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Abstract

The packing chromatic number χρ(G) of a graph G is the smallest inte-
ger k such that the vertex set V (G) can be partitioned into disjoint classes
X1, . . . , Xk, where vertices in Xi have pairwise distance greater than i. For the
Cartesian product of a path and the 2-dimensional square lattice it is proved
that χρ(Pm � Z2) = ∞ for any m ≥ 2, thus extending the result χρ(Z3) = ∞
of Finbow and Rall [4]. It is also proved that χρ(Z2) ≥ 10 which improves
the bound χρ(Z2) ≥ 9 of Goddard et al. [5]. Moreover, it is shown that
χρ(G � Z) < ∞ for any finite graph G. The infinite hexagonal lattice H is
also considered and it is proved that that χρ(H) ≤ 7 and χρ(Pm �H) = ∞ for
m ≥ 6.

Keywords: Packing chromatic number; Cartesian product of graphs; Cubic and
hexagonal lattices;

1 Introduction

The concept of packing coloring comes from the area of frequency planning in wireless
networks. This model emphasizes the fact that some frequencies are used more
sparely than the others.
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In graph terms, we ask for a partition of the vertex set of a graph G into dis-
joint classes X1, . . . , Xk (representing frequency usage) according to the following
constraints. Each color class Xi should be an i-packing, that is, a set of vertices
with the property that any distinct pair u, v ∈ Xi satisfies dist(u, v) > i. Here
dist(u, v) denotes the usual shortest path distance between u and v. Such partition
is called a packing k-coloring, even though it is allowed that some sets Xi may be
empty. The smallest integer k for which there exists a packing k-coloring of G is
called the packing chromatic number of G and it is denoted by χρ(G). This concept
was introduced by Goddard et al. [5] under the name broadcast chromatic number.
The term packing chromatic number was later (even if the corresponding paper was
published earlier) proposed by Brešar et al. [1].

Sloper [7] followed with a closely related concept, the eccentric coloring. An
eccentric coloring of a graph is a packing coloring in which a vertex v is colored with
a color not larger than the eccentricity of v. His results among others imply that
the infinite 3-regular tree has packing chromatic number 7.

The determination of the packing chromatic number is quite difficult. In par-
ticular, it is NP-complete for general graphs [5]. In addition, in the same paper it
was also proved that it is NP-complete to decide whether χρ(G) ≤ 4. But things
are much worse: Fiala and Golovach showed that determining χρ(G) is one of few
inherent problems that are NP-complete on trees [2].

The following interesting phenomena was the starting point for our investiga-
tions. The packing chromatic number of the infinite square lattice Z2 is finite, more
precisely, Goddard et al. [5] showed that it lies between 9 and 23. In Theorem 3.11
we improve the lower bound to 10. On the other hand, Finbow and Rall [4] proved
that the packing chromatic number of the infinite cubic lattice Z3 is unbounded.
So where does a step from a finite number to the infinity occur? In Section 3
we prove that the packing chromatic number is unbounded already on two layers
of the square lattice, that is, χρ(P2 � Z2) = ∞. On the other hand, in the next
section we prove that χρ(G � Z) < ∞ for any finite graph G, hence in particular
χρ(Pn �Pm � Z) < ∞ for arbitrary m and n. In fact, we prove a slightly more
general theorem: for the strong product of the complete graph on n ≥ 1 vertices Kn

with the two-way infinite path we have χρ(Kn � Z) < 4n.
Just like square and cubic lattices, the hexagonal lattice H is important in differ-

ent applications, for instance in the field of frequency assignment. Brešar et al. [1]
showed that 6 ≤ χρ(H) ≤ 8 and asserted (without a proof) that the actual lower
bound is 7. This was later indeed verified, using a computer, by Vesel [8]. In Sec-
tion 4 we exhibit a tiling of the hexagonal lattice using 7 colors; see Theorem 4.1. As
a consequence χρ(H) = 7. We also investigate the situation of the hexagonal lattice
with more hexagonal layers and we prove that χρ(Pm �H) = ∞ for every m ≥ 6.
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2 Cartesian products with a single infinite path

The Cartesian product G �H of graphs G and H is the graph with vertex set
V (G) × V (H) where vertices (g, h) and (g′, h′) are adjacent whenever gg′ ∈ E(G)
and h = h′, or g = g′ and hh′ ∈ E(H). The Cartesian product operation is
associative and commutative [6]. The subgraph of G �H induced by {g}× V (H) is
isomorphic to H and it is called an H-layer. Similarly one defines the G-layer for a
vertex h of H. The strong product G � H of graphs G and H can be described as
the graph obtained from G �H by adding edges between (g, h) and (g′, h′) provided
that gg′ ∈ E(G) and hh′ ∈ E(H). Layers of the strong product are defined as the
layers of the Cartesian product.

It will be convenient to present our results by the Cartesian product with the
2-way infinite path Z. In this notation the square lattice Z2 can be viewed as the
product Z � Z and the cubic lattice Z3 as Z � Z � Z.

We first prove that the packing chromatic number of the strong product of the
complete graph Kn with the infinite path is asymptotically exponential in n.

Theorem 2.1. For any n ≥ 1 it holds that χρ(Kn � Z) < 4n and χρ(Kn � Z) =
Ω(en).

Proof. We first observe that every single infinite path Z allows a packing coloring
using colors from k up to 4k − 1, for any k ≥ 1: we use the coloring pattern
(k, k + 1, k + 2, . . . , 2k − 1) repeatedly on even vertices and the pattern (2k, 2k +
1, 2k + 2, . . . , 4k − 1) on odd vertices. The resulting pattern is

(k, 2k, k + 1, 2k + 1, ..., 2k − 1, 3k − 1, k, 3k, ..., 2k − 2, 4k − 2, 2k − 1, 4k − 1) .

To prove the theorem consider Z-layers of Kn � Z; see Figure 1. We color the i-th
layer Z with the above pattern by using colors from the interval [4i−1, 4i − 1]. This
particular packing coloring of Kn � Z needs 4n − 1 colors in total.

Figure 1: Decomposition of Kn � Z into Z-layers from Theorem 2.1 is on the left.
The infinite strip of width two of the triangular lattice and its decomposition into
Z-layers is on the right.

To show the lower bound we proceed as follows. Let N be a (large) positive
integer and consider the subgraph GN = Kn � PN of Kn � Z. Suppose f is a
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packing coloring of Kn � Z using at most c colors. Then for any i ≥ 1, at most⌈
N

i+1

⌉
vertices of GN can have color i. Since GN has n N vertices we infer that⌈

N

2

⌉
+

⌈
N

3

⌉
+

⌈
N

4

⌉
+ · · ·+

⌈
N

c + 1

⌉
≥ n N .

Since for any k ≥ 1, dN/ke
N ≤ 1

k + 1
N , it follows that

1 +
1
2

+
1
3

+
1
4

+ · · ·+ 1
c + 1

≥ n + 1− c

N
. (1)

The sum from inequality (1) is the (c + 1)’th harmonic number Hc+1. It is well-
known that Hc grows about as fast as the natural logarithm of c. Therefore, since c
is fixed and N can be arbitrarily large, we obtain that ln c must be of order n and
so c must be of order at least en.

Corollary 2.2. For any finite graph G, χρ(G � Z) < ∞.

Proof. Let G be of order n, then G is a (spanning) subgraph of Kn. Therefore G � Z
is a (spanning) subgraph of Kn � Z and by Theorem 2.1 the assertion follows.

Returning to the Cartesian product of paths we observe that Corollary 2.2 im-
mediately implies that for any m,n ≥ 1, χρ(Pm �Pn � Z) < ∞.

Finbow and Rall [4] proved that the infinite triangular lattice has infinite packing
chromatic number. On the other hand, we can apply Theorem 2.1 to show that the
packing chromatic number is finite for every finite strip of the triangular lattice; see
the right-hand side of Figure 1.

3 Square lattices

In this section we focus on the case when two factors of the Cartesian product are
2-way infinite paths. In particular we prove that χρ(Pm � Z2) = ∞ for m ≥ 2 and
that χρ(Z2) ≥ 10.

Our approach on proving that some lattice L cannot be covered by a finite
number of packings is based on arguments using the notion of the density of a
packing. The idea is, roughly speaking, to assign first a unit area to every vertex of
L. Then we redistribute the area to vertices covered by the packing such that areas
at vertices from the packing are equal and as large as possible. In this way we can
define a density for every vertex from the packing as the reciprocal of the area.

Formally we proceed as follows. Let Xk be a k-packing in L. For every x from
L and a positive integer l we denote by Nl(x) the set vertices at distance at most l
from x, i.e. Nl(x) := {y : y ∈ L,dist(x, y) ≤ l}. Observe that for arbitrary vertices
u and v of Xk the sets Nbk/2c(u) and Nbk/2c(v) are disjoint, since the vertices u and
v are at distance greater than k.
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Let k be an odd number, x be a vertex from Xk, and y be a vertex at distance⌈
k
2

⌉
from x. Then there is no vertex from Xk in Nbk/2c(y). Hence y is not in

Nbk/2c(z) of any vertex z from Xk. We redistribute the unit area assigned to y to
vertices of Xk by sending the reciprocal of its degree to every of its neighboring sets
Nbk/2c(x) as follows:

Definition 3.1. The k-area A(x, k) assigned to a vertex x ∈ V (L) is defined by

A(x, k) :=


|Nk/2(x)| for k even ,

|Nbk/2c(x)|+
∑

y∈V (G)
dist(x,y)=dk/2e

|N1(y) ∩Nbk/2c(x)|
deg(y)

for k odd .

If the k-area is the same for all vertices of the lattice L we define A(k) := A(x, k),
where x is chosen arbitrarily.

By abuse of language we only speak of area instead of k-area if k is clear from
the context. See Figure 2 for an example of distribution of the area in Z2. Note that
the area A(k) is in particular well-defined for lattices that are vertex transitive.

A(2) = 5 A(3) = 8

Figure 2: Coverage of Z2 by X2 on the left and by X3 on the right. Vertices from
the packings are black. The dotted cross shapes correspond to N1(x). The white
vertices on the right are not covered by any set N1(x), x ∈ X3. For every white
vertex, each adjoining set N1(x) receives 1

4 or 2
4 of its area, depending on the mutual

position.

The definition of the area is justified in the following fundamental observation.

Proposition 3.2. If a finite graph G has a packing k-coloring and all areas A(i),
1 ≤ i ≤ k, are well-defined, then

k∑
i=1

1
A(i)

≥ 1 .
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Proof. If G has n vertices then any color class Xi can contain at most n
A(i) vertices.

Therefore, n = |VG| = |X1| + · · · + |Xk| ≤ n
A(1) + · · · + n

A(k) , and the assertion
follows.

Definition 3.3. Let G be a graph. Then the density of a set of vertices X ⊂ V (G)
is

d(X) := lim sup
l→∞

max
x∈V

{ |X ∩Nl(x)|
|Nl(x)|

}
.

The following claim goes immediately:

Observation 3.4. Let G be a graph and X ( V (G). Then for every ε > 0 there
exists l0 such that for every vertex x ∈ V (G) and l > l0, it holds that

|X ∩Nl(x)|
|Nl(x)|

< d(X) + ε .

We now get an analogue of Proposition 3.2.

Lemma 3.5. For every finite packing coloring with k classes X1, X2, . . . , Xk of a
graph G holds that

k∑
i=1

d(Xi) ≥ d(X1 ∪X2) +
k∑

i=3

d(Xi) ≥ d
( k⋃

i=1

Xi

)
= 1 .

Proof. We apply iteratively the following argument that for any vertex x and arbi-
trarily positive small ε, every sufficiently large l satisfies that

|Nl(x) ∩ (X ∪ Y )|
|Nl(x)|

≤ |Nl(x) ∩X|
|Nl(x)|

+
|Nl(x) ∩ Y |
|Nl(x)|

≤ d(X) + d(Y ) + ε.

Let x be a vertex of a graph G. We denote the boundary of Nl(x) by ∆Nl(x) :=
{y : dist(y, x) = l}.

Lemma 3.6. If for a graph G the area A(k) is well-defined, and if

lim
l→∞

|∆Nl(x)|
|Nl(x)|

= 0 ,

then for any k-packing Xk it holds that d(Xk) ≤ 1
A(k) .

Proof. We choose a vertex x arbitrarily and use the following estimate: |Xk ∩
Nl(x)| ≤ |Nl(x)|

Ak
+ |{y : l − k ≤ dist(y, x) ≤ l}|. Here the first summand esti-

mates the maximum number of vertices z of Xk such that Nbk/2c(z) ⊂ Nl(x). The
second summand is simply a rough estimate of all the remaining vertices of Nl(x).
According to our assumptions the right summand is negligible in comparison with
Nl(x) if l is large enough and the claim follows.
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We now focus our attention on the lattice P2 � Z2.

Lemma 3.7. For every k and the lattice P2 � Z2,

A(k) =

{
k2 + 2 for k even ,

k2 + 1 for k odd .

Proof. Observe that in a single layer of Z2 for any vertex x ∈ Z2 and integer i it
holds that |{y : dist(x, y) = i}| = 4i. Then the number of vertices at distance at
most l in Z2 from any fixed vertex is 1 +

∑l
i=1 4i.

In the lattice P2 � Z2 we first consider the case of an even k = 2l. We count the
size of Nl in both layers separately. By using the previous observation we get that:

A(k) = |Nl(x)| = 1 +
l∑

i=1

4i + 1 +
l−1∑
i=1

4i = 4l2 + 2 = k2 + 2 .

If k = 2l + 1 is odd then we first discuss the case of k = 1. In this case
A(1) = 1 + 5

5 = 2 since N0(x) is just a single vertex and it has 5 neighbors.
For the case of l ≥ 1 we have to distinguish four kinds of vertices that are at

distance l + 1 from some vertex x:

• four such vertices have one neighbor in Nl(x) — those from the same Z2-layer
as x that share a coordinate with x,

• 4l vertices have two neighbors in Nl(x) — those remaining from the same layer,

• another four vertices have also two neighbors in Nl(x) — those from the other
layer but which share a coordinate with x,

• 4l−4 vertices have three neighbors in Nl(x) — all the remaining vertices from
the other layer.

In total we have:

A(k) = |Nl(x)|+ 4
1
5

+ 4l
2
5

+ 4
2
5

+ (4l − 4)
3
5

= 4l2 + 2 + 4l = k2 + 1 .

We now are ready to prove the main result of this section, i.e. that the packing
chromatic number of two layers of the square lattice is infinite.

Theorem 3.8. For any m ≥ 2, it holds that χρ(Pm � Z2) = ∞.

Proof. To get the result it is enough to prove the case m = 2. Let V be the vertex
set of P2 � Z2.

We show that the sum of densities of all optimal k-packings is strictly less than
one and get a contradiction with Lemma 3.5.
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Since the lattice P2 � Z2 satisfies assumptions of Lemma 3.6 (cf. also Lemma 3.7),
we can bound densities in terms of area, and for areas use an explicit expression given
by Lemma 3.7.

However, this approach does not work such straightforwardly — the case of
optimal 1- and 2-packings needs to be treated separately: Observe that the box
P2 �P2 �P2 (the cube) cannot contain more than five vertices from X1∪X2. Hence
we can bound the density of d(X1 ∪X2) by 5

8 since the whole lattice P2 � Z2 can be
partitioned into such boxes.

We get a contradiction by the following estimate that holds for any packing
coloring X1, . . . , Xk:

d
( k⋃

i=1

Xi

)
≤ d(X1 ∪X2) +

k∑
i=3

d(Xi) ≤ 5
8

+
∞∑
i=3

1
A(i)

≤

≤ 5
8

+
15∑
i=3

1
A(i)

+
∫ ∞

i=15

di

i2
≤ 0.9329 +

1
15

< 1 .

Here the exact value of the sum of the first 15 summands was obtained by a computer
program.

In the rest of the section we focus our attention on the square lattice Z2 and
improve the lower bound of its packing chromatic number from 9 to 10. We base
the argument on an observation that the best packing patterns for X1 and for Xk

with even k significantly overlap.

Lemma 3.9. For the lattice Z2 and every k it holds that A(k) =
⌊

k2

2

⌋
+ k + 1.

Proof. In the proof of Lemma 3.7 we have already observed that |{y : dist(x, y) =
i}| = 4i for every vertex x ∈ Z2 and every i.

In the case of an even k = 2l we have

A(k) = |Nl(x)| = 1 +
l∑

i=1

4i = 2l2 + 2l + 1 =
k2

2
+ k + 1 .

In the case of an odd k = 2l + 1 we have four vertices at distance l + 1 from x
that have a single neighbor in Nl(x) and the remaining 4l vertices at distance l + 1
have two neighbors in Nl(x). We get that

A(k) = |Nl(x)|+ 4
1
4

+ 4l
2
4

= 2l2 + 4l + 2 =
⌊k2

2

⌋
+ k + 1 .

We now show that the best possible coverage of Z2 by X1 ∪X2 covers 5
8 of the

lattice which improves the bound 1
2 + 1

6 corresponding to the case where X1 and X2

are treated separately.
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Lemma 3.10. The density d(X1 ∪X2) on Z2 is at most 5
8 .

Proof. We first define a graph O on eight vertices consisting of a cycle v1, . . . v6, v1, a
chord v1v4 and two vertices v7 and v8 of degree one adjacent to v1 and v4 respectively.

v1 v2

v3v4v5

v6

v7

v8

Figure 3: The graph O.

In Figure 3 is depicted an embedding of the graph O in Z2. We say that the
position of O is [x, y] if in such an embedding of O the vertex v1 is placed at [x, y].

The square lattice Z2 can be partitioned into copies of O, e.g. those at copies
of O placed at positions [4i + 2j, 2j] where i, j ∈ Z. This partition is depicted in
Figure 4 and through the proof we assume that it is fixed.

y

x

Figure 4: A partition of Z2 into isomorphic copies of O.

Assume that X1, . . . , Xk is a packing k-coloring of Z2. Let X be the union of X1

and X2. We bound the density of X according to Definition 3.3, but first we present
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some properties of X and O. For this purpose, a copy of O is called a z-copy if it
contains exactly z vertices of X.

The goal is to show that on average every copy of O contains at most 5 vertices
of X.

We assume that the partition contains a 6-copy O[x, y] and without lost of gen-
erality assume, that v3, v6, v7, v8 ∈ X1 and v2, v5 ∈ X2.

vertices of X1

vertices of X2

other vertices

Figure 5: A 6-copy O[x, y] is the bottom left copy of O. The others are possibilities
for a 5-copy O[x + 2, y + 2].

We claim that if the partition contains another 6-copy O[x + 2i, y + 2i] for some
i > 0 then there exists j ∈ [0, i] such that O[x+2j, y +2j] contains strictly less than
5 vertices of X.

Observe that v6 and v7 of O[x + 2, y + 2] do not belong to X. There are four
possibilities of extending X such that O[x+2, y+2] contains five vertices of X. They
are depicted in Figure 5. All four possibilities force that v6 and v7 from O[x+4, y+4]
do not belong to X. Hence it becomes an invariant which propagates through the
diagonal up to O[x + 2i, y + 2i]. This contradiction proves the claim.

Note that in previous paragraph we went along the up-right diagonal. It was
due to the configuration of the 6-copy O[x, y]. For the other possible configuration,
where v3, v5 ∈ X2, we use the down-right diagonal. It is essential that in either case
we can proceed the diagonals to the right. In the sequel we refer to such a diagonal
from a 6-copy as an O-strip. The O-strip contains only 5-copies. Note that the
O-strip can be one-way infinite.

It may happen that two O-strips have different orientations and hence they
cross. Assume that the partition contains appropriate 6-copies O[x− 2i, y− 2i] and
O[x − 2j, y + 2j] for positive i, j such that O[x, y] is in the intersection of the two
corresponding O-strips.

Assume also that between O[x, y] and O[x− 2i, y − 2i] are only 5-copies as well
as for the other O-strip. We reuse the invariant from the previous paragraph and
get that X contains no v5, v6, v7 or v8 of O[x, y]. Moreover, at most three vertices
of v1, . . . , v4 may belong to X. Hence O[x, y] contains at most three vertices of X.
See Figure 6.

Now we are ready to prove the limit on the density of X. For every 6-copy C
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[x, y]

[x− 2j, y + 2j]

[x− 2i, y − 2i]

vertices of X1

vertices of X2

not sure
other vertices

Figure 6: Intersection of two O-strips. In every possible intersection some vertices
are forced to be in X1, X2, or they are not covered at all. The square vertices are
not forced.

we traverse the diagonal while increasing the first coordinate. We either encounter
a z-copy D where z < 5 or the diagonal consist only of 5-copies. The z-copy D is a
pairing copy for C. Note that D can be in two pairs but then z < 4.

Let x be an arbitrary vertex. We use the fact that liml→∞
|∆Nl(x)|
|Nl(x)| = 0 on Z2.

We denote by Ol(x) the set of copies of O which are included in Nl(x).
Now we show that |X ∩Nl(x)| ≤ 5|Ol|+ c|∆Nl(x)|. If a 6-copy and its pair copy

are both in Ol(x) then they contribute to X ∩Nl(x) at most 10 vertices. Indeed, if
the two copies are paired with a single copy of O then these three contain at most
15 vertices of X.

Observe that the number of 6-copies which has no pair copy in Ol is linear in
|∆Nl(x)| since traversing a diagonal of a copy of O without its pair in Ol(x) ends on
the boundary. Note that Ol(x) does not have to cover whole Nl(x) but it can miss
linearly many vertices of the boundary. See Figure 7.

Finally, the density of X is:

d(X) ≤ lim sup
l→∞

(
5
8

+
c|∆Nl(x)|
|Nl(x)|

)
=

5
8
.

Theorem 3.11. For the infinite square lattice Z2 it holds that 10 ≤ χρ(Z2).

Proof. We compute an upper bound on the density of the union of packings Xi,
1 ≤ i ≤ 9. The bound for the union of X1 and X2 is given in Lemma 3.10. The
other packings are bounded separately by using Lemma 3.9.
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6-copy of O;

pairing O copy for a 6-copy or O-copy on border

vertices not covered by Ol

vertices in Ol

Figure 7: Bounding density of X in Nl(x)

d
( 9⋃

i=1

Xi

)
≤ 5

8
+

9∑
i=3

1
A(i)

=
3830381
3837600

< 1.

Finally Lemma 3.5 implies that the packing chromatic number of Z2 is at least
10.

4 Hexagonal lattices

We now turn our attention to the infinite hexagonal lattice H. We first exhibit its
packing coloring of H that uses only 7 colors. This result was already presented
during the workshop Cycles and Colourings 2007 [3], but has not been published so
far.

Theorem 4.1. For the hexagonal lattice H, χρ(H) ≤ 7.

Proof. We exhibit a tiling of H; refer to Figure 8. One class of the bipartition of the
lattice H is the first color class X1. The other class of bipartition can be covered
by packings X2, . . . , X7. The pattern for filling the hexagonal lattice consists of 12
vertices. It is bordered by a bold line in the figure.

Our next goal is to show that six layers of the hexagonal lattice cannot be
covered by a finite number of packings of pairwise different width. We follow the
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2 4 3 2 6 3
3 2 5 3 2 7

2 4 3 2 6 3
3 2 5 3 2 7

2 4 3 2 6 3
3 2 5 3 2 7

2 4 3 2 6 3
3 2 5 3 2 7

2 4 3 2 6 3
3 2 5 3 2 7

2 4 3 2 6 3
3 2 5 3 2 7

2 4 3 2 6 3
3 2 5 3 2 7

2 4 3 2 6 3
3 2 5 3 2 7

3

1

?

1

?

1
3

Figure 8: The pattern for partitioning hexagonal lattice using 7 packings of pairwise
different width.

same approach as we have used for proving Theorem 3.8. We number the hexagonal
layers of P6 �H by 1, 2, 3, 4, 5, 6 where layer 1 and layer 6 are on the boundary.
Every vertex is in one layer.

Lemma 4.2. For every l ≥ 6, the density of X2l on P6 �H is at most 1
9l2−36l+66

.
The upper bounds on d(X2), d(X4), . . . , (X10) are given in the next table.

l 1 2 3 4 5
d(X2l) ≤ 1

5
1
15

1
34

1
65

1
111

Proof. We count the size of Nl(x) and obtain an upper bound on the density due to
Lemma 3.6. The size of Nl(x) depends on the choice of x. More precisely it depends
on the layer of x. The smallest size of Nl(x) is for x in one of the boundary layers.
On the other hand it is the largest for layers 3 and 4. Hence we bound the size Nl(x)
from below by the size of Nl of vertices in layer 1.

Let y be a vertex of H. Then the number of vertices at distance l is 3l. Hence
the number of vertices at distance at most l including y is

|NHl| := 1 +
l∑

i=1

3i = 1 + 3
(l + 1)l

2
.

For a vertex x in the layer 1 we compute the size of Nl(x) in the following way:

|Nl(x)| =
l∑

i=l−5

|NHi| = 9l2 − 36l + 66.

Note that the last equality holds only for l ≥ 6. The values of Nl(x) for smaler
values of l were computed explicitly.

Lemma 4.3. Any packings X1, X2, X3, and X4 on P3 �H staisfy that:
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• d(X3) ≤ 2
18 .

• d(X1 ∪X2 ∪X4) ≤ 12
18 .

Proof. We partition P3 �H into copies of P3 �C6. The graph P3 �C6 and parti-
tioning of H into disjoint copies of C6 are depicted in Figure 9.

The graph P3 �C6 consists of three copies of C6. We call them layer 1, layer 2,
and layer 3 where layer 2 is the middle one.

The first claim of the lemma follows from the simple fact that |X3∩ (P3 �C6)| ≤
2.

In the rest of the proof we abbreviate X := X1 ∪X2 ∪X4.
Assume that it is possible to cover 13 vertices of P3 �C6 by X. Then there is a

copy C of C6 such that |X ∩ C| = 5. There are two possibilities of such a covering:
either |X2 ∩ C| = 1 or |X2 ∩ C| = 2.

First we discuss the case that there are two layers with five vertices of X. The
only possibility is that they are not neighbors because of vertices from X4. Hence
these layers are 1 and 3. Two cases of possible layer 1 are depicted in Figure 10.
These two cases are compatible three cases for layer 3. We determined them by the
position of a vertex from X4 which is unique. It is not possible to cover more than
one vertex in layer 2, therefore we get at most 11 covered vertices.

Now we know that one layer contains five vertices and the other two contain four
vertices. We introduce two observations about X2 and X1 ∪X2 which give us more
information about possible structure of the layers.

The first observation is that if one of the layers contains two vertices of X2 then
the neighboring layer(s) does not contain any vertices of X2. This holds since all
vertices in the neighboring layers are at distance at most two from the vertices of
X2.

The second observation is that P3 �C6 contains at most 11 vertices of X1 ∪X2.
So let there be 12 such vertices. One layer may contain at most four vertices of
X1 ∪ X2. Hence every layer contains four of them. Moreover, every layer contains
exactly one vertex of X2 since every layer must contain at least one. Take the middle
layer and let v be the vertex from X2. Since we want to cover four vertices of the
middle layer, the vertices of X1 are determined by the position of v. Then vertices
of X1 are also determined in the other two layers since there must be three of them
in each; refer Figure 9. Now the only two vertices left for X2 in layers one and three
are too close to each other hence it is not possible to cover 12 vertices by X1 ∪X2.

Since X1 ∪ X2 covers at most 11 vertices and we want to cover 13 vertices, we
derived that two vertices must be from X4. These two vertices must be in layer 1
and layer 3. Hence the layer containing five vertices of X must be layer 1 or layer
3. Assume without lost of generality that it is layer 1. The other two layers must
each contain four vertices of X.

Hence the middle layer must contain one vertex from X2 and three vertices of
X1. This implies that the first layer contains only one vertex from X2. Hence we
know the configurations for layer 1 and layer 2. See Figure 11. We observe that

14



v

vertices in X1

vertex in X2

candidates for X2

other vertices

Figure 9: On the left-hand side is a possible tiling of the hexagonal lattice using
C6’s. On the right-hand side is a coverage of C6 �P3 by X1 and X2 which contains
9 vertices of X1 and a vertex of X2 in the middle layer. There are only two other
candidate vertices for X2, which are square vertices. But they are too close to be
both in X2.

there are only three vertices in layer 3 which can be in X. Hence we failed to include
13 vertices of P3 �C6 to X.

In the following lemma we estimate the density of X5 on P6 �H by a simpler
case study on P3 �H.

Lemma 4.4. The density of any packing X5 on P3 �H is at most 1
21.9 .

Proof. We bound the density using Lemma 3.6. We compute A(x, 5) in P3 �H for
a vertex x in one of two outer layers. Assume layer 1 for x. Then the area consists
of vertices in N2(x) together with the part obtained from vertices at distance three
from x. We distinguish several types of these vertices.

• six vertices from the layer 1 have one neighbor in N2(x),

• three vertices from the layer 1 have two neighbors in N2(x),

• six vertices from the layer 2 have two neighbors in N2(x),

• three vertices from the layer 3 have two neighbors in N2(x).

In total we have:

A(x, 5) = 15 +
6
4

+
6
4

+
12
5

+
6
4

= 21.9 .

For a vertex x from the middle layer the area A(x, 5) is 25.4 hence we can estimate
the area by 21.9 for any vertex of P3 �H. Refer to Figure 12 for three hexagonal
layers of P3 �H and N2(x).
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Figure 10: Layer 1 contains five vertices of X. There are two possibilities. The
first one is on the left and the second one is on the right. Layer 3 contains also five
vertices of X. Vertices from the middle layer are assigned lists of available packings.

Theorem 4.5. For any m ≥ 6 it holds that χρ(Pm �H) = ∞.

Proof. Assume m = 6. We show that the sum of densities of all k-packing is strictly
less than 1 and we get a contradiction with Lemma 3.5.

The lattice P6 �H can be partitioned into two copies of P3 �H. Hence we can
use bound on X1 ∪X2 ∪X3 ∪X4 from Lemma 4.3. Also X5 can be bounded using
Lemma 4.4. Since a (2l + 1)-packing is also a 2l-packing we bound the density of
X2l+1 by the density of X2l. Note that the density of X2l may be bounded by 1

2l2
.

We get the contradiction by the following estimate that holds for any packing
coloring X1, . . . , Xk:

d
( k⋃

i=1

Xi

)
≤ 14

18
+

1
21.9

+
∞∑
i=6

d(Xi)

≤ 541
657

+
59∑
i=6

d(Xi) +
∞∑

i=30

2
(2i)2

≤ 0.982 +
1
2

∫ ∞

i=29

di

i2
≤ 0.982 +

1
58

< 1 .
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Figure 11: Let layer 1 contain five vertices of X and layer 2 contain four vertices
of X. They must look as depicted. Vertices of the third layer have assigned lists of
possible colors. But there are only three with nonempty list.

layer 1

x

layer 2 layer3

Figure 12: Three layers of hexagonal lattice. Black square corresponds to x. Black
vertices correspond to vertices from N2(x) and white vertices are at distance 3
from x.

Again, the exact value of the sum of the first 59 summands was determined by a
computer program.

5 Conclusion

In our opinion the following related problems deserve further exploration:

• For which m ≥ 2 does the jump to infinity occur for χρ(Pm �H)?

• Determine the exact value of χρ(Z2) as suggested by Goddard et al. [5].

• Do planar cubic graphs have bounded packing chromatic number? (This ques-
tion was proposed by R. Škrekovski.)
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