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Abstract

The Wiener number W (G) of a graph G is the sum of distances between all
pairs of vertices of G. If (G, w) is a vertex-weighted graph, then the Wiener number
W (G, w) of (G, w) is the sum, over all pairs of vertices, of products of weights of
the vertices and their distance. For G being a partial binary Hamming graph, a
formula is given for computing W (G, w) in terms of a binary Hamming labeling

of G. This result is applied to prove that W (PH) = W (H̃S) + 36W (ID) , where

PH is a phenylene, H̃S a pertinently vertex-weighted hexagonal squeeze of PH ,
and ID the inner dual of the hexagonal squeeze.

1 Introduction

In this paper we are concerned with a graph invariant W = W (G), defined for an

arbitrary connected graph G as

W (G) =
1

2

∑

u,v∈V (G)

dG(u, v) ,

where dG(u, v) denotes the length of a shortest path in G between vertices u and v.

We call W the Wiener number .

The investigation of the quantity W seems to be first undertaken by Harold Wiener

[33] almost exactly fifty years ago. Since then there is a continuous record of research

activity in this field with no sign of attenuation. Wiener’s original article [33] appeared

in a chemical journal and was long overlooked by mathematicians. In the meantime the

sum of all distances of graphs was studied in quite a few mathematical works. A variety

of names for W was proposed: “gross status” [19], “total status” [4], “graph distance”
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[9], “transmission” [29] and simply “sum of all distances” [11, 37]. In some works the

closely related “mean distance” [8, 36] or “average distance” [1, 6] were considered. The

name “Wiener number” or “Wiener index” is nowadays in standard use in chemistry

and is sometimes encountered also in the mathematical literature [25, 26].

In chemistry the Wiener number is one of the most thoroughly studied, best under-

stood and most frequently used graph–theory–based molecular–shape descriptors; for

reviews on chemical aspects of W and further references see [18, 27]. W found numer-

ous applications in the modelling of physico–chemical, pharmacological and biological

properties of organic molecules. To give an idea about the versatility of the applications

of the Wiener number, we mention its use in the study of ultrasonic sound velocities in

alkanes and alcohols [30], rates of electroreduction of chlorobenzenes [3], cytostatic and

antihistaminic activities of certain drugs [24], protonation constants of derivatives of

salicylhydroxamic acid and their fungicidal activities [22], and isomerism in fullerenes

[28]. The success of W was long thought to lie in its (putative) capability of measur-

ing molecular volumes, surfaces and/or surface–to–volume ratios. It was shown quite

recently [16] that, indeed, W is proportional to molecular surface areas. On the other

hand, contrary to earlier expectations, no relation between W and molecular volumes

could be established [16].

A graph G is called a partial binary Hamming graph, if each vertex v ∈ V (G) can

be labelled by a word of fixed length, ℓ(v), defined on a two–letter alphabet, say on

the alphabet {0,1} , such that for all u, v ∈ V (G) the number of positions in which

ℓ(u) and ℓ(v) differ equals dG(u, v), cf. [21]. The labeling ℓ is called a binary Hamming

labeling. Partial binary Hamming graphs can also be described as isometric subgraphs

of hypercubes. We refer to [2, 5, 7, 20, 21, 34, 35] for many results and aspects of

partial (binary) Hamming graphs.

In the next section we introduce the Wiener number, W (G,w), of a vertex-weighted

graph (G,w), and give a formula for computing W (G,w) in the case when G is a partial

binary Hamming graph. In Section 3 two classes of graphs of interest in chemistry are

discussed: hexagonal systems and phenylenes. In particular, a distance based definition

of an elementary cut of a hexagonal system is presented. Finally, in the last section,

a formula is obtained for the Wiener number of a phenylene in terms of its hexagonal

squeeze.

2 The Wiener number of vertex–weighted graphs

A vertex–weighted graph (G,w) is a graph G together with a function w : V (G) → IN
+.

(Evidently, we could have chosen for vertex–weights (positive) real numbers. For the

present considerations, however, weighting of the vertices with positive integers will
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suffice.) From now on vertex–weighted graphs in which all weights are positive integers

will be called simply weighted graphs.

The Wiener number W (G,w) of a weighted graph (G,w) is defined as

W (G,w) =
1

2

∑

u,v∈V (G)

w(u) w(v) dG(u, v) .

Note that if w(u) = 1 holds for all vertices u ∈ V (G), then W (G,w) = W (G). More

generally, if w is a constant function, say w ≡ m, then W (G,w) = m2 W (G). Observe

also that if the distance matrix of a graph G is given, then it is no more difficult to

compute W (G,w) than W (G).

Wiener indices of weighted graphs, as defined above, seem not to be previously stud-

ied (in either mathematical or chemical literature). Exceptionally, one of the present

authors did some work [14] on W (G,w), where the weight w(u) was set to be equal to

the degree of the vertex u.

Let (G,w) be a weighted partial binary Hamming graph, i.e., a weighted graph

(G,w) where G is a partial binary Hamming graph. Let V (G) = {v1, v2, . . . , vn} and

set

Ṽ (G) = {v1
1 , . . . , v

w(1)
1 , v1

2 , . . . , v
w(2)
2 , . . . , v1

n, . . . , vw(n)
n } ,

where the abbreviation w(i) is used instead of w(vi). Let g be a binary Hamming

labeling of G. We define a labeling g̃ of the elements of Ṽ (G) by g̃(vj
i ) = g(vi) for all i

and j. We call g̃ an extended binary Hamming labeling. For u ∈ Ṽ (G) let g̃i(u) denote

the ith coordinate of the label g(u).

With the above notation we have:

Proposition 1 Let G be a partial binary Hamming graph with a binary Hamming

labeling g of length k. Let g̃ be the extended binary Hamming labeling of the weighted

partial binary Hamming graph (G,w). Then

W (G,w) =
k∑

i=1

mi(m − mi) ,

where m =
∑

u∈V (G) w(u) = |Ṽ (G)|, and mi is the number of vertices u ∈ Ṽ (G) with

g̃i(u) = 1, for i = 1, 2, . . . , k.

Proof. Let V = V (G). For u, v ∈ V , let δi(u, v) be 0 if gi(u) = gi(v), and 1 otherwise.

Since g is a binary Hamming labeling, we have:

W (G,w) =
1

2

∑

u∈V

∑

v∈V

w(u)w(v)dG(u, v)
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=
1

2

∑

u∈V

∑

v∈V

w(u)w(v)
k∑

i=1

δi(u, v)

=
k∑

i=1

(
1

2

∑

u∈V

∑

v∈V

w(u)w(v)δi(u, v)

)

=
k∑

i=1

mi(m − mi).

2

The following special case of Proposition 1 is a previously known result [23, Propo-

sition 3.1]:

Corollary 2 Let G be a partial binary Hamming graph on n vertices and let g be a

binary Hamming labeling of G of length k. For 1 = 1, 2, . . . , k let ni be the number of

vertices u of G with gi(u) = 1. Then

W (G) =
k∑

i=1

ni(n − ni) .

Proposition 1 provides a simple method for the calculation of the Wiener numbers

of (weighted) partial binary Hamming graphs, which is particularly suitable for the

chemically very important class of hexagonal systems, described in the subsequent

section.

3 Hexagonal systems and phenylenes

Hexagonal systems (or benzenoid systems or benzenoid graphs, see below) are finite

connected plane graphs with no cut vertices, in which every interior region is bounded

by a regular hexagon of side length 1, cf. [31, 39]. The inner dual of a hexagonal system

G is a graph with vertices corresponding to the hexagons of G, and two vertices are

adjacent if the corresponding hexagons share an edge.

Hexagonal systems provide the graph representation of the so–called benzenoid

hydrocarbons, a class of substances of outstanding importance in chemistry. Therefore

they are often referred to as benzenoid graphs or benzenoid systems. Details of the

extensive research on these molecular graphs can be found in the book [15] and the

review [13]. Recall that the number of known benzenoid hydrocarbons is well above

500; some of them play a major role in chemical industry, some are notorious pollutants;

a few of them are highly carcinogenic.

Let G be a hexagonal system in which no three hexagons meet in a vertex, i.e., let G

be a tree–like hexagonal system. (In chemistry these are referred to as catacondensed
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benzenoid systems [15]). Then separate each pair of hexagons that share an edge uv as

follows. If u′, v′ and u′′, v′′ are the corresponding vertices in the separated cycles, join

u′ with u′′ and v′ with v′′, and repeat this for all pairs of adjacent hexagons of G. The

graph obtained in this way is called a phenylene and the graph G is called the hexagonal

squeeze of the respective phenylene. An example of a phenylene, its hexagonal squeeze

as well as the inner dual of the hexagonal squeeze are shown in Fig. 1.
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Figure 1: A phenylene, its hexagonal squeeze and the inner dual of the squeeze

The graphs described above provide the graph representation of another class of

polycyclic hydrocarbons, which are known in chemistry under the name phenylenes.

(Using the same name for both a chemical compound and the respective molecular

graph should cause no confusion whatsoever.) Phenylenes are very attractive from

the point of view of theoretical chemistry because they consist of six-membered cycles

(known to stabilize the molecule) and four-membered cycles (known to destabilize the
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molecule). The (experimental) chemistry of phenylenes is nowadays in rapid expansion

(see [32]). It should be mentioned that the number of phenylenes (hydrocarbons) known

at present is around 10, much below the number of known benzenoids. Of the theoretical

results on phenylenes (which are not numerous either) we mention the following [12]:

If PH is a phenylene and HS is its hexagonal squeeze, then the determinant of the

adjacency matrix of PH is equal to (plus or minus) the square of the number of perfect

matchings of HS. No result on phenylenes (graphs) seems to have ever been reported

in the mathematical literature.

4 The Wiener number of phenylenes

Let G be a connected graph. Then the relation Θ on E(G), which was introduced by

Djoković [7] in a somewhat different form (see also [10, 20, 21, 35]), is defined as follows.

If e = xy ∈ E(G) and f = uv ∈ E(G), then eΘf if d(x, u) + d(y, v) 6= d(x, v) + d(y, u).

The relation Θ is reflexive and symmetric, yet it need not be transitive. We denote its

transitive closure by Θ∗ and call the equivalence classes of Θ∗ the cuts of G. Hence,

cuts of G are pairwise disjoint subsets of the edge set E(G).

In Fig. 1 two cuts of the hexagonal squeeze are indicated, as well as the correspond-

ing cuts of the phenylene. In addition to this, one more cut of the phenylene is marked.

This cut consists of two opposite (outer) edges of a square. Such cuts will be referred

to as square cuts. It is well-known that if we remove the edges of a cut from a partial

binary Hamming graph (in particular from a hexagonal system or from a phenylene)

then the remaining graph consists of two connected components.

Winkler [35] proved that a connected graph G is a partial binary Hamming graph

if and only if G is bipartite and Θ∗ = Θ. Since hexagonal systems are partial binary

Hamming graphs ([23, Theorem 2.1]), it follows that cuts of hexagonal systems coincide

with the so–called (elementary, orthogonal) cuts of hexagonal systems, cf. [23, 31, 38].

The same holds for the cuts of phenylenes since as a part of the proof of Theorem 3 we

show that phenylenes are partial binary Hamming graphs as well.

Let HS denote the hexagonal squeeze of a phenylene PH. Define the weighted

graph H̃S = (HS,w) by setting w(u) = 2, if u is a vertex of degree 3, and w(u) = 1,

otherwise. We say that H̃S is the weighted hexagonal squeeze of the phenylene PH.

For our purpose we can view H̃S as a graph which we obtain from HS by replacing

each vertex of degree 3 by a pair of vertices at distance 0, cf. Fig. 2.

We are now prepared to state the following result.

Theorem 3 Let PH be a phenylene, let H̃S be its weighted hexagonal squeeze and let

ID be the inner dual of the hexagonal squeeze. Then

W (PH) = W (H̃S) + 36W (ID).
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Figure 2: Another way of representing H̃S

Proof. Let |V (PH)| = n and let {C1, C2, . . . , Cs, Cs+1, Cs+2, . . . , Cs+t} be the set of

cuts of PH, where the cuts Ci, s + 1 ≤ i ≤ t, correspond to the square cuts and the

cuts Ci, 1 ≤ i ≤ s, to the other cuts. Note that t is equal to the number of edges of

ID and s is the number of cuts in HS.

For i = 1, 2, . . . s+t, let G0
i and G1

i be the connected components of PH \Ci. Define

the ith component of the mapping g : V (PH) → {0, 1}s+t as follows:

gi(u) =

{
0; u ∈ G0

i ,

1; u ∈ G1
i .

Hence, g(u) = (g1(u), g2(u), . . . , gs(u), gs+1(u), . . . , gs+t(u)). Let u and v be any two

vertices of PH and let Q be a shortest path in PH between u and v. Clearly, if xy ∈ Cj

is an edge of Q, then gj(x) 6= gj(y) and this is the only coordinate in which g(x) and

g(y) differ. In addition, no two edges of Q belong to the same cut, for otherwise Q

would not be a shortest path. It follows that the distance between u and v is equal to

the number of coordinates in which g(u) and g(v) differ. Thus g is a binary Hamming

labeling of a partial binary Hamming graph PH. Then by Corollary 2

W (PH) =
s+t∑

i=1

ni (n − ni) ,

where ni is the number of vertices u of PH with gi(u) = 1. This equation can be

rewritten as

W (PH) =
s∑

i=1

ni (n − ni) +
s+t∑

i=s+1

ni (n − ni) . (1)

Consider the hexagonal squeeze HS of PH and let C ′

1, C
′

2, . . . , C
′

s be the cuts of HS

corresponding to the cuts C1, C2, . . . , Cs of PH. Let H0
i and H1

i be the connected
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components of HS \C ′

i. By [23, Theorem 2.1] HS is a partial binary Hamming graph.

Moreover, a binary Hamming labeling g′ : V (HS) → {0, 1}s can be defined analogously

as the labeling g for PH, as defined above. Let u be a vertex of PH and let u′ be the

corresponding vertex of HS. Then by the definitions of g and g′ we get that g′(u′) is

equal to the first s coordinates of g(u). Also, a vertex of HS of degree 3 corresponds

to two vertices in PH with identical first s coordinates. By Proposition 1 we hence get

s∑

i=1

ni(n − ni) = W (H̃S) . (2)

Consider now the inner dual ID of HS. Recall that ID has t edges, say es+1, es+2,

. . ., es+t, where for i = s + 1, s + 2, . . . , s + t, the edge ei corresponds to the cut Ci of

PH. By a classical result of Wiener [33] (or by Corollary 2) we have

W (ID) =
s+t∑

i=s+1

n1(ei)n2(ei) ,

where n1(ei) denotes the number of vertices closer to one end vertex of ei and n2(ei)

the number of remaining vertices of ID. Let Ci be a cut of PH where i ∈ {s + 1, s +

2, . . . , s + t}. Then the number of vertices in G0
i is equal to 6n1(ei) and the number

of vertices in G1
i is 6n2(ei), or vice versa. Therefore ni (n − ni) = 36n1(ei)n2(ei) and

hence
s+t∑

i=s+1

ni(n − ni) = 36
s+t∑

i=s+1

n1(ei)n2(ei) = 36W (ID) . (3)

Combining (1) with (2) and (3) completes the proof. 2

To illustrate Theorem 3 consider the phenylene from Fig. 1. Then t = 6 (the

number of square cuts) and s = 15 (the number of all the other cuts). By Proposition

1 we have

W (H̃S) = 6 · (3 · 39) + 3 · (6 · 36) + 3 · (9 · 33) + 3 · (18 · 24) = 3537.

Furthermore, W (ID) = 48 and by Theorem 3 we conclude that W (PH) = 3537 + 36 ·

48 = 5265.
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