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Abstract  

For graphs G and H let G[H] be their lexicographic product and let Z/.(G) = inf{z(G[K,,])/n I 
n = 1,2 .... } be the fractional chromatic number of G. For n/> 1 set ft. = { G [ Z( G [K. ] ) = ng(G) }. 
Then lim.~oo fq. ={GIZT(G)=)~(G)}. Moreover, we prove that for any n~>2 the class fgn 
forms a proper subclass of f#.-1. As a by-product we show that if G is a g*-extremal, vertex 
transitive graph on z(G)~(G)-1 vertices, then for any graph H we have z(G[H])= z(G)x(H)- 
[)~(H)/~(G)J. (~ 1998 Elsevier Science B.V. All rights reserved 

1. I n t r o d u c t i o n  

In this note we consider finite, undirected graphs without loops or multiple edges. 

As usual, z (G)  denotes the chromatic number o f  the graph G and ~(G) its indepen- 

dence number. The lexicographic product G[H] of  graphs G and H has the vertex set 

V(G[H]) = V(G) x V(H) and (a,x)(b, y)  is an edge of  G[H] if a = b and xy  E E(H), 
or abc  E(G). The 'product coloring' of  G[H] gives immediately )(G[H]) <~ )~(G)z(H). 
In the following, we will also (implicitly) use the following result of  Geller and Stahl 

[7]: I f  z ( H ) =  n, then for any graph G we have z ( G [ H ] ) =  z(G[K,]), where K, stands 

for the complete graph on n vertices. 

The fractional chromatic number ~(f(G) of  a graph G was introduced by Hilton [ 10], 

Rado, Scott [11] and then first studied by Scott [17], Stahl [18], Clarke and Jami- 

son [4], Bollobfis and Thomason [2], and others. This graph parameter is also known 

as the multichromatic number, set-chromatic number, ultimate chromatic number, and 

can be defined in several ways, cf. [5, 11,15, 18,21]. For our purposes we introduce 
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it as 

z f ( G ) = i n f {  Z(G[Kn])[n=l'2n .... }" 

It is interesting to add that z f (G)  is also equal to l i m n ~  ~/x-(G"), where G ~ denotes 
the nth power of G with respect to the lexicographic product, cf. [9]. 

Scott [17], see also Stahl [18], showed that zf(G)= z(G[Kk]/k for some integer k. 
(This result is also implicit in [16].) For n~> 1 let 

fgn = { G I z( G[Kn])= nz( G) }. 

Observe trivially that f#l forms the class of all graphs. In this note we are interested 

in the sequence ( ~)n=l" 
Clearly, limn~o~ f#n -- {GIz(G[K~]) = n z ( G )  for all n~> 1}. If G E l im~o~ f#n then 

obviously z(G) = z f ( a ) .  Conversely, if z(G) -- z f (G)  then by the above result of Scott 
we find that G 6 l i m ~  ~,. Hence, 

lim ~ = {G[zf(G ) = z(G)}. 
n ----~ o o  

In the next section we prove that for any n ~> 2, the class f#n forms a proper subclass 
of f#,-l. As a byproduct we also show that if G is a z*-extremal, vertex transitive 
graph on z(G)~(G)- 1 vertices, then for any graph H we have z(G[H]) = z(G)z(H)-  

Lx(H)/ tc)J. 

2. Construction using circulant graphs 

We will apply a relatively new concept of the star chromatic number of a graph, 
which was introduced by Vince [19]. Let k and d be two integers with k>~2d. 
A mapping c: V(G) ~ {0,1 . . . . .  k -  1} is a (k,d)-coloring of G, if for any edge 
uv of G we have d<~ [c(u)- c(v)l ~<k-  d. The star chromatic number of G is then 

i f ( G ) =  inf{k/d]G has a (k,d)-coloring}. 

For fundamental results on the star chromatic number we refer to [1,3, 19,20]. In 
particular, Zhu [20] proved that if z(H)= n, then for any graph G with at least one 
edge z*(G[H])  = z*(G[K~]). 

Gao and Zhu [6] called a graph G g*-extremal, if i f ( G ) =  zf (G).  They proved, 
among others, the following nice theorem. 

Theorem 2.1. A graph G is a z*-extremal graph if and only if for all graphs H we 
have z*(G[H]) = z*(G)z(H). 

The above theorem follows quickly, when we know that the fractional chromatic 
number is multiplicative on the lexicographic product, i.e., zf(G[H])=zf(G)zf(H ) 
holds for any graphs G and H. We will use Theorem 2.1 in the following way. 
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Corollary 2.2. Let G be a z*-extremal, vertex transitive graph on z (G)cc (G) -  1 

vertices. Then for any graph 11, 

IX(H) z(GtH]) = z(G)z(H) - L 

Proof. We have 

z(G[H])  = Fz*(G[H])] 

= [z*(G)z(H)l 

= [zA c)z(z-/)l 

- /Iz(G)~(G)~(G) - 1z(H) 1 

= [Z(a)z(H)- Z(H)I~(a)/ 

=z(G)z(H)-  z(H) . 
L~(G)] 

(1) 

(2) 

(3) 

(4) 

(5) 

In the above computation, (1) is well known, cf. [3]. Step (2) is true by Theorem 2.1, 
while (3) is due to the assumption that G is z*-extremal. For Step (4) recall that for 

a vertex transitive graph G we have g f ( G ) =  IGI/~(G), cf. [6]. Finally, for (5) see [8, 
Section 3.1]. [] 

Here we wish to add that the use of the star chromatic number in our construction 
is not the only way to show that it works. We use it, however, because we believe 

that the above corollary might be of  some independent interest, cf. [13,14]. We also 
refer to these papers for more results on the chromatic number of graph products, in 
particular on the lexicographic one. 

As already mentioned, we wish to show that f#,-I D f#,, for any n >/2. By Corol- 
lary 2.2 it suffices to find a z*-extremal, vertex transitive graph G on nz(G ) - 1 

vertices, where n = ~(G). We are going to find such graphs in the class of circulant 

graphs. 
Let N be a set of  nonzero elements of Zk such that N = - N .  The circulant graph 

G(k,N)  has vertices 0, 1 . . . .  , k - 1  and i is adjacent t o j  if and only i f i - j  EN,  where the 
arithmetic is done mod k. As circulant graphs are Cayley graphs (of Abelian groups) 
they are clearly vertex transitive. On the other hand, a circulant graph could be, but 

need not, a z*-extremal graph, see. [6]. 
Let n~>3 and define G , = G ( 3 n -  1,{1,4 . . . . .  3 n -  2}). 

Lemma 2.3. For any n >.3 we have c¢(G,)=n. 

Proof. The vertices 0,3 . . . .  3 n -  3 form an independent set of (7,, thus :¢(G,)>~n. 
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To prove that ~(G,)~<n, let S be a largest independent set of G,. We may without 
loss of generality, assume that 0 E S. Hence, none of the vertices 1,4 . . . . .  3 n -  5, 3 n -  2 
belongs to S. Moreover, these vertices define a partition of the remaining 2 n - 2  vertices 
of Gn into the following classes: 

s1={2 ,3} ,$2={5 ,6}  . . . . .  S , - 2 = { 3 n - 7 , 3 n - 6 } ,  S ~ - l = { 3 n - 4 , 3 n - 3 } .  

Clearly, ISNSi[<~I, for i = 1 , 2  . . . . .  n -  1. We conclude that ISl~n. [] 

Lemma 2.4. For any n~3  we have z(Gn)=3. 

Proof. Clearly, Z(Gn)>~3. Define a mapping c:V(Gn) ~ {1,2,3} as follows: 

c(i) = i mod 3 + 1. 

By the definition of Gn, if a vertex i is adjacent to a vertex j ,  then i mod 3 ~ j  mod 3. 
Thus c is a proper 3-coloring of Gn. [] 

Lemma 2.5. For any n>>.3 we have z f (Gn)=z*(Gn)=(3n-  1)In. 

Proof. It is well known, and easy to see, that zf(G)<~z*(G) holds for any graph G, 
cf. [12,21]. As G~ is vertex transitive, z f ( G , ) = ( 3 n -  1)In. It remains to show that 
x*(G~)~<(3n- l)/n. Define 

c ( i ) = l ~ J + n ' ( i m o d 3 ) .  

Suppose that i and j are adjacent vertices of Gn. Then j - - - ( i+  1 )+3t, where 0 ~< t ~< n -1 .  
Hence 

c ( j ) = [ i - ~ J + t + n ' ( ( i + l ) m o d 3 ) .  

and, therefore, n ~< Ic ( i ) -  c0")l ~<2n. It follows that c is a ( 3 n -  1, n)-coloring of G. [] 

Another way to prove Lemma 2.5 would be to use Theorem 4 of [6]. In this case, 
however, we would need to introduce one more notion. 

Combining Corollary 2.2 with Lemmas 2.3-2.5 we obtain: 

Corollary 2.6. Let n>~3 and let z(H)=m. Then 

~ ( G n [ n ] ) = 3 m - l ~ J  " 

Using Corollary 2.6 we can now prove our main result. 

Theorem 2.7. For any n >>. 2, the class ~n forms a proper subclass of  f#n_ 1. 
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P r o o L  Suppose that G c aj, and let c be an s -color ing o f  the graph G[K,-I]. Then c 

can be easi ly extended to an (s + 7~(G))-coloring o f  G[K,]. Hence,  if, C_ c£,_1, for any 

n ~> 2. To see that the inclusion is strict, for n >~ 3 use Corol lary  2.6 with H = K,  and 

H = K , - I ,  respect ively.  Finally, for n = 2, the result  is wel l  known,  see [7], cf. also 

[14]. (Recal l  that ~l is the class o f  all graphs.)  [] 

To conclude we remark that the mapping  

c(i, v j ) = i +  1 - 3 0 " -  1) 

presents a proper  (3n - l ) - co lo r ing  o f  the 

V(K, , )  = { v l ,  v2 . . . . .  v . } .  

product  G, [K, ] ,  where  we have set 
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