally, if x

is the code of a vertex of F(G; en), then x = 1nab, where a (b) is a code of a vertex of

R(Ge+) (R(Ge−)) with 0 in the first place.

We are now ready to present the procedure LABELS, which assigns canonical codes

to the vertices of R(G). The procedure starts the computation at an edge with ends of

degree two, which is passed to the procedure as the parameter e.
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Figure 11: Canonical coding of the vertices of R(G).

Procedure LABELS(G, e, Q);

begin

1. if G = K2 then begin Q := ∅; exit(LABELS); end;

2. Determine: Ge+, Ge−, and |Ce| = n + 1;

3. Qn := {1i0n−i; 0 ≤ i ≤ n − 1};

4. LABELS(Ge+, e+, Q+); LABELS(Ge−, e−, Q−);

5. QY := {y+y−; y+ ∈ Q+ and y− ∈ Q−};

6. QY 2P := {py; p ∈ Qn and y ∈ QY };

7. QX := {1nab; a = 0u ∈ Q+ and b = 0v ∈ Q−};

8. Q := QY 2P + QX ;

end.

The procedure is illustrated in Fig. 11. Line 1 checks whether the graph G equals an edge.

If it does, then the procedure returns the empty set in Q. Line 2 computes the number

of edges in Ce and determines the connected components Ge+ and Ge−. Line 3 computes



the prefixes of the codes needed in copies of Y . Line 4 contains two recursive calls which

compute the codes of the vertices of the connected components Ge+ and Ge−, starting at

the edges e+ and e−, respectively. Line 5 calculates the substrings which are in common

for the corresponding vertices in the copies of Y , while Line 6 gives the prefixes to the

codes of the vertices of each copy of Y . Finally, the codes for vertices in F(G; en) are

computed in Line 7 and then merged with the codes of Y 2Pn in Line 8.

6. ALGORITHM FOR HAMILTON PATHS

As already mentioned, Chen and Zhang [1] proved that the resonance graph of a

catacondensed benzenoid graph has a Hamilton path. In fact, the inductive proof of the

main theorem of [1] gives an implicit construction of a Hamilton path. In our terminology,

it is shown that there exists a zigzag Hamilton path among the copies of Y , as well as a

Hamilton path among the vertices inside a copy of Y .

In this section we present an algorithm HAMILTON PATH that for a (slightly) more

general class of catacondensed hexagonal graphs returns such a path. The algorithm

intrinsically uses the canonical coding in order to list the vertices in a Hamilton path.

In the rest we assume that the sets of strings are represented as linked lists, that is,

strings Q1, Q2, . . . , Q|Q| are in the linked list Q = (Q1, Q2, . . . , Q|Q|) arranged in a linear

order. Let procedure APPEND(A,B) appends the linked list B to the linked list A.

The procedure COMBINE plays a crucial role in providing a zigzag path among the

vertices. The procedure computes from the set of strings A and B the set of strings

C = {ab; a ∈ A and b ∈ B}. However, the order of the strings in C is of great importance

now. The procedure has the additional parameter n which is needed to provide the proper

order of the strings in C.

Procedure COMBINE(A,B,n,C);

begin

C := ∅;

for i := 1 to |A| do

if ODD(i + n) then

for j := 1 to |B| do APPEND(C, (AiBj));

else

for j := |B| downto 1 do APPEND(C, (AiBj));

end.

We can now present the procedure HAMILTON PATH that returns a Hamilton path

of R(G) for a catacondensed hexagonal graph G.



Procedure HAMILTON PATH(G, e, Q);

begin

1. if G = K2 then begin Q := ∅; Exit(HAMILTON PATH); end;

2. Determine: Ge+, Ge−, and |Ce| = n + 1;

3. Qn := (0n, 10n−1, 110n−2, . . . , 1n−10);

4. HAMILTON PATH(Ge+, e+, Q+); HAMILTON PATH(Ge−, e+, Q−);

5. COMBINE(Q+,Q−,0,QY );

6. COMBINE(Qn,QY ,n,QY 2P );

7. For each y+ ∈ Q+ do

if y+ = 0a then APPEND(A,(1ny+));

8. For each y− ∈ Q− do

if y− = 0b then APPEND(B,(y−));

9. COMBINE(A,B,0,QX);

10. APPEND(QY 2P ,QX); Q := QY 2P ;

end.

Since the codes in lists Qn, QY , QY 2P , QX , and Q computed by HAMILTON PATH

correspond to the codes in the sets determined in Lines 3, 5, 6, 7, and 8 of LABELS, it is

straightforward to see that HAMILTON PATH computes the set of canonical codes Q to

the vertices of the catacondensed hexagonal graph G.

In order to prove that the procedure finds a Hamilton path in R(G), we have to show

that two consecutive strings in Q differs in exactly one bit. We proceed by induction on

the number of recursive calls.

If G = K2, the assertion is clear. Assume then G 6= K2. To prove the claim note first

that Q = Y0, Y1, . . . , Yn−1, Yn, where the strings in Yi form the set of codes of all vertices

in F(G; ei). We will show first that Yi admits a Hamilton path in F(G; ei). Line 6 yields

that the strings in Yi have the same prefix 1i0n−i. Therefore, it suffices to show that two

consecutive codes in QY differs in exactly one bit.

The codes of QY are computed in Line 5 by combining codes of Q+ and Q−. By

the induction hypothesis the codes of Q+ = (a1, a2, . . . , as) as well as the codes of Q− =

(b1, b2, . . . , bt) form Hamilton paths. It follows that two consecutive codes aibj and aibj+1

composed within the i-th run of the main for loop obviously differ in exactly one bit. To

complete the proof for the codes in QY consider the last code computed in the i-th run

of the main for loop aibt (or aib1) and the first code computed in the (i + 1)-st run of the

main for loop ai+1bt (or ai+1b1).

That Y0, Y1, . . . , Yn−1 as well as strings in QX form Hamilton paths is proved anal-

ogously as above. We are left to prove that the last code in Yn−1 denoted v and the

first code in QX denoted u differ in exactly one bit. Note that u = 1n0a0b. In order to



prove v = 1n−100a0b we infer that v is formed in the n-th run of the main for loop of

COMBINE. Since 2n is even, v = 1n−10a1b1. Moreover, a1 (b1) is the first vertex in Q+

(Q−), therefore obviously starts with 0 and the proof is complete.

To conclude the section consider the graph of Fig. 11. The procedure HAMILTON

GRAPH returns

Q+ = (0, 1),

Q− = (01, 00, 10),

QY = (001, 000, 010, 110, 100, 101),

QY 2P = (00001, 00000, 00010, 00110, 00100, 00101,

10101, 10100, 10110, 10010, 10000, 10001),

QX = (11001, 11000),

and the obtained Hamilton path is then obtained by appending QX to QY 2P .

7. TWO PROBLEMS

In this paper we have recursively described the structure of the resonance graphs of

catacondensed hexagonal graphs. It would be nice to obtain an explicit characterization

of these graphs. Since they are median graphs, we ask the following question.

Problem 1 Which additional characteristic properties must a median graph possess in

order to be the resonance graphs of a catacondensed hexagonal graph?

Let G be the resonance graph of a catacondensed hexagonal graph. Since G is a

median graph and hence bipartite, the order of G must be even if G contains a Hamilton

cycle. Let δ(G) denotes the smallest degree of G. Then we state:

Problem 2 Is it true that R(G) contains a Hamilton cycle if and only if R(G) is of even

order and δ(R(G)) ≥ 2?
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