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Abstract. The general position number gp(G) of a connected graph G is
the cardinality of a largest set S of vertices such that no three distinct
vertices from S lie on a common geodesic; such sets are refereed to as gp-
sets of G. The general position number of cylinders Pr �Cs is deduced. It
is proved that gp(Cr �Cs) ∈ {6, 7} whenever r ≥ s ≥ 3, s �= 4, and r ≥ 6.
A probabilistic lower bound on the general position number of Cartesian
graph powers is achieved. Along the way a formula for the number of
gp-sets in Pr �Ps, where r, s ≥ 2, is also determined.
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1. Introduction

Points in general position in the plane are basic objects in classical geometry as
well as in computational geometry. The concept naturally extends to arbitrary
metric spaces and asking for the maximum number of points in general position
appears as a natural problem. The problem to find the maximum number of
points that can be placed in the n × n grid so that no three points lie on a
line is known as the no-three-in-line problem and was posed back in 1917 by
Dudeney [5]. After a century the problem remains open, cf. [12,15,20]. Closely
related problems are investigated in discrete geometry, see [3,19].

Recently, the general position problem has been studied for metric spaces
generated by graphs. The problem was independently introduced in [13,25],
the present terminology and formalism are from [13]. If G = (V (G), E(G))
is a graph, then S ⊆ V (G) is a general position set if dG(u, v) �= dG(u,w) +
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dG(w, v) holds for every {u, v, w} ∈ (
S
3

)
, where dG(x, y) denotes the shortest-

path distance in G, and
(
S
3

)
the set of all 3-subsets of S. Equivalently, no three

vertices lie on a common geodesic. We also say that the vertices from S lie
in general position. The general position problem is to find a largest general
position set of G, the order of such a set is the general position number gp(G)
of G. A general position set of G of order gp(G) will be called a gp-set.

Following the seminal papers, the general position problem has been in-
vestigated in a sequence of papers [1,6,10,14,16,18,22,26]. As it happens, in
the special case of hypercubes, the general position problem was studied back
in 1995 by Körner [11] related to some coding theory problems. In this paper,
asymptotic lower and upper bounds were proved on the gp-number of hyper-
cubes, and several closely related problems (cf. Sect. 5) were considered. The
lower bound from [11] was improved in [17].

The results from [14] on the general position problem in interconnection
networks with the emphasis on grid graphs were a starting motivation for the
present study. One of the main results of [14] asserts that if P∞ denotes the two-
way infinite path, then gp(P∞ �P∞) = 4, and consequently gp(Pr �Ps) = 4
for r, s ≥ 3. The non-trivial part of this result (that gp(Pr �Ps) ≤ 4 holds)
was proved using the so-called Monotone Geodesic Lemma which was in turn
derived from the celebrated Erdös-Szekeres theorem, cf. [2, Theorem 1.1]. The
result gp(P∞ �P∞) = 4 was recently generalized in two directions. In [9], it
is proved that gp(P � ,k

∞ ) = 22
k−1

, while in [24], it is demonstrated that if T1

and T2 are arbitrary trees, then gp(T1 �T2) = gp(T1) + gp(T2). The general
position number of several other Cartesian product graphs is studied in [23].

In the rest of this section we prepare material needed later on. In the
next section we have a closer look at the structure of gp-sets in grid graphs.
We need to do it for the proof of the subsequent theorem on cylinder graphs
(Theorem 3.2). As a side result we determine the number of gp-sets in Pr �Ps

for every r, s ≥ 2, a result that could be of independent interest. In Sect. 3
we then determine gp(Pr �Cs) for every r ≥ 2 and s ≥ 3. In the subsequent
section we prove that if 3 ≤ s ≤ r, 4 �= s, and r ≥ 6, then gp(Cr �Cs) ∈ {6, 7}.
We also discuss exact values and in particular prove that gp(C3 �Cs) = 6 holds
for s ≥ 6. Motivated by the results of [11], we consider in Sect. 5 how to apply
the probabilistic method to obtain asymptotic lower bounds on the gp-number
of Cartesian powers of graphs.

1.1. Preliminaries

For a positive integer k we will use the notation [k] = {1, . . . , k} and [k]0 =
{0, . . . k − 1}. The Cartesian product G�H of graphs G and H has the vertex
set V (G�H) = V (G)×V (H), vertices (g, h) and (g′, h′) are adjacent if either
gg′ ∈ E(G) and h = h′, or g = g′ and hh′ ∈ E(H). Given a vertex h ∈ V (H),
the subgraph of G�H induced by the set {(g, h) : g ∈ V (G)}, is a G-layer
and is denoted by Gh. H-layers gH are defined analogously. Each G-layer and



On General Position Sets in Cartesian Products Page 3 of 21   123 

H-layer is isomorphic to G and H, respectively. If X ⊆ V (G�H), then the pro-
jection pG(X) of X to G is the set {g ∈ V (G) : (g, h) ∈ X for some h ∈ V (H)}.
The projection pH(X) of X to H is defined analogously. The k-tuple Cartesian
product of a graph G by itself, alias Cartesian power of G, is denoted by G� ,k.
This is well-defined since the Cartesian product operation is associative. For
more on the Cartesian product see [7]. As stated above, the following result
was the primary motivation for the present paper.

Theorem 1.1 [14]. If r ≥ 3 and s ≥ 3, then gp(Pr �Ps) = 4.

A subgraph H of a graph G is isometric if dH(u, v) = dG(u, v) holds for
all u, v ∈ V (H). A set of subgraphs {H1, . . . , Hk} of a graph G is an isometric
cover of G if each Hi, i ∈ [k], is isometric in G and

⋃k
i=1 V (Hi) = V (G).

Theorem 1.2 [13, Theorem 3.1]. If {H1, . . . , Hk} is an isometric cover of G,
then

gp(G) ≤
k∑

i=1

gp(Hi) .

If G is a connected graph, S ⊆ V (G), and P = {S1, . . . , Sp} is a partition
of S, then P is distance-constant (alias “distance-regular” [8, p. 331]) if for
any i, j ∈ [p], i �= j, the distance dG(u, v), where u ∈ Si and v ∈ Sj , is
independent of the selection of u and v. This distance is then the distance
dG(Si, Sj) between the parts Si and Sj . A distance-constant partition P is
intransitive if dG(Si, Sk) �= dG(Si, Sj) + dG(Sj , Sk) holds for distinct indices
i, j, k ∈ [p].

Theorem 1.3 [1, Theorem 3.1]. Let G be a connected graph. Then S ⊆ V (G) is
a general position set if and only if the components of the subgraph induced by
S are complete subgraphs, the vertices of which form an intransitive, distance-
constant partition of S.

Suppose that G is a connected bipartite graph and a general position
set S contains two adjacent vertices x and y. Then Theorem 1.3 implies that
|S| = 2, because no other vertex of G can be at the same distance to x and y.
We state this observation for later use.

Corollary 1.4. If G is a bipartite graph with gp(G) ≥ 3, then every gp-set of
G is an independent set.

2. Enumeration of gp-Sets in Grids

In this section we take a closer look at the structure of gp-sets in grids. We
have two reasons to do it, the first is that this insight will be used in the proof
of Theorem 3.2, the second is that we are able to enumerate the gp-sets in
grids as follows.
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Theorem 2.1 If 2 ≤ r ≤ s, then

#gp(Pr �Ps) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

6; r = s = 2 ,

s(s − 1)(s − 2)

3
; r = 2, s ≥ 3 ,

rs(r − 1)(r − 2)(s − 1)(s − 2)(r(s − 3) − s+ 7)

144
; r, s ≥ 3 .

Proof. Set V (Pn) = [n]. If r = s = 2, then the assertion is clear since P2 �P2 =
C4. Let next r = 2 and s ≥ 3. It is straightforward to see that gp(P2 �Ps) = 3.
Moreover, if X is a gp-set of P2 �Ps, then X has one vertex in one of the two
Ps-layers and two vertices in the other Ps-layer, say X = {(1, i), (2, j), (2, k)},
where j < k. Since X is a gp-set we infer that j < i < k. Hence, for a given
vertex (1, i), there are i − 1 possibilities to select the vertex (2, j), and s − i
possibilities for the vertex (2, k). The same holds if X has two vertices in 1Ps

and one vertex in 2Ps. From this it follows that

#gp(P2 �Ps) = 2 ·
s∑

i=1

(i − 1)(s − i) =
s(s − 1)(s − 2)

3
.

Suppose in the rest that r, s ≥ 3, so that gp(Pr �Ps) = 4 by Theorem 1.1.
Hence by Corollary 1.4, every gp-set is an independent set (of cardinality 4).
Let X be an arbitrary such set and assume first that |p

Ps
(X)| = 2. Then,

clearly, X has two vertices in one Pr-layer and two vertices in another Pr-
layer. Let (i, j) ∈ X be a vertex that has the smallest first coordinate among
the vertices of X. Then (i, j) and the two vertices of X from the Pr-layer not
containing (i, j) lie on a common geodesic. Analogously, X cannot be a general
position set if |p

Pr
(X)| = 2. Since also |p

Pr
(X)| = 1 or |p

Ps
(X)| = 1 are not

possible, we only need to distinguish the following two cases.

Case 1: |p
Pr

(X)| = 4 and |p
Ps

(X)| = 4.

Let p
Pr

(X) = {a, b, c, d}, where a < b < c < d, and let p
Ps

(X) = {a′, b′, c′, d′},
where a′ < b′ < c′ < d′. Then in the set p

Pr
(X) × p

Ps
(X) there are 4! dif-

ferent 4-sets of vertices that project onto both p
Pr

(X) and p
Ps

(X). They
can be described with permutations π of p

Ps
(X). That is, if π : p

Ps
(X) →

p
Ps

(X) is a bijection, then the corresponding gp-set of vertices of Pr �Ps is
Sπ = {(a, π(a′)), (b, π(b′)), (c, π(c′)), (d, π(d′))}. Now, by the metric structure
of Pr �Ps (cf. [14]), Sπ is a general position set if and only if the sequence
(π(a′), π(b′), π(c′), π(d′)) contains no monotone subsequence of length 3. By
a direct inspection we find that if π(a′) = a′ or if π(a′) = d′, then we get
no general position sets. If π(a′) = b′, then exactly the sequences (b′, a′, d′, c′)
and (b′, d′, a′, c′) yield general position sets. Symmetrically, if π(a′) = c′, then
exactly the sequences (c′, a′, d′, b′) and (c′, d′, a′, b′) yield general position sets.
Hence, if |p

Pr
(X)| = 4 and |p

Ps
(X)| = 4, then there are exactly 4

(
r
4

)(
s
4

)
gp-sets.
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Case 2: |p
Pr

(X)| = 3 (and |p
Ps

(X)| = 3 or |p
Ps

(X)| = 4).

Let p
Pr

(X) = {a, b, c}, where two vertices from X project to a, say (a, a′), (a, b′)
∈ X, where a′ < b′. Let (x, x′) be a vertex of Pr �Ps, where x′ ≤ a′ and
(x, x′) �= (a, a′). Then d((x, x′), (a, b′)) = d((x, x′), (a, a′)) + d((a, a′), (a, b′)),
which means that (x, x′) /∈ X. Similarly, if (x, x′) is a vertex of Pr �Ps with
x′ ≥ b′ and (x, x′) �= (a, b′), then also (x, x′) /∈ X. We have thus shown that

X ∩ ([r] × {1, . . . , a′}) = {(a, a′)} and X ∩ ([r] × {b′, . . . , s}) = {(a, b′)} .

Let X = {(a, a′), (a, b′), (x, x′), (y, y′)}, where x �= y. By a similar argument as
above we see that, without loss of generality,

(x, x′) ∈ {1, . . . , a − 1} × {a′ + 1, . . . , b′ − 1} and

(y, y′) ∈ {a + 1, . . . , r} × {a′ + 1, . . . , b′ − 1} .

Since the vertices (x, x′) and (y, y′) are arbitrary vertices from {1, . . . , a−1}×
{a′ + 1, . . . , b′ − 1} and {a + 1, . . . , r} × {a′ + 1, . . . , b′ − 1}, respectively, for
fixed a, a′, b′ we obtain precisely

[(b′ − a′ − 1)(a − 1)] · [(b′ − a′ − 1)(r − a)] = (b′ − a′ − 1)2(a − 1)(r − a)

gp-sets. To obtain the number of all gp-sets in this case, we need to sum up
over all coordinates a of the factor Pr, onto which two vertices from X project.
Consequently, the number of gp-sets in Case 2 is

r∑

a=1

s∑

a′=1

s∑

b′=a′+1

[(b′−a′−1)2(a−1)(r − a)]=
rs(r2 − 3r + 2)(s3 − 4s2 + 5s − 2)

72
.

By the above two cases, if r, s ≥ 3, then

#gp(Pr �Ps) = 4
(

r

4

)(
s

4

)
+

rs(r2 − 3r + 2)(s3 − 4s2 + 5s − 2)
72

=
rs(r − 1)(r − 2)(s − 1)(s − 2)(r(s − 3) − s + 7)

144
,

which is the claimed expression. �

If r = 3 and s ≥ 3, then Theorem 2.1 yields

#gp(P3 �Ps) =
s(s − 2)(s − 1)2

12
,

which, after substituting s with s + 1 gives the sequence A002415 from OEIS
[21]. In addition, the case r = 2 and s ≥ 3 yields the sequence A007290.

3. Cylinders

In this section we determine the general position number of cylinders. For
this task, the following function will be useful. If G is a connected graph and
X ⊆ V (G) is a general position set, then
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F (X) = {u ∈ V (G) − X : X ∪ {u} is not a general position set} .

If X = {x, y}, we will simplify the notation F ({x, y}) to F (x, y).
Set V (Pr) = [r]0 and V (Cs) = [s]0. From now on, operations with the

integers in V (Cs) are done modulo s.

Lemma 3.1 Let r ≥ 2, s ≥ 3, and let S be a general position set of the cylinder
graph Pr �Cs. Then the following assertions hold.
(i) If |S| ≥ 5, then S is an independent set.
(ii) If |S| ≥ 4, then |S ∩ V (iCs)| ≤ 2 for every i ∈ [r]0.
(iii) If |S ∩ V (iCs)| = 2 for some i ∈ [r]0, then |S| ≤ 4.
(iv) If r ≥ 6, |S| = 5, and |S ∩ V (iCs)| ≤ 1 for every i ∈ [r]0, then

gp(P5 �Cs) ≥ 5.

Proof. (i) Suppose |S| ≥ 5 and S is not independent. If (i, k), (i + 1, k) ∈ S,
then we observe that F ((i, k), (i + 1, k)) = V (Pr �Cs) − {(i, k), (i + 1, k)},
which means that S = {(i, k), (i+1, k)}, a contradiction. On the other hand, if
(i, k), (i, k+1) ∈ S, then either F ((i, k), (i, k+1)) = V (Pr �Cs)−{(i, k), (i, k+
1)} (when s is even), or F ((i, k), (i, k+1)) = V (Pr �Cs)− ({(i, k), (i, k+1)}∪
(V (Pr) × {j})) (when s is odd), where j is the vertex which is on Cs opposite
to k and k + 1. The first possibility directly leads to a contradiction. For the
second one, since every Pr-layer, being an isometric subgraph, contributes at
most two vertices to a general position set of Pr �Cs, it follows that |S| ≤ 4,
which is again a contradiction. Consequently S must be an independent set.

(ii) The result follows directly from the following fact. If {(i, k1), (i, k2),
(i, k3)} ⊆ S, then (since k1, k2, and k3 are distinct) F ({(i, k1), (i, k2), (i, k3)}) =
V (Pr �Cs) − {(i, k1), (i, k2), (i, k3)}, which means that |S| = 3.

(iii) Let i ∈ [r]0 be such that |S ∩ V (iCs)| = 2. We may assume without
loss of generality that S ∩ V (iCs) = {(i, 0), (i, j)}, where j ≤ 
s/2�. Then

F ((i, 0), (i, j)) = [r]0 × ({j − 
s/2�, . . . , 0} ∪ {j, . . . , 
s/2�})
∪ ({i} × I) − {(i, 0), (i, j)},

where I = [s]0 if s is even and j = s/2; or I = {0, . . . , j} otherwise.
If j = 1, then F ((i, 0), (i, j)) equals V (Pr �Cs) − {(i, 0), (i, j)} when s is

even, or F ((i, 0), (i, j)) equals V (Pr �Cs) − (([r]0 × {�s/2}) ∪ {(i, 0), (i, j)})
when s is odd. In the first situation we clearly have |S| ≤ 2. In the latter one,
the set of vertices [r]0 ×{�s/2} could contain at most two vertices of S, since
it induces an isometric path in Pr �Cs, and so |S| ≤ 4. We may assume in
the rest that j ≥ 2. Note that V (Pr �Cs) − (F ((i, 0), (i, j)) ∪ {(i, 0), (i, j)}) =
Y1 ∪ Y2 ∪ Y3 ∪ Y4, where

Y1 = [i]0 × {1, . . . , j − 1}
Y2 = [i]0 × {
s/2� + 1, . . . , j − 
s/2� − 1}
Y3 = ([r]0 − [i + 1]0) × {1, . . . , j − 1}
Y4 = ([r]0 − [i + 1]0) × {
s/2� + 1, . . . , j − 
s/2� − 1}.



On General Position Sets in Cartesian Products Page 7 of 21   123 

Consider two vertices (i′, j′), (i′′, j′′) ∈ S − {(i, 0), (i, j)}. (If there are
no two such vertices, then clearly |S| ≤ 3.) If either (i′, j′), (i′′, j′′) ∈ Y1; or
(i′, j′), (i′′, j′′) ∈ Y2; or (i′, j′), (i′′, j′′) ∈ Y3; or (i′, j′), (i′′, j′′) ∈ Y4, then it
happens that (i, 0) ∈ F ((i′, j′), (i′′, j′′)) or (i, j) ∈ F ((i′, j′), (i′′, j′′)), which
is not possible. As a consequence, each of the sets Y1, Y2, Y3, and Y4 must
contain at most one vertex of S.

Assume now there is a vertex (i′, j′) ∈ Y1∩S. Then the set F ((i′, j′), (i, 0))∪
F ((i′, j′), (i, j)) contains the whole set Y4. By symmetry, if there is a vertex
(i′, j′) ∈ Y4∩S, then Y1∩S = ∅. Hence, |(Y1∪Y4)∩S| ≤ 1. Similarly we obtain
that |(Y2 ∪ Y3) ∩ S| ≤ 1. Therefore, the sets Y1, Y2, Y3, and Y4 can contain at
most two vertices of S, which gives |S| ≤ 4.

(iv) Let S = {(ik, jk) : k ∈ [5]0}. Since |S ∩ V (iCs)| ≤ 1, the coordinates
ik are pairwise different, hence we may assume without loss of generality that
i0 < i1 < i2 < i3 < i4. Set S′ = {(k, jk) : k ∈ [5]0}. We claim that S′ is a
general position set of G5 = P5 �Cs. Assume on the contrary that

dG5((p, jp), (r, jr)) = dG5((p, jp), (q, jq)) + dG5((q, jq), (r, jr))

for some p, q, r ∈ [5]0, p < q < r. Since the distance function in Cartesian
products is additive, we get that

dP5(p, r) + dCs
(jp, jr) = dP5(p, q) + dCs

(jp, jq) + dP5(q, r) + dCs
(jq, jr) .

Since dP5(p, r) = dP5(p, q) + dP5(q, r), we thus have

dCs
(jp, jr) = dCs

(jp, jq) + dCs
(jq, jr) .

From this we get that in Gr = Pr �Cs,

dGr
((ip, jp), (ir, jr)) = dPr

(ip, ir) + dCs
(jp, jr)

= [dPr
(ip, iq) + dPr

(iq, ir)] + [dCs
(jp, jq) + dCs

(jq, jr)]

= [dPr
(ip, iq) + dCs

(jp, jq)] + [dPr
(iq, ir) + dCs

(jq, jr)]

= dGr
((ip, jp), (iq, jq)) + dGr

((iq, jq), (ir, jr)) .

This contradiction proves that S′ is a general position set of P5 �Cs. We
conclude that gp(P5 �Cs) ≥ 5. �

Note that Lemma 3.1(iv) allows us to map a general position set of car-
dinality 5 in long cylinders to a general position set of the same cardinality in
cylinders over P5.

Theorem 3.2 If r ≥ 2 and s ≥ 3, then

gp(Pr �Cs) =

⎧
⎨

⎩

3; r = 2, s = 3 ,
5; r ≥ 5, and s = 7 or s ≥ 9 ,
4; otherwise .

Proof. First, it is easy to verify that gp(P2 �C3) = 3.
Assume next that r ≤ 4 and suppose that there exists a general position

set S with |S| ≥ 5. If r = 2, this is not possible by Lemma 3.1(ii). Let next
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r ∈ {3, 4}. Then there exists a Cs-layer iCs with |V (iCs) ∩ S| ≥ 2. The case
|V (iCs)∩S| > 2 is not possible by Lemma 3.1(ii), while the case |V (iCs)∩S| =
2 is excluded by Lemma 3.1(iii). Hence gp(Pr �Cs) ≤ 4 for r ∈ {2, 3, 4}. It
is straightforward to see that the set {(0, 0), (1, 1), (0, 
s/2�), (1, 
s/2� + 1)} is
a general position set of Pr �Cs for r ≥ 2 and s ≥ 4. Moreover, if s = 3,
then the set {(0, 1), (1, 0), (1, 2), (2, 1)} is a general position set of Pr �C3 for
r ≥ 3. Hence gp(Pr �Cs) ≥ 4 for r ∈ {2, 3, 4} and so gp(Pr �Cs) = 4 for
r ∈ {2, 3, 4}.

The general position set {(0, 0), (1, 2), (2, 4), (3, 6), (4, 1)} of P5 �C7

demonstrates that gp(P5 �C7) ≥ 5.
Suppose next that for some r ≥ 6 the cylinder Pr �C8 contains a general

position set S with |S| = 5. From Lemma 3.1(iii) it follows that |S∩V (iC8)| ≤ 1
for every i ∈ [r]0. Hence the assumptions of Lemma 3.1(iv) are fulfilled, and
we can map the general position set S of cardinality 5 in the cylinder Pr �C8,
r ≥ 6, to a general position set of the same cardinality (5) in the cylinder over
P5 �C8, which indeed implies that gp(P5 �C8) ≥ 5. However, we have checked
by computer that gp(P5 �C8) = 4. Thus, we have obtained a contradiction.
Therefore, gp(Pr �C8) ≤ 4 for r ≥ 5 (the case r = 5 was computationally
made). Since clearly gp(Pr �C8) ≥ 4, we conclude that gp(Pr �C8) = 4 for
r ≥ 5.

Suppose now that r = 5, s ≥ 9, and consider the set

S = {u0 = (0, 1), u1 = (1, 4), u2 = (2, 
s/2� + 2), u3 = (3, 0), u4 = (4, 3)} .

We claim that S is a general position set. Note first that the vertices u0, u1, u3, u4

lie in a general position. Further,

d(u2, u0) = (s − 
s/2� − 1) + 2 = s − 
s/2� + 1,

d(u2, u1) = 
s/2� − 1,

d(u2, u3) = s − 
s/2� − 1,

d(u2, u4) = 
s/2� + 1.

Then d(u0, u2) = s − 
s/2� + 1 < 
s/2� + 3 = d(u0, u1) + d(u1, u2). Similarly
we see that u2 is not on a geodesic containing three vertices of S. Hence, S is
a general position set and thus gp(P5 �Cs) ≥ 5 for s ≥ 9.

Note finally that the general position set for P5 �C7 and the general
position set for P5 �Cs, s ≥ 9, are also general position sets for Pr �C7,
r ≥ 6, and for Pr �Cs, r ≥ 6, respectively. We conclude that gp(Pr �Cs) ≥ 5
for r ≥ 5 and s ≥ 7, s �= 8.

It remains to prove that the above constructed general position sets of
cardinality 5 are gp-sets. Hence let S be a gp-set of Pr �Cs, where |S| ≥ 5.
Note that S is an independent set, by Lemma 3.1(i). Then make a partition
of V (Pr �Cs) into two sets A1 and A2 inducing two grids that are isometric
subgraphs of Pr �Cs. Without loss of generality, we may assume A1 = V (Pr)×
[�s/2]0 and A2 = V (Pr) × ([s]0 − [�s/2]0). Now, let S1 = S ∩ A1 and S2 =
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a b c d

b

a

d

c

a b c d

c

d

a

b

Figure 1. Two possible configurations of the set S1 (edges
of the grid have not been drawn)

S ∩ A2. Since gp(Pr �Cs) ≥ 5, it follows |S1| ≥ 3 or |S2| ≥ 3. Moreover, since
A1 and A2 induce isometric grid graphs, Theorem 1.1 implies that |S1| ≤ 4
and |S2| ≤ 4. To simplify the notation, we write sd = 
s/2� Note that here we
do not need to change floor to ceil. We consider the following cases.

Case 1: |S1| = 4.

Let S1 = {(a′, a), (b′, b), (c′, c), (d′, d)}. Note that S1 is then a gp-set of the grid
induced by A1. Since the structure of every gp-set of a grid graph is known
from the proof of Theorem 2.1, we can assume without loss of generality the
following facts: a < b < d, a < c < d, and either (c′ < a′ < b′ and c′ < d′ < b′)
or (b′ < a′ < c′ and b′ < d′ < c′). Note that there is neither relationship
between a, b nor between a′, b′, namely, it can happen a ≤ b or b ≤ a and
a′ ≤ b′ or b′ ≤ a′. Examples of such sets are shown in Fig. 1. For presentation
purposes, in this and the subsequent figures an orientation is selected such
that Cs-layers are drawn horizontally and Pr-layers vertically.

We now consider the set F (S1) in V (Pr �Cs). Figure 2 shows an example
of the forbidden area generated by only two vertices of S1 ((c′, c) and (d′, d)
in this case). Since it is not necessary for our purposes, we do not look at the
whole set S1, only a significant part.

We detail now the case a < b ≤ c < d and c′ < a′ ≤ d′ < b′, see Fig. 3.
Observe that:

{a′, . . . , r − 1} × {a, a − 1, . . . , c − sd} ⊂ F ((c′, c), (a′, a)),

{0, . . . , a′} × {a, a − 1, . . . , b − sd} ⊂ F ((b′, b), (a′, a)),

{d′, . . . , r − 1} × {d, d + 1, . . . , c + sd} ⊂ F ((c′, c), (d′, d)),

{0, . . . , d′} × {d, d + 1, . . . , b + sd} ⊂ F ((b′, b), (d′, d)).
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a b c d

c

a

d

b

b1 b2 c1 c2

Figure 2. The forbidden area F ((c′, c), (d′, d)) appears sur-
rounded by the dashed rectangles. Vertices b1 and b2 of Cs are
diametral with b while c1 and c2 are diametral with c. Here
b1 = b + sd, b2 = b − sd, c1 = c + sd, and c2 = c − sd. Similar
convention will be used in the subsequent figures. Notice that
if the cycle would have an even order, then b1 = b2 and c1 = c2

Let us define a subset A of A2 by A = A2 −F (S1). Observe that A is empty if
and only if one of the following situations occur: a′ = d′, or a′ = d′−1, or b = c,
or (b = c−1 and s is even). More precisely, A = {a′+1, . . . , d′−1}×{b2, . . . , c1}.
Figure 3 shows an example of this where the set A is not empty.

As a consequence, it must happen that S2 ⊆ A, since otherwise we get a
contradiction with S being a gp-set. If |S2| ≥ 2, then let (x′, x), (y′, y) ∈ S2. It
is then not difficult to observe that (c′, c), (x′, x), (y′, y) or (d′, d), (x′, x), (y′, y)
lie in a geodesic of Pr �Cs, as well as (a′, a), (x′, x), (y′, y) or (b′, b), (x′, x), (y′, y),
which is not possible. Thus |S2| ≤ 1.

By using a similar reasoning, we deduce the same conclusion for any other
relationship of a, b, c, d and a′, b′, c′, d′ (from those ones that allow to obtain a
gp-set of the grid induced by A1, according to the proof of Theorem 2.1). As a
consequence of the whole deduction of this case, we obtain that gp(Pr �Cs) =
|S| = |S1| + |S2| ≤ 5.

Case 2: |S2| = 4.

The situation is similar to Case 1, although if s is odd, then the set A2 is
smaller than A1 by a difference of one Pr-layer. Notwithstanding, this fact
does not influence the arguments considered in Case 1.
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a b c d

c

a

d

b

b1 b2 c1 c2

A

Figure 3. Part of the forbidden area of the bolded set of
vertices appears in dashed rectangles. The two gray vertices
of the thick rectangle (denoted by A) do not belong to the
forbidden area of the bolded vertices

b a c

a

b

c

Figure 4. An example of a configuration for the set S1

Case 3: |S1| = 3 or |S2| = 3.

Assume first that |S1| = 3, and let S1 = {(a′, a), (b′, b), (c′, c)}. Clearly, the
three elements of S1 cannot lie simultaneously in the same iCs-layer, or in the
same Pr

j-layer. Moreover, it cannot happen that a′ ≤ b′ ≤ c′ and a ≤ b ≤ c
at the same time, or any other similar double monotone sequence. This means
that, for instance, if a′ ≤ b′ ≤ c′, then either (b < a and b < c) or (b > a and
b > c).

We may assume now that a′ ≤ b′ ≤ c′, b < a and b < c. Figure 4 shows
an example of this.
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b a c

a

b

c

b1 b2 a1 a2 c1 c2

B1 B2

B3 B4

Figure 5. A significant part of the set F (S1) appears sur-
rounded by dashed rectangles. For x ∈ {a, b, c}, the vertices
x1 and x2 from Cs (x1 = x+sd and x2 = x−sd) are diametral
vertices with x. Note that if Cs is an even cycle, then x1 = x2

We now consider the set F (S1) in V (Pr �Cs), and observe the following.
Recalling that sd = 
s/2� we have:

{c′, . . . , r − 1} × {c, c + 1, . . . , a + sd} ⊂ F ((c′, c), (a′, a)),

{0, . . . , a′} × {a, a − 1, . . . , c − sd} ⊂ F ((c′, c), (a′, a)),

{b′, . . . , r − 1} × {b, b − 1, . . . , a − sd} ⊂ F ((b′, b), (a′, a)),

{0, . . . , a′} × {a, a + 1, . . . , b + sd} ⊂ F ((b′, b), (a′, a)),

{c′, . . . , r − 1} × {c, c + 1, . . . , b + sd} ⊂ F ((c′, c), (b′, b)),

{0, . . . , b′} × {b, b − 1, . . . , c − sd} ⊂ F ((c′, c), (b′, b)).

See Fig. 5 for an example of the situations above.
Observe now that there are four sets, say B1, B2, B3, and B4, such that

B1 ∪ B2 ∪ B3 ∪ B4 = A2 − F (S1), and satisfying the following. If B1, B2, B3,
and B4 are not empty, then

B1 = {a′ + 1, . . . , c′ − 1} × {sd + 1, . . . , b + sd},

B2 = {a′ + 1, . . . , c′ − 1} × {b + sd + 1, . . . , a + sd},

B3 = {0, . . . , a′} × {b + sd + 1, . . . , a + sd},

B4 = {0, . . . , a′} × {a + sd + 1, . . . , c + sd}.

Note that some of these sets could be empty, or could have non-empty inter-
section, depending on the parity of s and on the structure of the set S1.

If |S2∩Bi| ≥ 2 for some i ∈ [4], then we shall find an isometric subgraph of
Pr �Cs isomorphic to a grid graph such that it contains four vertices of the set
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S. Hence, we can change the partition given by A1 and A2 from the beginning,
to a new one, and proceed as in Case 1, to prove that gp(Pr �Cs) ≤ 5.
That is, if |S2 ∩ Bi| ≥ 2 for some i ∈ [3], then we can use the partition
A′

1 = [r]0×{a, a+1, . . . , a+sd} and A′
2 = V (Pr �Cs)−A′

1, and if |S2∩B4| ≥ 2,
then we can use the partition A′

1 = [r]0 × {a + sd + 1, a + sd + 2, . . . , a} (note
that a + sd + 1 = a − sd) and A′

2 = V (Pr �Cs) − A′
1. In concordance, we may

assume that |S2 ∩ Bi| ≤ 1 for every i ∈ [4].
We consider now the three sets B1, B2 and B3. If at least two of them

contain one element from S2, then, as above, we can find a different partition
of V (Pr �Cs) and proceed like in Case 1. Thus, |(B1 ∪ B2 ∪ B3) ∩ S1| ≤ 1.

Finally, we deduce that gp(Pr �Cs) = |S| = |S1| + |S2| = |S1| + |(B1 ∪
B2 ∪ B3) ∩ S1| + |B4 ∩ S1| ≤ 5. By using similar arguments, we can again
obtain a similar conclusion for any other possible relationship between a, b, c
and a′, b′, c′.

Now, if |S2| = 3 and s is even, then an identical procedure as above leads
to the same conclusion. Finally, if |S2| = 3 and s is odd, then the arguments
above do not apply since A2 has only 
s/2� Pr-layers. However, it must happen
|S1| ≤ 2, since otherwise, we proceed as in the previous situation (when |S1| =
3). Consequently, we have that gp(Pr �Cs) = |S| = |S1| + |S2| ≤ 5. This
completes the proof of this case, and therefore, of the whole theorem. �

4. Torus Graphs

Knowing gp(Pr �Ps) and gp(Pr �Cs), the next task is to consider the torus
graphs Cr �Cs, r, s ≥ 3, where we keep the convention that V (Cn) = [n]0.
In contrast to the former two cases, for the torus graphs we are not able to
give an exact result, but we will prove a theorem which reduces the general
position number of the torus graphs to only two cases. The following lemma
and short remarks will be useful for our proof.

Lemma 4.1 If S is a general position set in Pr �Ps and there exists x ∈ S,
with deg(x) = 2, then |S| ≤ 3.

Proof. Suppose on the contrary that |S| = 4. Assume without loss of generality
that (0, 0) ∈ S. Let (i, i′), (j, j′), (k, k′) be the other three vertices of S where
i ≤ j ≤ k. If i′ ≤ j′, then (0, 0), (i, i′), (j, j′) lie on a common geodesic.
So i′ > j′. Similarly, j′ > k′. But now (i, i′), (j, j′), (k, k′) lie on a common
geodesic. �
Remark 4.2. If S = {(0, 0), (i, i′), (j, j′)} is a general position set of Pr �Ps,
then i �= j and i′ �= j′.

Remark 4.3. The graph Pr is an isometric subgraph of Cs if r ≤ 
 s
2� + 1.

We now bound gp(Cr �Cs) from the above as follows.

Theorem 4.4 If r ≥ 3 and s ≥ 3, then gp(Cr �Cs) ≤ 7.
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Proof. Let S ⊆ V (Cr �Cs) be a general position set and let w ∈ S. Since
Cr �Cs is a vertex-transitive graph (meaning that for each pair of vertices of
Cr �Cs there is an automorphism which maps the first vertex into the second),
we can without loss of generality set w = (
 r

2�, 
 s
2�). Consider the following

four subgraphs of Cr �Cs (where addition is done modulo r or s):

• X1 = {(ui, vj) : ui ∈ [
 r
2� + 1]0, vj ∈ [
 s

2� + 1]0},
• X2 = {(ui, vj) : ui ∈ {
 r

2�, 
 r
2� + 1, . . . , 
 r

2� + 
 r
2�}, vj ∈ [
 s

2� + 1]0},
• X3 = {(ui, vj) : ui ∈ {
 r

2�, 
 r
2� + 1, . . . , 
 r

2� + 
 r
2�}, vj ∈ {
 s

2�, 
 s
2� +

1, . . . , 
 s
2� + 
 s

2�},
• X4 = {(ui, vj) : ui ∈ [
 r

2� + 1]0, vj ∈ {
 s
2�, 
 s

2� + 1, . . . , 
 s
2� + 
 s

2�}.

For each i ∈ [4], the graph Xi is isomorphic to P� r
2 �+1 �P� s

2 �+1. Hence,
by Remark 4.3, every Xi is an isometric subgraph of Cr �Cs. Since w ∈ Xi,
i ∈ [4], it is clear that gp(Cr �Cs) ≤ 9 (by Lemma 4.1). This bound can be
further improved using the following:

Claim: If |(X1 ∪ X3) ∩ S| = 5, then |(X2 ∪ X4) ∩ S| ≤ 2.

Clearly, if the claim is proved, then by symmetry we also infer that if |(X2 ∪
X4) ∩ S| = 5, then |(X1 ∪ X3) ∩ S| ≤ 2. From these two facts the assertion of
the theorem will follow. It thus remains to prove the claim.

Let u1 = (x1, y1), u2 = (x2, y2), u3 = (x3, y3), and u4 = (x4, y4) be
vertices such that X1∩S = {u1, u2, w} and X3∩S = {u3, u4, w}. Suppose that
there are vertices u5 = (x5, y5) and u6 = (x6, y6) such that {u5, u6} ⊆ X2 ∩ S.
As S is a general position, Remark 4.2 implies that we may without loss of
generality assume that x1 < x2 < x3 < x4 and y2 < y1 < y4 < y3. Further, we
may also assume that x5 < x6 and y5 < y6.

If x3 − x1 ≤ r
2 , then either w lies on a u1, u3-geodesic (if y3 − y1 ≤ s

2 )
or u2 lies on such a geodesic (when y3 − y1 ≥ s

2 ). It follows that x3 − x1 > r
2 .

With a similar reasoning we also get that y3 − y1 > s
2 , since otherwise u4 is

on a u1, u3-geodesic.

Applying the same reasoning the following is obtained: x4 − x2 > r
2 and

y4 − y2 > s
2 . We now distinguish the following cases.

Case 1: (y3 − y6 ≥ s
2 ).

Subcase 1a: x3 < x6.

First, x3 > x5, since otherwise u5 lies on a u3, u6-geodesic. If y4 − y5 ≥ s
2 ,

then u3 lies on a u4, u5-geodesic. So, y4 − y5 < s
2 . If x4 > x6, then u6 is on

a u4, u5-geodesic, so x6 > x4. If y1 ≤ y6, then u6 is on a u1, u4-geodesic, so
y1 > y6. But if y1 > y6, then u6 is on a u1, u3-geodesic.

Subcase 1b: x3 > x6.
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Figure 6. General position set with seven vertices

If y4 − y6 ≥ s
2 , then u3 is on a u4, u6-geodesic. So, y4 − y6 < s

2 . But now u6 is
on a u4, u5-geodesic.

Case 2: (y3 − y6 < s
2 ).

Subcase 2a: x3 < x6.
If x6 > x4, then u4 is on a u3, u6-geodesic. So, x4 > x6. Also, y4−y5 > s

2 , since
otherwise u6 is on a u4, u5-geodesic. If x3 > x5, then u3 is on a u4, u5-geodesic,
so x3 < x5.

We observe that y1 < y6, for otherwise u6 is on a u1, u5-geodesic. If
x6 − x2 > r

2 , then u1 is on a u2, u6-geodesic. Therefore, x6 − x2 < r
2 . This

implies that y2 > y5, for otherwise u5 lies on a u2, u6-geodesic. But now, u5

lies on a u1, u3-geodesic.
Subcase 2b (x3 > x6).
If y4 − y5 ≥ s

2 , then u3 is on a u4, u5-geodesic, and if y4 − y5 < s
2 , then u6 is

on a u4, u5-geodesic. �

A general position set S of C7 �C7 with |S| = 7 is shown on Fig. 6. It
can be easily checked that the minimum distance between the pairs of vertices
from S is 3, and that the maximal distance is 5. Therefore, S is indeed a
general position set.

The construction from Fig. 6 cannot be extended to arbitrary r, s ≥ 7.
We have checked by computer that gp(C8 �C7) ≤ 6. In fact, 6 is also the
exact lower bound in this case as follows from the following, main result of
this section.

Theorem 4.5 If r ≥ s ≥ 3, s �= 4, and r ≥ 6, then gp(Cr �Cs) ∈ {6, 7}.
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Figure 7. The set S in C6 �C3 appears in bold

Proof. From Theorem 4.4 we know that gp(Cr �Cs) ≤ 7. It thus remains to
prove that gp(Cr �Cs) ≥ 6.

The condition s �= 4 assures that Ss = {0, 
 s
3�, 
 2s

3 �} is a gp-set of Cs.
The condition that r ≥ 6 assures that 
r/6� ≥ 1. Consider now the set

S = {(0, 0), (
r/2� , 0), (
r/6� , 
s/3�), (
r/6� + 
r/2� , 
s/3�),
(
(2r)/6� , 
(2s)/3�), (
(2r)/6� + 
r/2� , 
(2s)/3�)} .

In Fig. 7 the set S is shown for the case C6 �C3.
We claim that S is a general position set. Since Cp-layers are isometric

subgraphs, no other vertex is on a geodesic between the pair of vertices with
the same second coordinate. Hence we only need to consider the triples of
vertices from S with pairwise different second coordinates. We do this for the
vertices x1 = (0, 0), x2 = (
r/6� , 
s/3�), and x3 = (
(2r)/6� , 
(2s)/3�), the
other cases are treated similarly. Since x1, x2, x3 lie in a subgraph of Cr �Cs

isomorphic to P�r/3�+1 �Cs which is an isometric subgraph, it suffices to show
that d(x1, x3) < d(x1, x2) + d(x2, x3). This can be verified using the facts
d(x1, x3) = 
r/3� + (s − 
(2s)/3�), d(x1, x2) = 
r/6� + 
s/3�, and d(x2, x3) ≥

r/6� + 
s/3�. �

Theorems 4.4 and 4.5 yield the following problem, for which we believe
that if min{r, s} ≤ 6, then gp(Cr �Cs) = 6.

Problem 4.6 Determine for r ≥ 3, r �= 4, s ≥ 6, whether gp(Cr �Cs) = 6 or
whether gp(Cr �Cs) = 6.

5. Cartesian Powers

In this section, we consider the general position number of Cartesian pow-
ers and obtain asymptotically exponential lower bounds using a probabilistic
approach.

The n-dimensional hypercube Qn is defined as K � ,n
2 . In particular, Q1 =

K2, Q2 = C4, and Q3 is the graph of the 3-D cube. Cartesian products of
complete graphs, known as Hamming graphs, form a natural generalization of
hypercubes. In [6], it was proved that if k ≥ 2 and n1, . . . , nk ≥ 2, then

gp(Kn1 � · · · �Knk
) ≥ n1 + · · · + nk − k . (1)
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Moreover, this lower bound is sharp on products of two complete graphs, that
is, gp(Kn1 �Kn2) = n1 + n2 − 2.

The situation above changes dramatically as k grows. Körner [11] ob-
tained a probabilistic construction of general position sets in Qn of size 1

2
2n√
3n

.
He also pointed out that the problem of finding the size of the largest point
set in general position in Qn is equivalent to finding the largest size of what
is called a (2, 1)-separating system in coding theory. (For more on separating
systems, see [4].) Körner was interested in

α = lim sup
n→∞

log2 gp(Qn)
n

.

His probabilistic lower bound gives α ≥ 1− 1
2 log2 3 and he also proved α ≤ 1/2.

Later, Randriambololona [17] improved the lower bound to α ≥ 3
50 log2 11 with

an explicit construction.
The first moment method can be applied in a general setting to obtain

large general position sets. For any graph G, let p(G) denote the probabil-
ity that if one picks a triple (x, y, z) ∈ V (G)3 uniformly at random, then
dG(y, z) = dG(y, x) + dG(x, z) holds. Let us call such triples bad. Note that
this is never the case if x �= y and y = z, so p(G) ≤ 1 − |V (G)|−1

|V (G)|2 < 1. Let H =
H1 � · · · �Hk. Observe that the triple x = (x1, . . . , xk),y = (y1, . . . , yk), z =
(z1, . . . , zk) ∈ V (H) is bad in H if and only if the triples xi, yi, zi are bad in
Hi for all i ∈ [k]. So if we pick M vertices uniformly at random with repeti-
tion from V (H), then the expected value E(X) of the number X = X(M) of
unordered triples on a geodesic will be 3

(
M
3

)∏k
i=1 p(Hi). If X ≤ M/2, then

removing one vertex from every bad triple will leave us a general position set
of size at least M/2. As there is always an instance for which X ≤ E(X) holds,
we obtain a general position set of size M/2 provided 3

(
M
3

)∏k
i=1 p(Hi) ≤ M/2

holds. Therefore, it seems to be interesting to examine

gp� (G) := lim sup
n→∞

log|V (G)| gp(G� ,n)
n

.

Clearly, we have gp� (G) ≤ 1 and the above reasoning yields the following
theorem.

For a graph G one can consider its Cartesian power G� ,n. Then the re-
quired inequality is 3

(
M
3

)
p(G)n ≤ M/2 which is equivalent to (M−1)(M−2) ≤

p(G)−n. Thus there exists a general position set in G� ,n of size 1
2p(G)−n/2.

This and the inequality p(G) ≤ 1 − |V (G)|−1
|V (G)|2 yields the following statement.

Theorem 5.1 If G is a graph, then

gp� (G) ≥ log|V (G)| p(G)−1/2 ≥ 1 − log|V (G)|(|V (G)|2 − |V (G)| + 1) .

Let us calculate p(G) for some graphs. First of all, p(Kn) = 2n−1
n2 as in Kn

the equality d(y, z) = d(y, x)+d(x, z) holds if and only if x = y or x = z. (The
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case p(K2) = 3
4 in Theorem 5.1 is just Körner’s result.) For even cycles we have

p(C2k) = k(k+3)−1
4k2 . If the vertices are {−(k − 1),−(k − 2), . . . , 0, , . . . , k − 1, k}

in this cyclic order, then by symmetry we can assume x = 0. There are 4k − 1
triples with x = y or x = z that form bad triples. If y = k or z = k, then
there are no other bad triples, otherwise for any y, there are k − |y| ways to
choose z to obtain a bad triple. Similarly, one can verify p(C2k+1) = k(k+3)+1

(2k+1)2 .
Finally, consider the star Sk with k leaves. Then conditioning on whether x is
the center or not one obtains p(Sk) = 1

k+1 + k
k+1

2k+1
(k+1)2 . Observe that if one

picks uniformly at random only among the leaves of Sk, then the probability of
picking a bad triple is p′(Sk) = 2k−1

k2 which for large enough ks is roughly 2/3 of
p(Sk), so in this way one obtains the better bound gp� (Sk) ≥ log2 p′(Sk)−1/2.

Concerning gp� (G) we wonder whether one can write limit instead of
limit superior in the definition of gp� (G). Moreover, by the above we have
limk→∞ p(Ck) = 1

4 . We also pose:

Problem 5.2 Decide whether lim infk→∞
gp� (Ck)
logk 2 > 1 holds.
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