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Abstract 

Let y(G) be the domination number of a graph G and let G U H denote the Cartesian product 
of graphs G and H. We prove that y(X) = (nr= ,nr)/(2m + l), where X = C1 0 CZ 0 ... 0 C, 
and all nt = ICkIr 1 < k < m, are multiples of 2m + 1. The methods we use to prove this result 
immediately lead to an algorithm for finding minimum dominating sets of the considered 
graphs. Furthermore the domination numbers of products of two cycles are determined exactly 
if one factor is equal to C3, C4 or C5, respectively. 

1. Introduction 

A set D of vertices of a simple graph G is called dominating if every vertex 

w E V(G) - D is adjacent to some vertex v E D. The domination number of a graph 

G, y(G), is the order of a smallest dominating set of G. A dominating set D with 

1 D ( = y(G) is called a minimum dominating set. The Cartesian product G 0 H of graphs 

G and H is the graph with vertex set V(G) x V(H) and (a, x)(b, y) E E(G q H) whenever 

x=yandabEE(G),ora=bandxyEE(H).ForxEV(H)setG,=GO{x}andfor 

a E V(G) set H, = {a} 0 H. We call G, and H, a layer of G or H, respectively. 

There are two basic problems on the domination number of Cartesian products of 

graphs. The first is a conjecture of Vizing [lo], namely that y(G 0 H) > y(G)y(H). The 
conjecture is still open. See 14-6, 8, 93 for partial results. The second problem is to 

determine the domination numbers of particular Cartesian products [8,9]. Also this 

problem seems to be a difficult one. It is shown in [3] that even for subgraphs of 

P, 0 P, this problem is NP-complete. Furthermore, the complexity of this problem for 

P, Cl E itself is still open [7]. 
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In Section 2 we determine the domination number of the Cartesian product of two 
cycles if one cycle is a triangle. We also prove that r(C, Cl C,) = n, r(C, q CJ = 5k 

and r(C, 0 C,) = n + 1 for n E (5k + 1, Sk + 2,5k + 4). In addition, y(C, 0 C5k+3) 
< 5(k + 1) . In Section 3 we introduce covering graphs to prove that y(X) = 

(fl;==,n,)/(2m + l), where X = C1 0 C2 El... 0 C, and all nk = lCkl, 1 6 k < m, are 
multiples of 2m + 1. We also give an algorithm for finding minimum dominating sets 

of the considered graphs. 

2. C3 0 C,, C, 0 C, and C5 0 C’, 

We emphasize that throughout this paper the vertices of a path P, or a cycle C, are 

always denoted by 0, 1, . . ., n - 1. This notation turned out to be convenient to 
formulate the proof of Lemma 3.2. 

Lemma 2.1. (i) Let m > 2. Then there exists a minimum dominating set D of P, 0 P, 

such thatfor every i E V(P,), I( n DI < m - 1. 
(ii) Let m > 3. Then there exists a minimum dominating set D of C, 0 C, such thatfor 

every i E V(C,), I (C,)i n DI < m - 1. 

Proof. (i) Let D be a minimum dominating set of P, 0 P,. Suppose that 
I(Pm)ij n DI = m holds for k Pm-layers (Pm)i,, 0 Q k < n - 1, 1 $ j < k. We now con- 
struct a dominating set D’ with I D’I = I DI such that only k - 1 Pm-layers have 

m vertices in common with D’. 

If I(Pm)0 n DI = m then (P& n D = 8 and D’ = (D u ((0, l)})\{(O, O)> has the 
required properties. If I(P,,J_ 1 n DI = m we construct D’ analogously. 

Assume now that I( n DI = m for some i${O, n - l}. If in addition 
(Pm)i_l n D = (Pm)i+l n D = 8, then we set 

D’ = (D u ((0, i - l), (1, i + l)})\((O, i), (1, i)> . 

Assume finally that one of those layers, say (Pm)i+ 1, has nonempty intersection with 
D and let (j, i + 1) E (Pm)i+ 1 n D. Then clearly, (j, i - 1) 4 (Pm)i_ 1 n D and further- 
more I(P n DI < m - 1. Then D’ is given by 

D’ = (D u {(j, i - l)))\{(j, iI>. 

(ii) The proof is the same as above except that we do not have to consider the cases 
I(&), n DI = m and l(C,),_,l n D = m separately. 0 

We will use Lemma 2.1 for m = 2 in the case of paths and for m = 3 and m = 4 in 
the case of cycles. For larger m the lemma seems to be useless because we cannot 
assume the existence of layers with no vertex from a dominating set. 

To show the usefulness of Lemma 2.1 we first reprove a theorem of Jacobson and 
Kinch [S]. 
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Theorem 2.2. y(Pz q P,) = r(n + 1)/21. 

Proof. TO show that y(Pz 0 P,) 6 l+ + 1)/2] we use the construction given in [S]. 

To show that y(P, 0 P,) > r(n + 1)/2] it is clearly sufficient to prove that this 
bound holds for even n. Let II = 2k and let D be a minimum dominating set satis- 
fying Lemma 2.1 (in the case m = 2). Then every second P,-layer must contain a 
vertex of D. Hence y(Pz 0 P,) 2 k. If there are exactly k layers without a vertex 
of D, then either (PJ,, or (Pz),_ 1 is not dominated by D. Hence y(P2 0 P,) 

2 r(n + 1~121. 0 

We mention that also [8, Theorem 83 can be proved using similar arguments. We 
next use Lemma 2.1 in the case m = 3 to prove the following theorem. 

Theorem 2.3. y(C, 0 C,) = n - Ln/4], n 3 4. 

Proof. Let D consist of vertices (1, i), i = 0 (mod4), and vertices (0, i), (2, i), 
i E 2 (mod 4). If n G 2 (mod4) then add the vertex (0, n - 1) to the set D. It is 
straightforward to check that D is a dominating set of C3 [7 C, and that 
IDI = n - Ln/S]. 

Next we show that y(C,OC,)>n_Ln/4J. Let n=4k+t,k>1,3>,taO, 
and let D be a minimum dominating set which satisfies Lemma 2.1. Let s be the 
number of &-layers which contain no vertex of D. Then, since no two empty layers 
are adjacent, 

As every empty C3-layer is dominated by exactly two other layers, there are at least 
[s/2] &-layers with precisely two vertices from D. Hence 

Also s - [s/2] is maximal when s = 2k + Lt/2j. So 
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Lemma 2.4. Let D be a subset of V(C4 0 Pzn+ I), n > 1, such that 

(i) I(C4)inDI<3,O<i<2n, 
(ii) (C,), n D = (C,), n D = ... = (C4)2n_1 n D = 8, and 

(iii) the layers (C,),, (C,),, . . ., (C,),,_ I are dominated by D. 

Then IDI 3 2n + 1. 

Proof. AS (Ca)zi+ i n D = 0, 0 < i 6 n - 1, and all (Ca)zi+ 1 

it follows that I(C4)zi n DI > 1 and I((C,),i u (Cb)z(i+ 1)) n DI 

n - 1. Thus, 

n-l 
i~ol((Cd~i u (C4L(i+ 1)) n DI 4 4n 

and hence 

are dominated by D 

2 4 for each 0 G i < 

PI a 
4n + I(Gh nDI + I(CA nDI ~ 2n + 1. 

2 
q 

Theorem 2.5. y(C, 0 C,) = n, n > 4. 

Proof. Let D contain the vertices (0, i), i = 0 (mod 2), and vertices (2, i), i = 1 (mod 2), 
0 < i < n - 1. It is straightforward to verify that D is a dominating set of C4 0 C,, 

thus y(C, Cl C,) d n. 
In the sequel we prove that y(C, 0 C,) 3 n. Let D be a minimum dominating set of 

C4 0 C, and let D satisfy Lemma 2.1. Nothing has to be shown if [(Cd), n D( 3 1 for 
all i. Suppose therefore that there are s C,-layers, s > 1, containing no vertex of D. Let 

(c4)i,3 (c4)i,, ..*Y (C,), be the empty layers, where il < iz < +e. < i,. By Lemma 2.1 
there are no adjacent empty layers. Hence s d n/2. We now consider two cases. 

Case 1: s = n/2. Clearly n = 2k for some k 3 1 in this case. Without loss of 
generality we assume that (Cd),,, (C,),, . . ., (C,), _ 2 are the empty layers. Then for each 

0 < i < k - 1, I(C4)2i+l n DJ B 2 and thus it follows that IDI 2 2k = n. 

Case 2: s < n/2. In this case there are indices ij and ij+ 1 such that ij+ 1 - ij 2 3. (If 
necessary, all the arithmetic should be done over appropriate module.) This fact 
allows us to make a partition of C4 0 C, in the following way. For every empty layer, 
say (C,)i, take a maximal sequence of empty layers including (C,)i such that the 
distance (in C,,) between consecutive empty layers is 2. Add to such a sequence all the 
layers that dominate the empty layers in the sequence. Such a sequence then forms 
a part of our partition. Finally, every nonempty layer which is not adjacent to any 
empty layer forms a part for itself. It is clear that we have a partition of C4 Cl C,. 
Furthermore, by the definition and by Lemma 2.4 every part of the partition contains 
at least as many vertices of D as it contains C,-layers. Hence IDI 2 n again holds. q 

We mention that y(P, 0 P,) 2 n, which was first shown in [S, Lemma lo], immedi- 
ately follows from this result. 
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We now consider the product C5 0 C, and define a set D1 as follows: D1 consists of 
vertices (0, i), i = 0 (mod 5); (2, i), i = 1 (mod 5); (4, i), i = 2 (mod 5); (1, i), i = 3 
(mod5) and (3, i), i = 4 (mod5). Note that IDI1 = n. 

Theorem 2.6. Let n 2 5. Then 

n = 5k, 

n E (5k + 1,5k + 2,5k + 4). 

Furthermore, y(C, 0 Csk+3) < 5(k + 1). 

Proof. If n = 5k then D1 is a dominating set of C5 0 C,. As for any graph 
G, y(G) z IV(G)I/(A(G) + l), we conclude that y(C, 0 C,) = n. 

If n E (5k + 1,5k + 2,5k + 4) we add the vertex (3, n - 1) to D1 to obtain a domi- 
nating set with n + 1 vertices. If n = 5k + 3 we finally add the vertices (1, n - 1) and 

(3, n - 1) to D1 and thus obtain a dominating set of C5 0 C, with n + 2 vertices. 
Let n E (5k + 1,5k + 2,5k + 4) and assume that y(C, 0 C,) = n. Let D be a corres- 

ponding dominating set. We may assume that (0,O) E D. If y(C, 0 C,) = n then 
D must also be independent and every vertex not in D is dominated by exactly one 
vertex of D. In particular this implies that (2,O) $ D and that it is dominated by exactly 
one vertex of D. Without loss of generality, we may assume (2,l) ED. Consider the 
vertex (4,l). We have only one possibility to dominate this vertex, thus (4,2) E D and 
so forth (1,3)~D, (3,4)~D,(0,5)~D ,.... We conclude that D = D1, but note that 
since n # 5k, (3, n - 1) $ D1. Since (3,0) must be dominated by (3, n - 1) , we have 
a contradiction. Cl 

3. Domination numbers and covering graphs 

In this section we use covering graphs to obtain additional results on domination 
numbers of products of cycles. The following construction of a covering graph of 
a graph X with respect to a group G can be found in [l] : Each edge uu E E(X) gives 
rise to two l-arcs, [u, u] and [u, a]. By ,4(X) we denote the set of l-arcs and by 
cp: A(X) + G we denote a mapping such that cp([u, u]) = (cp([u, ~1)))’ for all 
[u, u] E ,4(X). The covering graph 2 = X(G, cp) of X with respect to G is defined on 
the vertex set V(z) = G x V(X) and two vertices (gr, u), (g2, u) E V(r?) are adjacent in 
_? if and only if [u, u] E A(X) and g2 = gicp( [u, u]). 

As a first example of how to use covering graphs we present the following 
proposition. 

Proposition 3.1. y(Cak 0 C,) < kn. 

Proof. Let G be a cyclic group of order k and let a be its generator. Let Y = C4 q C,. 
We fix one edge of the cycle Cq, say e, and define the mapping cp as follows: Each copy 
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of e in Y is mapped onto a and a- I, respectively, and all other edges of Y are mapped 
onto the unit element of G. Then the covering graph ?(G, cp) is clearly isomorphic to 
X = Cdk 0 C,. Furthermore, 0” = ((g, d) 1 g E G, d E D} is a dominating set of X if D is 
a dominating set of Y. Hence y(X) < kn. 0 

Note that the inequality of Proposition 3.1 might be proper. For example, 
y(Cak 0 C,) < 4k + 2 by Theorem 2.6 while the above proposition only claims that 

y(Ca 0 C,) < 5k. 

Lemma3.2. Let X=C10C20...0Cm where 1 Gil = 2m + 1 for each Ciy 

1 < i d m. Then y(X) = (2m + l)m-l. 

Proof. Since X is regular of degree 2m, y(X) > (2m + l)m-l. We now show that 
a dominating set with (2m + l)“- ’ vertices really exists. For convenience we set 
n = 2m + 1. The vertices of G are given by the vectors (ii, iz, . .., i,) where each 
ij, 1 < j < m, runs through all integers from 0 to n - 1. 

By K(i2, . . . . i,), ij E (1, . . . . n}, 2 < j 6 m, we denote the layers of C1 in X. We first 
determine a set D of vertices of X which dominates all vertices of K(0, . . . , 0). 

Furthermore, we determine this set in a way such that we can easily extend it to 
a dominating set of X which contains n”‘- 1 vertices, In the sequel all sums concerning 
entries of the vectors which represent the vertices of X are taken modulo n. We start 

with D = ((0, O,..., O)}. This vertex dominates (1,O.. . , 0) and (n - 1, 0, . . . , 0) . Then 

we join all vertices (2i, i, 0, . . . . 0), 1 d i < n - 1, to D. Clearly the vertex (2, 1, 0, . . . . 0) 

dominates (2,0,0, . . ., 0) and (n - 2, n - l,O, . . . . 0) dominates the vertex 

(n-2,0,0 ,..., 0) . In general, the vertices of D are determined by the following 
algorithm: 

D := {(O,...,O)) 

for k = 2 to m do begin 
set all entries of vector to 0; 
for i = 1 to n - 1 do begin 

vector [1] := (vector-[11 + k) mod n; 

vector[k] := i; 

D := D v vector 

end 
end 

Observe first that the above procedure is cyclically closed, i.e. the next vertex after 
the end of the procedure would be the starting vertex. Of course, the vertices with 1 as 
their kth entry always dominate the vertices (k, 0, . . . , 0) and the vertices with n - 1 as 
their kth entry always dominate the vertices (k .(n - l), 0, . . ..O) . If k = m then 

(4 O,O, . . . . 0) is dominated by the vertex with 1 as its mth entry and the vertex 
(m + l,O,...,O) is dominated by (m + l,O, . . . . n - 1) since 2m2 = m + 1 
(mod(2m + 1)). It follows that all vertices of K(0, 0, . . . . 0) are dominated by D. 
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We now obtain a dominating set D of X as follows: Take any cycle K(xz, . . . , x,) 

which has nonempty intersection with D but is not dominated by D. Then apply the 
above given procedure to X(x,, . . . , x,) with that vertex (x1, x2, . . . ,x, ) of K(x,, . . . , x,) 

as starting point which is already contained in D. The set D we thus obtain clearly 
dominates K(x2, . . ..x.) . If it does not dominate the whole graph, then we again 
choose a cycle K(y,, . . ., yn) which has nonempty intersection with D but is not 
dominated by D and apply the above algorithm, etc. Hence we finally end with 
a dominating set D of X which contains exactly one vertex of each cycle 

K(i2 ,..., i,),O<ij<Fi-1,2 <j<m. For completeness, we finally present the 
above procedure in its general form: 

D := {(0, . . . . O)}; 

while D does not dominate X do hegin 

choose any cycle K(x,, . . . , x,) not dominated by D 

but has nonempty intersection with D; 

vector := Kfx,, . . ..x.) n D; 

for k = 2 to m do hegin 

vector x := vector; 

for i = 1 to n - 1 do begin 

vector[l] := (vector[l] + k) mod n; 
vector[k] := (vector[k] + i) mod n; 
D := D u vector 

end 

end 

vector : = vector x 

end 

This completes the proof. 0 

Theorem 3.3. Let X = Cl 0 C2 q a.e 0 C, such that all nk = IC,J, 1 < k < m, are 
multiples of 2m + 1. Then 

Proof. Let nk = rk. (2m + l), rk 2 1, 1 < k < m, and let G be a group defined by 
G = (ai) x ... x (a,), where ak has order rk. Hence, if rj = 1 for some j E { 1, . . . , m}, we 

set Uj = e. 
Let Y = Si 0 Sz q ... Cl S,, where each Sk, 1 d k d m, is a cycle of length 2m + 1. We 

now fix one edge, say ek, of each Cycle Sk, 1 < k Q m, and COnStIUCt a covering graph 
F(G, cp) where cp is given as follows: Each copy of ek in Y is mapped onto ak and uk ‘, 
respectively. Then the covering graph ?(G, cp) is isomorphic to X. Also 
0” = ((g, d) 1 g E G, d E D} is a dominating set of X if D is a dominating set of Y. Hence, 
using Lemma 3.2, y(X) < (2m + l)cm-l).n~z irk, which immediately implies our 
result. Cl 
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Minor alterations in the algorithm given in the proof of Lemma 3.2 immediately 
lead to an algorithm to determine minimum dominating sets of the graphs considered 
in the above theorem. Also, minor modifications of the same algorithm lead to 
a simple procedure to find small - if not the smallest - dominating sets of products of 
two cycles. 

In [8] Jacobson and Kinch proved that lim,,,,,y(P, 0 P,)/mn = 4. As 

f 6 Y(C, 0 Cl)/ mn d y(P,,, 0 P,)/mn we also have the following proposition. 

Proposition 3.4. lim,,,,, y(C, 0 C,)/mn = f. 

We finally mention that it is not difficult to show that y(C, 0 C,) < mn/4 if 
m, n 2 4. This can be done by applying the ideas of this paper as well as with the help 
of the results presented in [2]. 
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