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Abstract

If u is a vertex of a graph G, then the transmission of u is the sum
of distances from u to all the other vertices of G. The Wiener complexity
CW (G) of G is the number of different complexities of its vertices. G is
transmission irregular if CW (G) = n(G). It is proved that almost no graphs
are transmission irregular. Let Tn1,n2,n3

be the tree obtained from paths
of respective lengths n1, n2, and n3, by identifying an end-vertex of each
of them. It is proved that T1,n2,n3

is transmission irregular if and only if
n3 = n2 + 1 and n2 /∈

{
(k2 − 1)/2, (k2 − 2)/2

}
for some k ≥ 3. It is also

proved that if T is an asymmetric tree of order n, then the Wiener index of
T is bounded by (n3−13n+48)/6 with equality if and only if T = T1,2,n−4.
A parallel result is deduced for asymmetric uni-cyclic graphs.
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1 Introduction

If G = (V,E) is a graph and u ∈ V , then the transmission of u (also known as

the distance of u or the remoteness of u) is defined as the sum of distances from

1



u to all the other vertices of G, that is, TrG(u) =
∑

x∈V dG(u, x), see [1, 26, 28].

Here dG(u, x) is the standard shortest path distance between u and x in G. We

will shortly write Tr(u) and d(u, x), whenever G will be clear from the context.

The Wiener index W (G) of G is the sum of the distances between all pairs of

vertices of G, in other words, W (G) = 1
2

∑

u∈V (G) Tr(u). The papers [11,16,25,30]

are some classical references on the Wiener index; to see the extent to which it

has already been investigated we refer to surveys [9, 10, 20] and selected recent

papers [4, 7, 8, 13, 15, 17, 18, 22, 24, 29]. Transmission of a vertex is also important

elsewhere, notably in location theory where vertices with extremal transmission

are of interest because they are target locations for facilities, cf. [5, 21, 27].

The fact that the sum of the transmissions of all the vertices of G is twice the

Wiener index of G, led in [2] to the introduction of the Wiener complexity CW (G)

as the number of different transmissions in G. Actually, CW was named Wiener

dimension and denoted dimW in [2], but here we rather follow the notation and

terminology of a general approach from [3]. In this approach, the I-complexity

CI of an arbitrary summation-type topological index I is defined as the number

of different contributions to I in its summation formula.

Call a graph G to be transmission regular [23] if all its vertices have the

same transmission and transmission irregular if its vertices have pairwise different

transmissions. In other words, transmission irregular graph are the graphs that

have the largest possible Wiener complexity over all graphs of a given order.

The reader can easily verify that each of the three graphs drawn in Fig. 1 is a

transmission irregular graph.

Figure 1: Sporadic examples of transmission irregular graphs

In this paper we are interested in transmission irregular graphs and proceed

as follows. In the rest of the section terminology and notation needed are stated.

In the next section we first show that almost all graphs are not transmission

irregular. Then we introduce the trees Tn1,n2,n3
and characterize transmission

irregular trees among the trees T1,n2,n3
. We also prove that if a graph G has at

least three vertices of the same degree, then G and its complement cannot be
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both transmission irregular. In Section 3 we prove two extremal results on the

Wiener index of asymmetric trees and of asymmetric uni-cyclic graphs and deduce

corresponding consequences for transmission irregular graphs. In particular, if T

is a transmission irregular tree of order n and W (T ) = (n3 − 13n+ 48) /6, then

T = T1,2,3.

All graphs considered in this paper are connected. The order of a graph G is

denoted with n(G) and the degree of u ∈ V (G) with deg(u). The distance dG(u, v)

(d(u, v) for short) is the number of edges on a shortest u, v-path. The eccentricity

eccG(u) (ecc(u) for short) of a vertex u is the maximum distance between u and

the other vertices. The diameter diam(G) of G is the maximum eccentricity of

its vertices. The automorphism group of G is denoted with Aut(G). A graph is

asymmetric if |Aut(G)| = 1. Finally, for a positive integer n we use the notation

[n] = {1, . . . , n}.

2 Transmission irregular graphs are rare

An automorphism of a graph preserves the distance function. Hence, if u and v

are vertices of a graph G such that α(u) = v holds for some α ∈ Aut(G), then

Tr(u) = Tr(v). It follows that a transmission irregular graph is asymmetric and,

as it well known, almost all graphs are asymmetric [12]. On the other hand, the

fraction of transmission irregular graphs among asymmetric graphs is small as

the next result asserts.

Theorem 2.1 Almost all graphs are not transmission irregular.

Proof. It is well known that almost every graph has diameter 2. Hence the

conclusion of the theorem will follow after proving that a transmission irregular

graph G = (V,E) has diam(G) ≥ 3. Suppose then that diam(G) = k. Clearly,

k 6= 1 as complete graphs are not transmission irregular. Suppose that k = 2.

Then for any vertex u ∈ V we have Tr(u) = deg(u) + 2(n(G) − 1 − deg(u)) =

2n(G)− 2− deg(u). Since at least two vertices are of the same degree, they have

the same transmission. We conclude that k ≥ 3. �

Transmission irregular graphs are thus rare. To increase the family of known

such graphs, motivated by the leftmost transmission irregular graph from Fig. 1,
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we introduce the following family of trees. Let n1, n2, n3 be integers for which

1 ≤ n1 < n2 < n3 holds. Then the tree Tn1,n2,n3
has the vertex set

{u} ∪ {x1, . . . , xn1
} ∪ {y1, . . . , yn2

} ∪ {z1, . . . , zn3
} ,

and the edge set

{ux1, x1x2, . . . , xn1−1xn1
} ∪ {uy1, y1y2, . . . , yn2−1yn2

} ∪ {uz1, z1z2, . . . , zn3−1zn3
} .

The tree Tn1,n2,n3
can be described as the graph obtained from paths of respective

lengths n1, n2, and n3, by identifying an end-vertex of each of them. Note that

T1,2,3 is the leftmost transmission irregular graph from Fig. 1. Ideally, we would

like to characterize transmission irregular trees among the trees Tn1,n2,n3
. For this

sake it is not difficult to deduce the following equations:

Tr(xi) =

(
n1 − i+ 1

2

)

+

(
n2 + i+ 1

2

)

+

(
n3 + i+ 1

2

)

−
(
i+ 1

2

)

, (1)

Tr(yj) =

(
n2 − j + 1

2

)

+

(
n1 + j + 1

2

)

+

(
n3 + j + 1

2

)

−
(
j + 1

2

)

, (2)

Tr(zk) =

(
n3 − k + 1

2

)

+

(
n1 + k + 1

2

)

+

(
n2 + k + 1

2

)

−
(
k + 1

2

)

, (3)

Tr(u) =

(
n1 + 1

2

)

+

(
n2 + 1

2

)

+

(
n3 + 1

2

)

, (4)

where i ∈ [n1], j ∈ [n2], and k ∈ [n3]. Hence Tn1,n2,n3
is transmission irregular if

and only if the transmissions in Equations (1)-(4) are pairwise different. However,

to characterize the triples (n1, n2, n3) for which this is the case might be a difficult

problem. This assertion is in part supported by Table 1, where a list of parameters

(n1, n2, n3) is given for 2 ≤ n1 < n2 < n3 ≤ 15 for which Tn1,n2,n3
is transmission

irregular.

The case n1 = 1 is not included in Table 1 because in this case we can give a

complete characterization as follows.

Theorem 2.2 If 1 = n1 < n2 < n3, then T1,n2,n3
is transmission irregular if and

only if n3 = n2 + 1 and n2 /∈ {(k2 − 1)/2, (k2 − 2)/2} for some k ≥ 3.

To prove Theorem 2.2 the following lemma will be useful. Its proof is straight-

forward and hence omitted. The notation of the lemma is illustrated in Fig. 2.
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n1 n2 n3 n1 n2 n3 n1 n2 n3 n1 n2 n3 n1 n2 n3

2 5 7 2 13 15 4 7 9 6 11 13 8 11 13
2 6 8 3 4 5 4 11 13 6 13 14 9 10 11
2 8 9 3 5 6 4 12 13 7 8 9 9 11 12
2 9 11 3 9 10 5 6 7 7 8 12 10 13 15
2 11 12 3 13 14 5 7 8 7 9 10 11 12 13
2 11 13 3 14 15 5 7 12 7 13 14 11 13 14
2 12 13 4 7 8 5 10 11 8 11 12 13 14 15

Table 1: Triples (n1, n2, n3), 2 ≤ n1 < n2 < n3 ≤ 15, for which Tn1,n2,n3
is

transmission irregular

Lemma 2.3 Let u and v be vertices of a tree T and let P be the u, v-path in

T . Let Q = P − {u, v}, and let G − Q = Tu

⋃
Tv

⋃
S, where Tu and Tv are

the components containing u and v, respectively, and S is the union of the other

components. Then

Tr(u)− Tr(v) = (|Tv| − |Tu|) d(u, v) +
∑

w∈V (S)

(d(u, w)− d(v, w)) .

u v
Tu

Tv

S

︸ ︷︷ ︸

Q

Figure 2: Example to the notation of Lemma 2.3

Proof. (of Theorem 2.2) Suppose first that n1 = 1 and n3 = n2 + 1. Set n =

n(T1,n2,n2+1), that is, n = 2n2 + 3. Then we can simplify the general notation

of the vertices of Tn1,n2,n3
as follows. Let V (T1,n2,n2+1) = {v1, . . . , vn}, where

v1, . . . , vn−1 induce a path of order n − 1 and vn is adjacent to vn+1

2

. This is

indeed the tree T1,n2,n2+1, where the vertices vn and vn+1

2

correspond to x1 and u,

respectively.
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If i ∈ [(n− 1)/2], then Lemma 2.3 implies that

Tr(vi)− Tr(vi+1) = n− 2i and Tr(vi)− Tr(vn−i) = 1 .

This implies that Tr(vi+1) < Tr(vn−i) < Tr(vi) for i ∈ [(n−1)/2] and consequently

Tr(v1) > Tr(vn−1) > Tr(v2) > Tr(vn−2) > · · · > Tr(v(n−1)/2) > Tr(v(n+1)/2) .

Hence the vertices v1, . . . , vn−1 have pairwise distinct transmissions. It thus re-

mains to show that Tr(vn) is different from all other transmissions. By straight-

forward calculation we get that for i ∈ [(n− 1)/2],

Tr(vi) =
1

2

(
n2 − 2in+ 2i2 − 2i+ 3

)
,

Tr(vn−i) =
1

2

(
n2 − 2in+ 2i2 − 2i+ 1

)
,

and that Tr(vn) = (n2 + 2n− 3)/4. Suppose now that Tr(vn) = Tr(vi) for some

i ∈ [n − 1]. Then Tr(vn) = Tr(vi) or Tr(vn) = Tr(vn−i) for some i ∈ [(n − 1)/2]

and

(n− 1)2 − 4in + (2i− 1)2 + 7 = 0 (5)

or

(n− 1)2 − 4in + (2i− 1)2 + 3 = 0 (6)

holds true. Solving (5), and having in mind that i ≤ (n − 1)/2, we get i =

(n−2
√
n− 2+1)/2. Since i is an integer this implies that n must be of the form

k2 + 2 for some integer k. Since n = 2n2 + 3 this in turn implies that n2 is of

the form (k2 − 2)/2. Similarly, the solution of (6) is i = (n − 2
√
n− 1 + 1)/2,

hence in this case n must be of the form k2 + 1, and consequently n2 is of the

form (k2 − 1)/2.

To complete the proof we need to show that if n3 > n2 + 1, then T1,n1,n3
is

not transmission irregular. Now, if n3 > n2 + 1, then using Lemma 2.3 one can

indeed show that Tr(u) = Tr(zt) where t = n3 − n2 − 1. �

Note that the proof of Theorem 2.2 also reveals that if n2 is of the form

(k2−1)/2 or (k2−2)/2 for some k ≥ 3, then CW (T1,n2,n2+1) = 2n2+2. The smallest

such integers are n2 = 4 and n2 = 7. For T1,4,5 we have Tr(v11) = Tr(v3) = 35,

while for T1,7,8 we have Tr(v17) = Tr(v12) = 80.
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We conclude the chapter with the following result that in a way supports

Theorem 2.1. Recall that the complement Ḡ of a graph G is the graph with the

same vertex set as G, and in which uv is an edge if and only if u is not adjacent

to v in G.

Theorem 2.4 If a graph G has three vertices of the same degree, then not both

G and Ḡ are transmission irregular.

Proof. If G is not transmission irregular, then there is nothing to prove. So

assume in the rest that G is transmission irregular. We need to show that Ḡ is

not transmission irregular.

From the proof of Theorem 2.1 we know that diam(G) ≥ 3. Then it follows

that diam(Ḡ) ≤ 3, see [6]. If diam(Ḡ) = 2, then Ḡ has at least two vertices of the

same transmission and we are done. Hence assume in the rest that diam(Ḡ) = 3.

Let u, v, and w be vertices of G of the same degree in G (equivalently, of the

same degree in Ḡ). Since clearly the eccentricity of each vertex of Ḡ is either 2

or 3, at least two vertices among u, v, and w have the same eccentricity, say u

and v. Let eccḠ(u) = eccḠ(v) = k, where k ∈ {2, 3}. If k = 2, then since u

and v have the same degree, they also have the same transmission and we are

done. So let k = 3. But then eccG(u) = eccG(v) = 2 which in turn implies that

TrG(u) = TrG(v), a contradiction with our assumption. �

3 Two extremal results on the Wiener index

In this section we consider the graphs that have largest Wiener index among

asymmetric trees and asymmetric uni-cyclic graphs. For the first class specific

trees Tn1,n2,n3
appear as the extremal ones.

Theorem 3.1 If T is an asymmetric tree of order n = n(T ), then

W (T ) ≤ 1

6

(
n3 − 13n+ 48

)
.

Moreover, equality holds if and only if T = T1,2,n−4.

Proof. Let T be a tree that has the maximumWiener index among all asymmetric

trees of order n. Let P be a diametrical path in T . As T is asymmetric, P 6= T .
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Let v be a leaf of T that does not lie on P . From the well known fact that the

path Pn has the maximum Wiener index among all graphs of order n (and hence

among all trees of the same order), we get

W (T ) = W (T − v) + Tr(v) ≤ W (Pn−1) + Tr(v) . (7)

Since T is asymmetric and v does not lie on the diametrical path P , we have

ecc(v) ≤ n− 3. (Indeed, ecc(v) = n− 2 would mean that T = T1,1,n−3 which has

a non-trivial automorphism.) This in turn implies that Tr(v) is largest possible if

v is adjacent to the third vertex of P (or the third before last vertex of P for that

matter). As T has the maximum possible Wiener index, we must have equality

in (7), which implies that T − v = Pn−1 and v is adjacent to the third (or the

before last third vertex) of Pn−1, that is, T = T1,1,n−4. Finally,

W (T1,1,n−4) = W (Pn−1) + Tr(v) =

(
n

3

)

+

((
n− 2

2

)

+ 5

)

=
n3 − 13n+ 48

6
.

�

Combining Theorems 2.2 and 3.1 we get:

Corollary 3.2 If T is a transmission irregular tree of order n = n(T ) and

W (T ) = (n3 − 13n+ 48) /6, then n = 7 and T = T1,2,3.

We now turn our attention to uni-cyclic graphs. Let Un, n ≥ 7, be the uni-

cyclic graph with V (Un) = {v1, . . . , vn}, where the vertices v1, . . . , vn−1 induce

Pn−1 and vn is adjacent to vn−2 and vn−3. Note that U7 is the middle graph from

Fig. 1.

Theorem 3.3 If G is an asymmetric, uni-cyclic graph of order n = n(G), then

W (G) ≤ 1

6

(
n3 − 13n+ 36

)
.

Moreover, the equality holds if and only if G = Un.

Proof. Since G is uni-cyclic and asymmetric, it contains at least two pendant

vertices. Let v be a pendant vertex with the largest transmission among all

pendant vertices of G and let w be another pendant vertex. Now consider the
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following transformation. Let G′ be the graph obtained from G by removing the

vertex w and attaching a new vertex w′ to the vertex v. Then we have:

W (G′) = W (G− {v, w}) + TrG′(v) + TrG′(w′)− 1

= W (G− {v, w}) + (TrG(v)− dG(v, w) + 1) +

(TrG(v)− dG(v, w) + n− 1)− 1 ,

W (G) = W (G− {v, w}) + TrG(v) + TrG(w)− d(v, w) .

Thus

W (G′)−W (G) = Tr(v)− Tr(w)− dG(v, w) + n− 1 ≥ (n− 1)− dG(v, w) .

Since dG(v, w) < n− 1 it follows that W (G′)−W (G) > 0.

Let C be the unique cycle of G. Since G is asymmetric, at least two vertices

of C are of degree at least 3. Let H(n, k, i) be the unicyclic graph constructed

from the cycle Ck on the vertex set {v1, . . . , vk} by attaching the path Pn−k−1

to the vertex v1 and attaching a pendant vertex v to the vertex vi. (Note that

H(n, 3, 2) = Un.)

Let H = H(n, k, i). Using the above transformation we get that W (G) ≤
W (Hn,k,i). Clearly W (H) = W (H − v) + TrH(v). Let H

′ be the graph obtained

from H by removing the vertex v and connecting a new vertex v′ to v[k/2]. Since

the vertex v[k/2]+1 has the largest transmission among the vertices of Ck in the

graph H − v, we have W (H) ≤ W (H ′). Let now G(n, k) be the graph obtained

from the cycle Ck by attaching an end vertex of the path of order n − k to a

vertex of Ck. In [31] it was proved that among the unicyclic graphs of order n,

the graph G(n, 3) has the maximum Wiener index. Thus

W (G) ≤ W (H) ≤ W (H ′)

= W (H ′ − v) + TrH′(v)

≤ W (G(n− 1, 3)) + TrH′(v) .

Now, it is not difficult to see that TrH′(v) ≤ TrH(n,3,2)(v) and consequently

W (G) ≤ W (G(n− 1, 3)) + TrH(n,3,2)(v)

= W (H(n, 3, 2)) = W (Un) .

Moreover, the equality holds if and only if G = Un. By a simple calculation we

get W (Un) =
1
6
(n3 − 13n+ 36) and we are done. �
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Corollary 3.4 If G is a transmission irregular uni-cyclic graph of order n =

n(G) and W (G) = (n3 − 13n+ 36) /6, then n = 7 and G = U7.

Proof. By Theorem 3.3 we only need to prove that U7 is the unique transmission

irregular graph among the graphs Un. We already know that U7 is transmission

irregular. On the other hand, if n ≥ 8, then in Un the vertices v4 and vn−3 have

the same transmission. �

We conclude the section with one more consequence of Theorem 3.3. For its

statement recall that the line graph L(G) of a graph G has the edge set of G as

its vertex set, two different vertices of L(G) being adjacent if the corresponding

edges of G share a vertex. (We refer to [14,19] for a couple of recent investigations

of the Wiener index of line graphs.)

Corollary 3.5 Let G be a graph of size m let its line graph L(G) be asymmetric.

Then W (L(G)) ≤ 1
6
(m3 − 13m + 36), where the equality holds if and only if

G = T1,2,m−3.

Proof. If ∆(G) ≤ 2, then G is either a path or a cycle, hence L(G) is not

asymmetric. Hence ∆(G) ≥ 3 and thus L(G) contains at least one cycle. By

Theorem 3.3 we have W (L(G)) ≤ W (Um) and the equality holds if and only if

L(G) = Um. This implies that G = T1,2,m−3. �

4 Concluding remarks

In this paper we have introduced transmission irregular graphs as the graphs in

which all vertices have pairwise different transmissions. Characterizing trans-

mission irregular trees within the family of trees T1,n2,n3
an infinite family of

transmission irregular graphs was constructed. All these trees are of odd order.

Hence it would be of interest also to construct an infinite family of transmission

irregular trees each tree being of even order. We also ask as an open problem

whether there exist infinite families of 2-connected transmission irregular graphs,

and whether there exist infinite families of regular graphs that are transmission

irregular.
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