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Abstract

Interpolation method can be used to obtain closed formulas for topological indices of families

of graphs. In this paper we discuss the method on 2-parametric families of graphs. The method

is illustrated on the family of carbon nanocones CNCk[n] and on four distance based topological

indices: the Wiener index, the edge Wiener index, the reverse Wiener index, and the Szeged

index. Closed formulas are presented and several exceptions are pointed out for small values of

k. For larger values of k, parity cases must be usually consider to obtain desired polynomials.

1 Introduction

In mathematical chemistry, one way to obtain closed formulas for topological indices of families

of graphs is the so-called interpolation method [7, 8]. This method and the way how it can be

used to obtain desired formulas was recently discussed in [2]. The method was illustrated on



fullerenes C12k+4 and four topological indices: the Wiener index, the edge Wiener index, the

reverse Wiener index, and the eccentric connectivity index. In this paper we extend the method

to the case when a family of graphs is defined with two (or more) parameters, so that formulas

we are searching for are polynomials in two (or more) variables. The method is then applied on

carbon nanocones CNCk[n] for the Wiener index, the edge Wiener index, the reverse Wiener

index, and the Szeged index. (We do not consider the eccentric connectivity index of carbon

nanocones CNCk[n] because this has already been done in [1].)

Each of the four distance-based topological indices we are considering is of recent interest.

Not much has to be said about the famous Wiener index, let us only mention that it is still

extensively investigated, cf. [5, 10, 12, 21, 28]. The edge Wiener index was recently introduced

in [17] but already received a lot of attention, cf. [9, 27]. In particular, the cut method [19]

for this topological index was developed in [29]. The reverse Wiener index was introduced by

Balaban et al. [25] and studied for instance in [6, 11, 13]. Finally, the Szeged index that was

introduced in 1995 [18], received a recent revival of interest, see [3, 4, 16, 22, 23, 24].

In the rest of this section necessary definition are given. In the subsequent section the

2-parametric interpolation method is discussed while in Section 3 the method is applied to

the carbon-nanocone graphs CNCk[n]. In the final section we give related formulas for the

haxagonal-parallelogram graphs P (n, k) and point out that in principle the method can be

applied for families of graphs defined with more than two parameters.

Let G be a connected graph. Then the distance between vertices u and v is denoted by

d(u, v). The diameter of G is the maximum distance between its vertices and is denoted by

diam(G). The distance between edges g = u1v1 and f = u2v2 is defined as

de(g, f) = min{d(u1, u2), d(u1, v2), d(v1, u2), d(v1, v2)}+ 1 .

Equivalently, this is the distance between the vertices g and f in the line graph of G [17]. The

degree of a vertex u will be denoted by deg(u).

Let G be a connected graph on n vertices. Then the Wiener index W (G), the edge Wiener

index We(G), the reverse Wiener index RW (G), and the Szeged index Sz(G), are respectively

defined as follows:

W (G) =
∑

{u,v}∈(V (G)
2 )

d(u, v) ,

We(G) =
∑

{f,g}∈(E(G)
2 )

de(f, g) ,

RW (G) =
1

2
n(n− 1)diam(G) −W (G) ,

Sz(G) =
∑

uv∈E(G)

nunv .



Here nu (resp. nv) is the number of vertices that are closer to vertex u (resp. v) than to vertex

v (resp. u).

2 The method on 2-parametric families of graphs

Let {Gn,k}n,k≥1 be a series of graphs and let I be a topological index. Suppose that there exist

n0, k0 ∈ N such that for any n ≥ n0 and k ≥ k0, I(Gn,k) = p(n, k), where p is a polynomial

in two variables. We will say that p interpolates I on {Gn,k}n,k≥1. If this is the case, then

I(Gn,k) is completely determined by the polynomial p(n, k) and the initial values I(Gn,k), where

1 ≤ n < n0, and 1 ≤ k < k0. To determine the degree of p, we can use:

Lemma 2.1 Suppose that p(n, k) interpolates I on {Gn,k}n,k≥1. If there exists a positive con-

stant α such that I(Gn,k) < αnskt, then deg(p) ≤ s+ t.

Proof. Suppose on the contrary that deg(p) > s + t. Then
I(Gn,k)
p(n,k) < αnskt

p(n,k) −−−−−→
n,k→∞

0. On the

other hand p interpolates I on {Gn,k}n,k≥1, that is, there exist n0, k0 ∈ N such that for any

n ≥ n0, and k ≥ k0, I(Gn,k) = p(n, k). Hence
I(Gn,k)
p(n,k) −−−−−→

n,k→∞
1, a contradiction. �

Similarly as discussed in [2] for 1-parametric families and consequently for polynomials in

one variable, in order to apply the interpolation method, we need to (i) find out the smallest

n0 and k0 such that the interpolation works for all n ≥ n0 and k ≥ k0 (ii) prove that I(Gn,k)

is a fixed polynomial function, and (iii) determine a constant upper bound on the degree of p,

more precisely, the largest power in n and the largest power in k. We emphasize that as far as

we know, in the literature condition (ii) was eventually never formally proved. This means that

the obtained formulas are only conditionally true. But if they were checked for large n and k, a

practical use of them is safe.

Suppose now that in p(n, k) the largest powers in n and in k are s and t, respectively. Then

p(n, k) can be written as

p(n, k) = qs(k)n
s + qs−1(k)n

s−1 + · · ·+ q1(k)n + q0(k) ,

where qi(k) is a polynomial of degree at most t and at least one of the qi(k)’s is of degree t.

Suppose now that conditions (i)-(iii) are fulfilled and let k0 < k1 < · · · < kt. Then for any ki,

p(n, ki) = Cs,in
s + Cs−1,in

s−1 + · · ·+ C1,in+ C0,i

is a polynomial obtained by interpolating the points ((n0, ki), I(Gn0,ki)), ((n1, ki), I(Gn1 ,ki)), . . .,

((ns, ki), I(Gns ,ki)). Then

p(n, ki) = I(Gn,ki)

holds for i = 0, 1, . . . , s. Finally, the coefficients of nj in these t+1 polynomials are determined

by interpolating the points {(ki, Cj,i)}0≤i≤t
.



3 Carbon nanocones CNCk[n]

In this section we demonstrate the use of the (modified) interpolation method on the carbon-

nanocone graphs CNCk[n]. These graphs are defined for any n ≥ 1 and any k ≥ 3. The

carbon nanocones CNC5[4] and CNC6[3] are shown in Fig. 1 and from these two examples the

general construction should be clear: the parameter k defines the length of the inner cycle and

n defines the number of layers of the graph. Note that in the particular case k = 6, the series

CNC6[n] plays a special role among hexagonal graphs (alias benzenoid graphs) and is known

as the coronene/circumcoronene series, and denoted Hn = CNC6[n]. The first term of it is the

6-cycle which is the molecular graph of the benzene.

Figure 1: CNC5[4] and CNC6[3]

3.1 Wiener index

Lemma 3.1 Suppose p(n, k) interpolates the Wiener index on {CNCk[n]}n≥5,k≥1. Then the

largest powers in n and in k are at most 5 and 3, respectively.

Proof. For a connected graph G, W (G) ≤
(

|V (G)|
2

)

diam(G). The numbers of vertices and edges

of CNCk[n] are kn
2 and 1

2k(3n
2−n) respectively. Since diam(CNCk[n]) = 4(n−1)+

⌊

k
2

⌋

holds

for n ≥ 1 and k ≥ 5, it follows that

W (CNCk[n]) ≤

(

kn2

2

)(

4(n − 1) +
k

2

)

< 2n5k3, n ≥ 5, k ≥ 1 .

The assertion now follows from Lemma 2.1. �



It turns out that the interpolation method does not yield to a polynomial. On the other

hand, considering separately the cases when k ≥ 5 is odd and when k ≥ 6 is even, leads to two

intrinsically different polynomials. When n ≥ 1 and k ≥ 5 is odd, we get

W (CNCk[n]) =

(

4

3
k2 −

38

15
k

)

n5 +

(

1

8
k3 −

3

2
k2 +

35

8
k

)

n4 +

(

1

6
k2 − 2k

)

n3 +

(

k

30

)

n , (1)

and for n ≥ 1 and even k ≥ 6 is even,

W (CNCk[n]) =

(

4

3
k2 −

38

15
k

)

n5 +

(

1

8
k3 −

3

2
k2 +

9

2
k

)

n4 +

(

1

6
k2 − 2k

)

n3 +

(

k

30

)

n . (2)

The first few polynomials for fixed ks are collected in Table 1.

k W (CNCk[n])

5 62
3 n

5 − 35
6 n

3 + 1
6n

6 164
5 n5 − 6n3 + 1

5n

7 238
5 n5 − 35

6 n
3 + 7

30n

8 976
15 n

5 + 4n4 − 16
3 n

3 + 4
15n

9 426
5 n5 + 9n4 − 9

2n
3 + 3

10n

10 108n5 + 20n4 − 10
3 n

3 + 1
3n

11 2002
15 n5 + 33n4 − 11

6 n
3 + 11

30n

12 808
5 n5 + 54n4 + 2

5n

13 962
5 n5 + 78n4 + 13

6 n
3 + 13

30n

14 3388
15 n5 + 112n4 + 14

3 n
3 + 7

15n

15 262n5 + 150n4 + 15
2 n

3 + 1
2n

Table 1: The Wiener index of CNCk[n], 5 ≤ k ≤ 15

The interpolation method can also be applied for k = 3 and k = 4. For k = 4 we obtain

W (CNC4[n]) =
58

2
n5 −

8

3
n3 −

14

15
n ,

a result different than we would obtain by substituting k = 4 into equation (2). The situation

is even more surprising for k = 3. In this case it turned out that three cases depending on the



parity of n must be considered:

W (CNC3[n]) =
163

30
n5 −

20

9
n3 −

1

10
n, n ≡ 0 (mod 3),

W (CNC3[n]) =
163

30
n5 −

20

9
n3 −

1

10
n−

1

9
n ≡ 1 (mod 3),

W (CNC3[n]) =
163

30
n5 −

20

9
n3 −

1

10
n+

1

9
, n ≡ 2 (mod 3) ,

so that we can write

W (CNC3[n]) = round

(

163

30
n5 −

20

9
n3 −

1

10
n

)

.

where the function round is the usual rounding function.

3.2 Edge Wiener index

We continue with the edge Wiener index We of CNCk[n]. It is well known, cf. [9] that it is equal

to W (L(CNCk[n])), where L(G) denotes the line graph of G. Since |L(CNCk[n])| =
1
2k(3n

2−n)

and diam(L(CNCk[n])) ≤ diam(CNCk[n]) + 1 ≤ 4(n − 1) +
⌊

k
2

⌋

, we infer that the degree of n

and k for an interpolation polynomial for the edge Wiener index of CNCk[n] are again bounded

by 5 and 3, respectively. In particular,

We(CNCk[n]) ≤

(1
2k(3n

2 − n)

2

)(

4(n− 1) +

⌊

k

2

⌋)

< 9n5k3 .

It again turned out that there is no uniform polynomial, but distinguishing two cases based

on the parity of k two essentially different polynomials are obtained. Let n ≥ 1, then if k ≥ 5 is

odd,

We (CNCk[n]) =

(

3k2 −
57

10
k

)

n5 +

(

9

32
k3 −

47

8
k2 +

467

32
k

)

n4 −

(

3

16
k3 −

7

2
k2 +

173

16
k

)

n3 +

(

1

32
k3 −

5

8
k2 +

51

32
k

)

n2 +

(

k

5

)

n , (3)

and if k ≥ 6 is even,

We (CNCk[n]) =

(

3k2 −
57

10
k

)

n5 +

(

9

32
k3 −

47

8
k2 +

119

8
k

)

n4 −

(

3

16
k3 −

7

2
k2 +

47

4
k

)

n3 +

(

1

32
k3 −

5

8
k2 +

19

8
k

)

n2 +

(

k

5

)

n . (4)



Just as for the Wiener index, the cases k = 4 and k = 3 must be treated separately. In the first

case, we must (contrary to the situation with the Wiener index) distinguish cases based on the

parity of n:

We(CNC4[n]) =
261

10
n5 −

87

4
n4 +

37

6
n3 − 2n2 −

19

15
n+

3

4
, n is odd,

We(CNC4[n]) =
261

10
n5 −

87

4
n4 +

37

6
n3 − 2n2 −

19

15
n, n is even,

so that we can write

We(CNC4[n]) =

⌈

261

10
n5 −

87

4
n4 +

37

6
n3 − 2n2 −

19

15
n

⌉

,

When k = 3, the situation is even more tricky, now we need to consider cases modulo 6:

We(CNC3[n]) =
489

40
n5 −

163

16
n4 +

77

24
n3 − 2n2 −

1

10
n, n ≡ 0 (mod 6),

We(CNC3[n]) =
489

40
n5 −

163

16
n4 +

77

24
n3 − 2n2 −

1

10
n−

7

48
, n ≡ 1 (mod 6),

We(CNC3[n]) =
489

40
n5 −

163

16
n4 +

77

24
n3 − 2n2 −

1

10
n+

1

3
, n ≡ 2 (mod 6),

We(CNC3[n]) =
489

40
n5 −

163

16
n4 +

77

24
n3 − 2n2 −

1

10
n+

3

16
, n ≡ 3 (mod 6),

We(CNC3[n]) =
489

40
n5 −

163

16
n4 +

77

24
n3 − 2n2 −

1

10
n−

1

3
, n ≡ 4 (mod 6),

We(CNC3[n]) =
489

40
n5 −

163

16
n4 +

77

24
n3 − 2n2 −

1

10
n+

25

48
, n ≡ 5 (mod 6) .

The above six cases can be condensed as follows:

We(CNC3[n]) =

{

⌈

489
40 n

5 − 163
16 n

4 + 77
24n

3 − 2n2 − 1
10n

⌉

; n ≡ 5 (mod 6),

round
(

489
40 n

5 − 163
16 n

4 + 77
24n

3 − 2n2 − 1
10n

)

; otherwise .

3.3 Reverse Wiener index

For the reverse Wiener index of CNCk[n] the situation is similar. For k = 3 we get

RW (CNC3[n]) =
121

15
n5 − 9n4 −

41

18
n3 + 3n2 +

1

10
n, n ≡ 0 (mod 3),

RW (CNC3[n]) =
121

15
n5 − 9n4 −

41

18
n3 + 3n2 +

1

10
n+

1

9
, n ≡ 1 (mod 3),

RW (CNC3[n]) =
121

15
n5 − 9n4 −

41

18
n3 + 3n2 +

1

10
n−

1

9
, n ≡ 2 (mod 3) ,

and hence

RW (CNC3[n]) = round

(

121

15
n5 − 9n4 −

41

18
n3 + 3n2 +

1

10
n

)

.



For k = 4 we get the polynomial

RW (CNC4[n]) =
102

5
n5 − 16n4 −

16

3
n3 + 4n2 +

14

15
n.

Then, for any n ≥ 1 and odd k ≥ 5,

RW (CNCk[n]) =

(

2

3
k2 +

38

15
k

)

n5 +

(

1

8
k3 −

3

4
k2 −

35

8
k

)

n4 −

(

1

6
k2
)

n3 −

(

1

4
k2 −

9

4
k

)

n2 −

(

k

30

)

n , (5)

and for any n ≥ 1 and even k ≥ 6,

RW (CNCk[n]) =

(

2

3
k2 +

38

15
k

)

n5 +

(

1

8
k3 −

1

2
k2 −

9

2
k

)

n4 −

(

1

6
k2
)

n3 −

(

1

4
k2 − 2k

)

n2 −

(

k

30

)

n . (6)

3.4 Szeged index

For any edge uv of CNCk[n] we have nunv ≤ 1
4 |V (CNCk[n])|

2 , therefore

Sz(G) =
∑

uv∈E(G)

nunv ≤
1

4
n4(3n2 − n)k3 ≤ n6k3 .

It follows that the degrees of n and k in the interpolation polynomial for the Szeged index of

CNCk[n] are bounded by 6 and 3, respectively. For n ≥ 1 and odd k ≥ 5,

Sz (CNCk[n]]) =

(

9

4
k2 −

9

2
k

)

n6 +

(

1

4
k3 −

7

2
k2 +

37

4
k

)

n5 +

(

3

4
k2 −

19

4
k

)

n4 +

(

k

4

)

n2 , (7)

while for n ≥ 1 and even k ≥ 6,

Sz (CNCk[n]) =

(

9

4
k2 −

9

2
k

)

n6 +

(

1

4
k3 − 3k2 + 9k

)

n5 +

(

3

4
k2 −

19

4
k

)

n4 +

(

k

4

)

n2 . (8)

Let k = 4, then if n is odd,

Sz (CNC4[n]) =
557

30
n6 −

1

3
n4 −

37

30
n2 − 1 ,



and if n is even,

Sz (CNC4[n]) =
557

30
n6 −

1

3
n4 −

41

15
n2.

For k = 3 we were trying to obtain some relation combining the values up to n = 30, but we

could obtain no polynomial expression. Hence the existence of polynomial(s) for Sz(CNC3[n])

is an open problem. Perhaps one could deduce them by computing some more values n ≥ 31.

3.5 The case k = 6

Recall that the graphs Hn = CNCn[6] form the coronene/circumcoronene series. Using other

methods (mostly the cut method, see [19]), closed expressions for several topological indices of

Hn were previously obtained. Setting k = 6 into (2) (cf. Table 1) we get

W (Hn) =
164

5
n5 − 6n3 +

1

5
n ,

a result independently obtained in [15] and [26]. Setting k = 6 into (8) we get

Sz (Hn) = 54n6 −
3

2
n4 +

3

2
n2 ,

a result first obtained in [14]. Similarly, inserting k = 6 into (4) we get

We (Hn) =
369

5
n5 −

123

2
n4 + 15n3 −

3

2
n2 +

6

5
n ,

a result very recently presented in [29]. (Note that there the index is shifter by one with respect

to our notation.) Finally, inserting k = 6 into (6) we get

RW (Hn) =
196

5
n5 − 18n4 − 6n3 + 3n2 −

1

5
n ,

a result that seems to be new.

4 Concluding remarks

We have also applied the interpolation method to some other classes of two-parametric families

of graphs. We just briefly present them for the hexagonal-parallelogram graphs P (n, k). These

graphs consists of a hexagons arranged is a parallelogram fashion, see Fig. 2 where the hexagonal-

parallelogram graph P (4, 5) is shown. The general definition of these graphs should be clear

from this example.

It can be verified that diam(P (n, k) = 2(n+ k)− 1, and that and the number of vertices and

edges of P (n, k) are 2(n+ 1)(k + 1)− 2 and 3nk + 2(n + k)− 1, respectively. Then we get:



Figure 2: Hexagonal-parallelogram graph P (4, 5)

W (P (n, k)) =
4

3

(

k2 + 2k + 1
)

n3 +
2

3

(

k3 + 9k2 + 8k
)

n2 +

1

3

(

k4 + 8k3 + 16k2 + 2k − 1
)

n−
1

15

(

k5 − 20k3 + k
)

,

We (P (n, k)) =

(

3k2 + 4k +
4

3

)

n3 +

(

2

3
k3 + 9k2 + 3k − 2

)

n2 +

(

3

4
k4 + 4k3 +

13

4
k2 −

3

2
k +

2

3

)

n−

(

3

20
k5 −

5

4
k3 + 2k2 −

9

10
k

)

,

RW (P (n, k)) =
8

3

(

k2 + 2k + 1
)

n3 +
1

3

(

10k3 + 24k2 + 2k − 12
)

n2 −

1

3

(

k4 − 16k3 − 2k2 + 23k − 4
)

n+

1

15

(

k5 + 40k3 − 60k2 + 19k
)

,

Sz (P (n, k)) =

(

2k3 + 6k2 +
16

3
k +

4

3

)

n3 +
(

6k3 + 12k2 + 6k
)

n2 +

(

17

3
k3 + 7k2 + 2k −

1

3

)

n+

(

+
1

6
k4 − k3 −

1

6
k

)

.

The above formula for the Wiener index was first obtained in [20].

We conclude the paper by pointing out that, if necessary, the method described in this paper

can be applied also to multi-parametric families of graphs, that is, families of graphs defined

with three or more parameters.
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