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Weighted Padovan graphs Φn
k , n ≥ 1, ⌊ n 

2 ⌋ ≤ k ≤ ⌊ 2n−2
3 ⌋, are introduced as the graphs whose 

vertices are all Padovan words of length n with k 1s, two vertices being adjacent if one 
can be obtained from the other by replacing exactly one 01 with a 10. By definition, ∑︁

k |V (Φn
k)| = Pn+2, where Pn is the nth Padovan number. Two families of graphs iso-

morphic to weighted Padovan graphs are presented. The order, the size, the degree, the 
diameter, the cube polynomial, and the automorphism group of weighted Padovan graphs 
are determined. It is also proved that they are median graphs.

© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The Fibonacci sequence is one of the most famous sequences in mathematics. The nth Fibonacci number Fn is defined 
by Fn = Fn−1 + Fn−2, n ≥ 2, with initial values F0 = 0 and F1 = 1. Its analogous sequence, Lucas sequence, has the same 
recurrence relation but begins with initial values L0 = 2 and L1 = 1. Similarly, the Pell sequence has the same initial values 
as the Fibonacci sequence, but now the recurrence reads as the sum of twice the previous term plus the pre-previous term. 
Fibonacci numbers and their generalizations have many interesting properties and many applications in science and art, 
see [17]. We also refer to the book [16] for Pell and Pell-Lucas numbers and their applications.

The Fibonacci sequence and the Lucas sequence inspired the investigation of different interesting families of graphs such 
as Fibonacci and Lucas cubes [8,10,15,20,23], Pell graphs [24], generalized Pell graphs [11], metallic cubes [5], Fibonacci and 
Lucas p-cubes [32], Fibonacci-run graphs [6], and Lucas-run graphs [31], to list just some of them. The state of research on 
Fibonacci cubes and related topics up to 2013 is summarized in the survey paper [12], while for the state of the art results 
on Fibonacci and related cubes see the 2023 book [7]. For recent development in the area, see for example [5,21,27,29,31].

The Padovan numbers, which are named after the architect Richard Padovan, see [26], are defined by the third order 
recurrence relation

Pn = Pn−2 + Pn−3, n ≥ 3,

with initial values P0 = 1, P1 = P2 = 0. In the Online Encyclopedia of Integer Sequences, the Padovan sequence appears 
as [25, A000931]. The first few terms are
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1,0,0,1,0,1,1,1,2,2,3,4,5,7,9,12,16,21,28,37,49,65,86,114, . . .

The associated generating function is

∑︂
n≥0 

Pnxn = 1 − x2

1 − x2 − x3
.

Recently, Lee and Kim [18] introduced the Padovan cubes by using only the odd terms P1, P3, P5, . . . of the Padovan 
sequence. A motivation for their definition is that every positive integer can be represented uniquely as the sum of one or 
more odd terms of the Padovan sequence such that the sum does not include any three consecutive odd terms. In [19] the 
investigation of the Padovan cubes continued by investigating their cube polynomials.

The main impetus for the investigation in this paper is to consider all the terms of the Padovan sequence to construct 
a respective family of graphs. This is done formally in the next section by introducing the weighted Padovan graphs Φn

k . 
In the same section two isomorphic families of graphs are presented. In Section 3, we determine the order, the size and 
the degree of weighted Padovan graphs. In the subsequent section we investigate their metric properties, and in particular 
prove that they are median graphs. In Section 5, the cube polynomial of weighted Padovan graphs is determined, as well as 
its generating function. In the last section we find all symmetries of the studied family of graphs.

2. Weighted Padovan graphs and two isomorphic families

In this section we introduce the weighted Padovan graphs and two isomorphic families of graphs which will both be 
useful for proving properties of weighted Padovan graphs in the rest of the paper. The first of the two families has a word 
representation, while the second one is defined by integer partitions.

If A is an alphabet, then a word over A is a sequence of letters from A. When A = {0,1}, we speak of a binary word. By 
a subword of a word we mean a subsequence of consecutive letters of the word.

Definition 2.1. A binary word is Padovan, if it

• starts and ends with 0,
• contains no subword 00, and
• contains no subword 111.

By Pn we denote the set of Padovan words of length n ≥ 1.

Note that |P0| = |P1| = 1 and |P2| = 0. Moreover, as noted by Yifan Xie in [25, Sequence A000931], if n ≥ 3, then we 
have

|Pn| = Pn+2 .

Since Padovan words contain no subword 00, the minimum number of 1s in a Padovan word of length n is 
⌊︁n 

2

⌋︁
. This 

is attained, for example, by the binary word 01 . . .010 if n is odd, and by 01 . . . 0110 if n is even. Similarly, since Padovan 
words contain no 111, the maximum number of 1s in a Padovan word of length n is 

⌊︂
2n−2

3 
⌋︂

. This is attained, for example, 
by 011 . . . 011010 if n mod 3 = 0, by 011 . . . 0110 if n mod 3 = 1, and by 011 . . . 01101010 if n mod 3 = 2. Thus there are⌊︃

2n − 2

3 

⌋︃
−
⌊︂n 

2

⌋︂
+ 1 =

⌊︃
n + 1

2 

⌋︃
−
⌊︃

n + 1

3 

⌋︃
different possibilities for the number of 1s in a Padovan word of length n.

Our key definition now reads as follows.

Definition 2.2. The Padovan graph Φn
k of length n and weight k, n ≥ 1, 

⌊︁n 
2

⌋︁ ≤ k ≤
⌊︂

2n−2
3 
⌋︂

, is the graph whose vertices are all 
Padovan words of length n with k 1s, two vertices being adjacent if one can be obtained from the other by replacing exactly 
one subword 01 with a 10. The family of these graphs will be called weighted Padovan graphs.

Observation 2.3. If n ≥ 1, then

⌊︂
2n−2

3 
⌋︂∑︂

k=⌊︁ n 
2

⌋︁ |V (Φn
k)| = Pn+2 .

2 
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Table 1
The list of Padovan graphs with n ≤ 10. Here P3 and 
P4 denote the path graphs on three and four vertices, 
respectively.

n
⌊︁ n 

2

⌋︁ ⌊︂
2n−2

3 
⌋︂ {︂

Φn
k : ⌊︁ n 

2

⌋︁≤ k ≤
⌊︂

2n−2
3 
⌋︂}︂

1 0 0 {K1}
2 1 0 ∅
3 1 1 {K1}
4 2 2 {K1}
5 2 2 {K1}
6 3 3 {K2}
7 3 4 {K1}
8 4 5 {P3}
9 4 5 {K1, P3}

10 5 6 {K1, P4}

01101101010

01101011010

01101010110 01011011010

01011010110

01010110110

Φ11
6

01010101010

Φ11
5

Fig. 1. Both weighted Padovan graphs for n = 11. 

The switching adjacency rule “01 to 10” in the definition of a Padovan graph clearly preserves the number of 1s. In order 
that the graphs considered are connected, this is the reason the parameter k counting the number of 1s is present. For the 
graphs to be connected it is thus necessary to use parameter k.

In Table 1 the Padovan graphs Φn
k are listed for n ≤ 10 and all respective ks.

For n ≥ 11, the structure of the graphs becomes more interesting. For example, if n = 11, possible weights k are 5 and 6, 
and the obtained graphs are drawn in Fig. 1. Another example is shown in Fig. 2, where n = 15, thus k ∈ {7,8,9}.

Definition 2.4. If p and q are nonnegative integers, then the graph Ap,q is defined as follows. The vertex set of Ap,q consists 
of all words of length p + q over the alphabet {a,b} which contain p letters a and q letters b. Two vertices (alias words) are 
adjacent if one can be obtained from the other by changing a subword ab to ba.

A weak partition of n ≥ 0 is a sequence of integers λ = (λ1, . . . , λk) such that 
∑︁k

i=1 λi = n and λ1 ≥ · · · ≥ λk ≥ 0. Terms 
λ1, . . . , λk of λ are called parts, and k is the number of parts of λ. Note that this is different from the usual definition of the 
partition where only nonzero terms are considered to be parts of the partition. Alternatively, if λ has αi parts of size i, then 
it can be written as ⟨0α0 ,1α1 ,2α2 , . . .⟩. The number of all weak partitions of n into k parts with the largest part at most j
is denoted by p( j,k,n). More on (weak) partitions can be found for example in [28].

Definition 2.5. If p and q are nonnegative integers, then the graph Πp,q is defined as follows. The vertex set of Πp,q consists 
of all weak partitions of 0, . . . , pq into q parts with the largest part of size at most p. (Recall that parts can be of size 0
as well.) Two vertices (alias weak partitions) are adjacent if one can be obtained from the other by adding 1 to one of the 
parts.

Theorem 2.6. If n ≥ 1 and 
⌊︁n 

2

⌋︁≤ k ≤
⌊︂

2n−2
3 
⌋︂

, then

Φn
k

∼ = A2n−3k−2,2k−n+1
∼ = Π2n−3k−2,2k−n+1 .

3 
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011011010101010

011010110101010

011010101101010

011010101011010

011010101010110

010110110101010

x

y

010110101010110

010101101101010

z

010101101010110

010101011011010

010101011010110

010101010110110

x=010110101101010, y=010110101011010, z=010101101011010

Φ15
8

011011011011010

011011011010110

01101010110110

011010110110110

010110110110110

Φ15
9

010101010101010

Φ15
7

Fig. 2. All weighted Padovan graphs for n = 15. 

Proof. We define α : V (Φn
k) → V (A2n−3k−2,2k−n+1) as follows. Let u ∈ V (Φn

k). Then α(u) is a obtained from u by replacing 
from left to right each 011 by b, each 01 by a, and removing the ending 0. If ka and kb are the respective numbers of as 
and bs in α(u), then the number of 1s in u is ka + 2kb , that is, k = ka + 2kb . Moreover, 2ka + 3kb = n − 1. From these two 
equations we obtain that ka = 2n − 3k − 2 and kb = 2k − n + 1 which implies that α maps vertices of Φn

k to vertices of 
A2n−3k−2,2k−n+1. Moreover, it is straightforward to check that α is a bijection.

Let uv ∈ E(Φn
k). Then we may assume without loss of generality that u = . . . 01 . . . and v = . . . 10 . . ., where “. . .” 

means that u and v coincide in all the other positions. By the definition of Padovan words we next infer that actually 
u = . . . 010110 . . . and v = . . . 011010 . . .. This in turn implies that α(v) is obtained from α(u) by changing exactly one sub-
word ab to ba. So α maps edges to edges. Moreover, by the same argument as above we also see that α maps the vertices 
of NΦn

k
(u) to the vertices of N A2n−3k−2,2k−n+1(α(u)). We may conclude that α is an isomorphism.

Let p = 2n − 3k − 2 and q = 2k − n + 1. We will show that Ap,q ∼ = Πp,q . Let β : V (Ap,q) → V (Πp,q) be as follows. For 
u ∈ V (Ap,q), let 1 ≤ i1 ≤ · · · ≤ iq ≤ p+q be positions of bs in u. Then β(u) is the weak partition ((p+1)− i1, . . . , (p+q)− iq). 
Since u contains q bs and is of length p + q, it clearly holds that m ≤ im ≤ p + m, thus all parts are between 0 and p, and 
the sum of all parts is at most pq. Thus β is well-defined and it is easy to see that it is a bijection.

Let uv ∈ E(Ap,q). Then we may assume without loss of generality that u = . . .ab . . . and v = . . .ba . . ., where again “. . .” 
means that u and v coincide in all the other positions. This means that v is obtained from u by subtracting one from the 
position of one b. So β(v) is obtained from β(u) by adding 1 to one part of the weak partition. Thus β maps edges to edges. 
Moreover, by the same argument as above we also see that β maps the vertices of N Ap,q (u) to the vertices of NΠp,q (β(u)), 
so β is an isomorphism. �
3. Order, size, degree

In this section we determine the order, the size, and the degree of weighted Padovan graphs. Before that, their funda-
mental decomposition is described.

4 
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abbbaaa

abbabaa

ababbaa
abbaaba

aabbbaa

abababa abbaaab

aabbaba ababaababaabba

aabbaabaababba
abaabab

aaabbba

aababab abaaabb

aaabbab aabaabb

aaababb

aaaabbb

01Φ16
9

∼ = aA3,3

babbaaa

bababaa

baabbaa

babaaba

baababa

babaaab

baabaab

baaabba

baaabab

baaaabb

bbabaaa

bbbaaaa

bbaabaa

bbaaaba

bbaaaab

011Φ15
8

∼ = bA4,2

Fig. 3. The fundamental decomposition of Φ18
10. 

The vertices of Φn
k can be partitioned into those starting with 010 and those starting with 011. Let X and Y be the 

respective sets of vertices. Then Φn
k [X] ∼ = Φn−2

k−1 , where Φn
k [X] denotes the subgraph of Φn

k induced by X . Moreover, since 
the vertices from Y start with 0110 we also see that Φn

k [Y ] ∼ = Φn−3
k−2 . Now, a vertex u ∈ X has a neighbor in Y if any only 

if u = 010110 . . . in which case its neighbor from Y is 011010 . . .. Thus the vertices in X that have an edge to Y (and vice 
versa) induce Φn−5

k−3 . The structure of Φn
k as just described will be called the fundamental decomposition of Φn

k and shortly 
denoted as

Φn
k = 01Φn−2

k−1 + 011Φn−3
k−2 .

For an example see Fig. 3, where the fundamental decomposition Φ18
10 = 01Φ16

9 + 011Φ15
8 is illustrated. To make the draw-

ing clearer, the vertices are labeled via the isomorphism Φ18
10

∼ = A4,3. For example, this isomorphism maps the vertex 
01 011 011 011 01 01 01 0 of Φ18

10 to the vertex abbbaaa of A4,3. We thus have

A4,3 ∼ = Φ18
10 = 01Φ16

9 + 011Φ15
8

∼ = aA3,3 + bA4,2 .

Proposition 3.1. If n ≥ 1 and 
⌊︁n 

2

⌋︁≤ k ≤
⌊︂

2n−2
3 
⌋︂

, then

|V (Φn
k)| =

(︃
n − k − 1 

2n − 3k − 2

)︃
and

|E(Φn
k)| = |E(Φn−2

k−1)| + |E(Φn−3
k−2)| + |V (Φn−5

k−3)| .

Proof. By Theorem 2.6 we have Φn
k

∼ = A2n−3k−2,2k−n+1. For the latter graph it is clear that |V (A2n−3k−2,2k−n+1)| =
(︁ n−k−1 

2n−3k−2

)︁
because its vertices are words of length (2n − 3k − 2) + (2k − n + 1) = n − k − 1.

5 
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By the fundamental decomposition, the vertices of the graph Φn
k can be decomposed into 01Φn−2

k−1 and 011Φn−3
k−2 . The only 

edges between these two sets are of the form 010110x ∼ 011010x, where 0x ∈ V (Φn−5
k−3). From here the claimed formula for 

|E(Φn
k)| follows. �

Theorem 3.2. If p ≥ 1 and q ≥ 1, then |E(Ap,q)| = q
(︁p+q−1

p−1 
)︁
, and if pq = 0, then |E(Ap,q)| = 0.

Proof. If p = 0 or q = 0, Ap,q contains at most one vertex, and has no edges.
If p = 1, then V (Ap,q) = {abq,babq−1, . . . ,bqa}, and A1,q is isomorphic to a path on q + 1 vertices and has q = q

(︁1+q−1
0 
)︁

edges. Analogously, the formula holds if q = 1.
Suppose now that p ≥ 2 and q ≥ 2. It follows from Theorem 2.6 that Ap,q ∼ = Φ2p+3q+1

p+2q , and from Proposition 3.1 that 
|E(Ap,q)| = |E(Ap−1,q)| + |E(Ap,q−1)| + |V (Ap−1,q−1)|. As p,q ≥ 2, p − 1,q − 1 ≥ 1, we can use the induction hypothesis to 
obtain

|E(Ap,q)| = q

(︃
p + q − 2

p − 2 

)︃
+ (q − 1)

(︃
p + q − 2

p − 1 

)︃
+
(︃

p + q − 2

p − 1 

)︃

= (p + q − 2)! 
(p − 1)!(q − 1)! (p − 1 + q − 1 + 1)

= (p + q − 1)! 
(p − 1)!(q − 1)! = q

(︃
p + q − 1

p − 1 

)︃
. �

Corollary 3.3. If n ≥ 1 and 
⌊︁ n 

2

⌋︁≤ k ≤
⌊︂

2n−2
3 
⌋︂

, then

|E(Φn
k)| =

{︄
0; k ∈ {n−1

2 , 2n−2
3 },

(2k − n + 1)
(︁ n−k−2 

2n−3k−3

)︁; otherwise.

Inspired by a comment in [25, Sequence A002457] by Hans Haverman, we next give a combinatorial interpretation of 
the number of edges of weighted Padovan graphs which in turn provides an alternative proof of Theorem 3.2.

Theorem 3.4. Let p,q ≥ 1. Then the number of edges in Ap,q is the same as the number of different words with p − 1 letters a, q − 1
letters b, and one letter c.

Proof. Recall that two vertices in Ap,q are adjacent if one can be obtained from the other by changing one subword ab
to ba. Now every edge xaby ∼Ap,q xbay can be represented by xcy: the shared part in the beginning, then letter c, then 
shared part at the end (word representing the edge can, of course, also begin or end with c). It is easy to see that this 
representation yields a bijection between E(Ap,q) and the set of all different words with p − 1 as, q − 1 bs and one c. �
Proposition 3.5. If p,q ≥ 0 and p + q ≥ 1, then

δ(Ap,q) = min{1, pq}
and

Δ(Ap,q) =
{︄

2 min{p,q}; p ≠ q,

2p − 1; p = q.

Moreover, the number of vertices of degree d in Ap,q is equal to⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2

(︄(︃
p − 1

d−1
2 

)︃(︃
q − 1

d−1
2 

)︃)︄
; d is odd,

(︃
p − 1 
d 
2 − 1

)︃(︃
q − 1

d 
2

)︃
+
(︃

p − 1
d 
2

)︃(︃
q − 1 
d 
2 − 1

)︃
; d is even.

Proof. Let v ∈ V (Ap,q). Clearly, deg(v) is the sum of the number of appearances of the words ab and ba in v . Thus, to 
count the number of vertices of degree d, it suffices to count the number of words with p as, q bs, and exactly d subwords 
ab and ba. Observe that occurrences of ab and ba in such a vertex alternate from left to right (and can overlap), so the 
vertex can be written in the form aα1 bβ1 · · ·aαm bβm , where αi, βi ≥ 1 for all i ∈ {2, . . . ,m − 1}, α1, βm ≥ 0, α1 +· · ·+αm = p, 

6 



V. Iršič Chenoweth, S. Klavžar, G. Rus et al. Discrete Mathematics 348 (2025) 114457 

β1 + · · · + βm = q and 2m − 1 − (1 − α1) − (1 − βm) = d (which means that the number of nonempty blocks of as and bs is 
equal to d + 1).

In the proof below, we will repeatedly use that the number of compositions of n into k parts, i.e. the number of integer 
solutions of x1 + · · · + xk = n, xi ≥ 1 for all i ∈ [k], is equal to 

(︁n−1
k−1 
)︁
.

If α1, βm ≥ 1, then d = 2m − 1, so d is odd, and m = d+1
2 . Thus, by the comment above, there is 

(︁ p−1 
d+1

2 −1

)︁(︁ q−1 
d+1

2 −1

)︁
such 

vertices. Similarly we count the ones starting with b and ending with a, that is, the ones with α1 = βm = 0.
If α1 ≥ 1 and βm = 0, then d = 2m − 2, so d is even, and m = d 

2 + 1. Thus there is 
(︁p−1

d 
2

)︁(︁q−1 
d 
2 −1

)︁
such words. Similarly, we 

count the ones starting and ending with b, that is, the ones with α1 = 0 and βm ≥ 1.
By definition, 

(︁n
k 
)︁≥ 1 if and only if 0 ≤ k ≤ n, thus the formulas for minimum and maximum degree of Ap,q follow from 

the determined number of vertices of degree d. �
4. Metric properties

In this section we determine several metric properties of weighted Padovan graphs. We begin with the distance function 
for which the partition representation Πp,q turns out to be the most convenient one. Using Theorem 2.6 the distance in Φn

k
and Ap,q can be obtained as well.

Proposition 4.1. If p,q ≥ 0 and λ = (λ1, . . . , λq),μ = (μ1, . . . ,μq) ∈ V (Πp,q), then dΠp,q (λ,μ) =∑︁q
i=1 |λi − μi |.

Proof. Recall that by definition, λ1 ≥ · · · ≥ λq and μ1 ≥ · · · ≥ μq . Clearly, d(λ,μ) = min
q ∑︂

i=1 
|λi −μσ(i)|, where the minimum 

is taken over all permutations σ of [q]. The same σ that minimizes this sum also minimizes 
∑︁q

i=1(λi −μσ(i))
2 =∑︁q

i=1 λ2
i +∑︁q

i=1 μ2
i − 2

∑︁q
i=1 λiμσ(i) . The σ minimizing this expression is exactly the same as the one maximizing 

∑︁q
i=1 λiμσ(i) . By 

the rearrangement inequality from [9, Theorem 368], this sum is maximized if σ(i) is such that μσ(1) ≥ · · · ≥ μσ(q) , so 
when σ is the identity. �

A graph G is a median graph if for every triple of vertices u, v, w of G there exists a unique vertex m(u, v, w), called 
median, which lies on a shortest u, v-path, on a shortest u, w-path, and on a shortest v, w-path. Recall that median graphs 
embed isometrically into hypercubes, hence by the subsequent theorem weighted Padovan graphs also have this property, 
that is, they are partial cubes. We refer to [7, Chapters 4 and 6] for more on partial cubes and median graphs, and the 
relation of Fibonacci-like cubes to these classes of graphs.

Theorem 4.2. If n ≥ 1 and 
⌊︁n 

2

⌋︁≤ k ≤
⌊︂

2n−2
3 
⌋︂

, then Φn
k is a median graph.

Proof. Let p = 2n − 3k − 2 and q = 2k − n + 1. Then by Theorem 2.6, Φn
k

∼ = Πp,q . Let x = (λ1, . . . , λq) ∈ V (Πp,q). Then 
0 ≤ λi ≤ p, i ∈ [q]. Set

αi(x) = 0 . . . 0⏞ ⏟⏟ ⏞
p−λi

1 . . . 1⏞ ⏟⏟ ⏞
λi

, i ∈ [q], and α(x) = α1(x) . . . αq(x) ,

where α1(x) . . . αq(x) stands for the concatenation of the binary words α1(x), . . . ,αq(x). The mapping α can thus be consid-
ered as

α : V (Πp,q) → V (Q pq) .

Let x = (λ1, . . . , λq) and y = (μ1, . . . ,μq) be arbitrary vertices of Πp,q . By Proposition 4.1 we have dΠp,q (x, y) =∑︁q
i=1 |λi −

μi |. By the definition of α, the words αi(x) and αi(y) differ in |λi −μi | positions. Hence α(x) and α(y) differ in 
∑︁q

i=1 |λi −
μi | positions, that is,

dΠp,q (x, y) = dQ pq (α(x),α(y)) . (1)

Let x = (λ1, . . . , λq), y = (μ1, . . . ,μq), and z = (τ1, . . . , τq) be arbitrary vertices of Πp,q . For each i ∈ [q], let σi be the median 
value of the set {λi,μi, τi}. Then in view of Proposition 4.1 and (1) we infer that m(α(x),α(y),α(z)) = α(σ1, . . . , σq) is a 
median of α(x), α(y), and α(z). Moreover, m(α(x),α(y),α(z)) ∈ V (α(Πp,q)).

We have thus proved that α(Πp,q) is an isometric subgraph of Q pq such that with any three vertices of α(Πp,q), their 
median in Q pq is a vertex of α(Πp,q). Applying the theorem of Mulder [22] (cf. also [14]) asserting that a graph G is a 
median graph if and only if G is a connected isometric subgraph of some Q n such that with any three vertices of G their 
median in Q n is also a vertex of G , the argument is complete. �

7 
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The proof of Theorem 4.2 can be used to determine the diameter of weighted Padovan graphs.

Proposition 4.3. If n ≥ 1 and 
⌊︁n 

2

⌋︁≤ k ≤
⌊︂

2n−2
3 
⌋︂

, then

diam(Φn
k) = (2n − 3k − 2)(2k − n + 1) .

Proof. Let p = 2n − 3k − 2 and q = 2k − n + 1. Since diam(Q pq) = pq and the mapping α : V (Πp,q) → V (Q pq) from 
the proof of Theorem 4.2 is an isometric embedding, we get diam(Φn

k) ≤ pq. On the other hand, α((0, . . . ,0)) = 0pq and 
α((p, . . . , p)) = 1pq , so that

diam(Φn
k) ≥ dΠp,q ((0, . . . ,0), (p, . . . , p))

= dQ pq (α((0, . . . ,0)),α((p, . . . , p)))

= dQ pq (0pq,1pq) = pq = (2n − 3k − 2)(2k − n + 1) . �
5. The cube polynomial

The cube polynomial of a graph G is denoted by C (G, x), and is the generating function C (G, x) =∑︁n≥0 cn (G) xn , where 
cn (G) counts the number of induced n-cubes in G . Clearly, c0 (G) = |V (G)| and c1 (G) = |E(G)|.

The cube polynomial was first studied in [3]. Among the many subsequent investigations we point to its applicability 
in mathematical chemistry [2,33], to its investigation on daisy cubes which as particular cases include Fibonacci cubes and 
Lucas cubes [13], to the cube polynomial of tribonacci cubes [1], and to an appealing relation between the cube polynomial 
and the clique polynomial [30]. For the cube polynomial of the weighted Padovan graphs we have:

Theorem 5.1. The generating function of the cube polynomial C
(︁
Φn

k , x
)︁

is∑︂
n≥0 

∑︂
k≥0 

C
(︁
Φn

k , x
)︁

ynzk = y 
1 − y2z

(︁
1 + yz

(︁
1 + xy2z

)︁)︁ .
Proof. Let Q m be an induced subgraph of Φn

k . By the fundamental decomposition, exactly one of the following holds:

1. Q m is an induced subgraph in 01Φn−2
k−1

∼ = Φn−2
k−1 ,

2. Q m is an induced subgraph in 011Φn−3
k−2

∼ = Φn−3
k−2 , or

3. Q m = Q m−1 □ K2, where the edges of K2 correspond exactly to edges between copies of 01Φn−2
k−1 and 011Φn−3

k−2 in Φn
k , 

so Q m−1 is an induced subgraph in Φn−5
k−3 .

Thus, if n ≥ 5 and k ≥ 3, then the cube polynomial of Φn
k satisfies the following recursive relation:

C
(︁
Φn

k , x
)︁= C

(︂
Φn−2

k−1, x
)︂

+ C
(︂
Φn−3

k−2, x
)︂

+ xC
(︂
Φn−5

k−3, x
)︂

.

Let the generating function of the cube polynomial be

f (x, y, z) =
∑︂
n≥0 

∑︂
k≥0 

C
(︁
Φn

k, x
)︁

ynzk.

By using the recurrence relation and the values

• ∑︁k≥0 C
(︁
Φ0

k , x
)︁

y0zk = 0,

• ∑︁k≥0 C
(︁
Φ1

k , x
)︁

yzk = y,

• ∑︁k≥0 C
(︁
Φ2

k , x
)︁

y2zk = 0,

• ∑︁k≥0 C
(︁
Φ3

k , x
)︁

y3zk = y3z,

• ∑︁k≥0 C
(︁
Φ4

k , x
)︁

y4zk = y4z2,

• ∑︁k≥0 C
(︁
Φn

k , x
)︁

ynzk =∑︁k≥3 C
(︁
Φn

k , x
)︁

ynzk + y5z2, n ≥ 5,

we get

f (x, y, z)
[︂

1 − y2z − y3z2 − xy5z3
]︂
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=
∑︂
n≥0 

∑︂
k≥0 

C
(︁
Φn

k , x
)︁

ynzk −
∑︂
n≥2 

∑︂
k≥1 

C
(︂
Φn−2

k−1, x
)︂

ynzk −
∑︂
n≥3 

∑︂
k≥2 

C
(︂
Φn−3

k−2, x
)︂

ynzk − x
∑︂
n≥5 

∑︂
k≥3 

C
(︂
Φn−5

k−3, x
)︂

ynzk

= y +
∑︂
n≥5 

∑︂
k≥3 

(︂
C
(︁
Φn

k , x
)︁− C

(︂
Φn−2

k−1, x
)︂

− C
(︂
Φn−3

k−2, x
)︂

− xC
(︂
Φn−5

k−3, x
)︂)︂

ynzk

= y . �
By using the generating function of the cube polynomial, we obtain the cube polynomial itself as follows.

Theorem 5.2. If n ≥ 1 and 
⌊︁n 

2

⌋︁≤ k ≤
⌊︂

2n−2
3 
⌋︂

, then

C
(︁
Φn

k , x
)︁=∑︂

j≥0 

(︃
n − k − j − 1

2k − n + 1 

)︃(︃
2k − n + 1

j 

)︃
x j .

Proof. With Theorem 5.1 in hand, we can compute as follows:

f (x, y, z) = y 
1 − y2z

(︁
1 + yz

(︁
1 + xy2z

)︁)︁
= y

∑︂
n≥0 

∑︂
k≥0 

(︃
n

k 

)︃
(yz)k

(︂
1 + xy2z

)︂k (︂
y2z
)︂n

=
∑︂
n≥0 

∑︂
k≥0 

⎛
⎝ k ∑︂

j=0 

(︃
n

k 

)︃(︃
k

j 

)︃
x j

⎞
⎠ y2n+k+2 j+1zn+k+ j

=
∑︂
n≥0 

∑︂
j≥0 

⎛
⎝∑︂

k≥ j 

(︃
n

k 

)︃(︃
k

j 

)︃
x j

⎞
⎠ y2n+k+2 j+1zn+k+ j

=
∑︂
n≥0 

∑︂
j≥0 

∑︂
k≥−n

(︃
n 

k − n − j

)︃(︃
k − n − j

j 

)︃
x j yn+k+ j+1zk

=
∑︂
n≥0 

∑︂
j≥0 

∑︂
k≥n+ j

(︃
n 

k − n − j

)︃(︃
k − n − j

j 

)︃
x j yn+k+ j+1zk

=
∑︂
n≥0 

∑︂
k≥ j 

∑︂
n≥k− j

(︃
n 

k − n − j

)︃(︃
k − n − j

j 

)︃
x j yn+k+ j+1zk

=
∑︂
j≥0 

∑︂
k≥ j 

∑︂
n≥−2 j−1

(︃
n − k − j − 1

2k − n + 1 

)︃(︃
2k − n + 1

j 

)︃
x j ynzk

=
∑︂
n≥0 

∑︂
k≥0 

⎛
⎝∑︂

j≥0 

(︃
n − k − j − 1

2k − n + 1 

)︃(︃
2k − n + 1

j 

)︃
x j

⎞
⎠ ynzk . �

The following result can be deduced from Theorem 5.2 by determining the maximum degree of C(Φn
k , x) and the corre-

sponding coefficient. However, we provide a different proof below since it illuminates the structure of the largest hypercubes 
contained in Φn

k
∼ = Ap,q .

Proposition 5.3. The largest hypercube contained in Ap,q as an induced subgraph is of size min{p,q}, and the number of such hyper-
cubes is max{(︁p

q 
)︁
,
(︁q 

p

)︁}.

Proof. Let m = min{p,q}. Let (ab)mx ∈ V (Ap,q). Vertices {t1 . . . tmx : ti ∈ {ab,ba}} clearly induce Q m in Ap,q (remove x and 
replace each ab with 0 and each ba with 1).

Suppose that Ap,q contains Q m+1 as an induced subgraph, and let W be a vertex set of Q m+1 in Ap,q . Observe that 
if v ∈ V (Q m+1) and x, y ∈ N(v), then x, y have another common neighbor z ≠ v . Without loss of generality assume that 
m = q. If v = sabat ∈ V (Ap,q), then the vertices sbaat and saabt cannot have another common neighbor. Thus for every 
vertex w ∈ W and for every b in w , at most one neighbor of w in W is obtained by switching this b. Hence degQ m+1

(w) is 
at most the number of bs in w which is equal to q = m. This is a contradiction since Q m+1 ∼ = Ap,q[W ] is (m + 1)-regular.
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To count the number of Q ms in Ap,q , again assume (without loss of generality) that m = q. After q abs are positioned 
into a word of length p, the whole word is determined (the remaining positions are filled with as), and we obtain a word 
of length p + q with p as and q bs. This can be done in 

(︁p
q 
)︁

different ways, and each of them corresponds to a different 
induced hypercube Q m . �
6. Automorphisms

In this section we determine the automorphism group of weighted Padovan graphs. In view of Theorem 2.6, this task is 
equivalent to the one of determining Aut(Πp,q).

We first consider the trivial cases. If min{p,q} = 0, then Πp,q ∼ = K1, so Aut(Πp,q) is trivial. If min{p,q} = 1, then Πp,q
is isomorphic to the path on max{p + 1,q + 1} vertices, so Aut(Πp,q) = Z2. Thus we assume that min{p,q} ≥ 2 in the 
following.

Let G = Πp,q through the whole section. The graph G has exactly two leaves: 0 = (0, . . . ,0) and pq = (p, . . . , p). We 
say that a vertex x ∈ V (G) is lonely with respect to the leaf ℓ if it has exactly one neighbor y ∈ V (G) such that d(y, ℓ) =
d(x, ℓ) − 1. For short, we simply say that x is lonely if it is lonely with respect to 0. We say that vertices y ∈ V (G) that are 
at distance d ≥ 0 from the leaf ℓ belong to layer d with respect to ℓ. When ℓ = 0, we simply say that they are in layer d.

Lemma 6.1. A vertex x ∈ V (G) is lonely (w.r.t. ℓ) if and only if x ≠ ℓ and all nonzero parts in the weak partition of x are of the same 
size.

Proof. Let ℓ = 0 (the proof for the case ℓ = pq is analogous). Suppose that x has at least two nonzero parts of different 
sizes, so x = (λ1, . . . , λq) and there exist i, j ∈ [q], i ≠ j, λi > λ j ≥ 1. Let y be obtained from x by changing λi to λi − 1, and 
let z be obtained from x by changing λ j to λ j − 1. Clearly xy, xz ∈ E(G), and y, z are in the layer d(x,0) − 1. Thus x is not 
lonely.

Suppose that all nonzero parts in the weak partition of x are of the same size and x ≠ ℓ, so x = (λ, . . . , λ), λ ∈ [p]. Then 
x has at most two neighbors: x1 = (λ + 1, λ, . . . , λ) and x2 = (λ, . . . , λ, λ − 1). As d(x2,0) > d(x,0) and d(x1,0) = d(x,0) − 1, 
x is lonely. �
Lemma 6.2. If w ∈ V (G) and ℓ is a leaf of G, then w has at most one lonely (w.r.t. ℓ) neighbor x such that d(x, ℓ) = d(w, ℓ) + 1.

Proof. Without loss of generality let ℓ = 0, and denote d(w,0) = d. Let w = (λ1, . . . , λq). For i ∈ [q], let μi be obtained from 
λ by changing λi to λi + 1. Clearly, the neighbors of w in layer d + 1 are contained in the set {μi : i ∈ [q]}. Suppose that 
some μi ∈ N(w) is lonely. Then λ j = λi + 1 for all j ∈ [q] \ {i} by Lemma 6.1. But then, since min{p,q} ≥ 2, no other μi can 
be lonely since λi would be smaller than the other part(s). Hence, w has at most one lonely neighbor in layer d + 1. �
Lemma 6.3. Let y, z ∈ V (G), y ≠ z, such that d(y, ℓ) = d(z, ℓ) = d where ℓ is a leaf of G. Then y and z have at most one common 
neighbor in the layer d + 1.

Proof. Without loss of generality assume that ℓ = 0 and suppose that y and z have at least one common neighbor, x, such 
that d(x,0) = d + 1. Since x is not lonely, not all parts of x are of the same size by Lemma 6.1. Let y = (λ1, . . . , λq) and 
z = (μ1, . . . ,μq). Thus there exist i ≠ j such that x is obtained from y by changing λi to λi + 1, which is equal to obtaining 
x from z by changing μ j to μ j + 1. This means that λk = μk for all k ∈ [q] \ {i, j}, λi + 1 = μi and λ j = μ j + 1.

Let x′ be another neighbor of y in layer d +1. Then x′ is obtained from y by changing λm to λm +1 for some m ∈ [q] \ {i}. 
But then as λm + 1 ≠ μm , x′ is not a common neighbor of y and z. �

Let G(d, ℓ) = {x ∈ V (G) : d(x, ℓ) ≤ d} where ℓ is a leaf in G .

Lemma 6.4. Let d ≥ 2 and let ϕ : G(d,0) → V (G). Suppose that ϕ is an automorphism between G(d,0) and ϕ(G(d,0)). Then there 
is at most one possibility of extending ϕ to ψ : G(d + 1,0) → V (G) such that ψ |G(d,0) = ϕ and ψ is an automorphism between 
G(d + 1,0) and ψ(G(d + 1,0)).

Proof. Let x ∈ G(d + 1,0) \ G(d,0). Observe that since ϕ is an automorphism on its image, ϕ(0) is also a leaf.

Case 1: x is not lonely. 
Then there exist vertices y ≠ z in layer d that are both neighbors of x. By Lemma 6.3 x is the unique common neighbor 
of y and z. Vertices ϕ(y) and ϕ(z) are in layer d with respect to ϕ(0) and by Lemma 6.3 they have at most one common 
neighbor in layer d + 1 with respect to ϕ(0), say x′ . Since ϕ is an automorphism on its image, ψ(x) can only be x′ (if it 
exists).

Case 2: x is lonely. 
Then x has exactly one neighbor w in layer d. By Lemma 6.2 x is the only lonely neighbor of w . The vertex ϕ(w) is in 
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(2,2)

(2,1)

(2,0) (1,1)

(1,0)

(0,0)

Fig. 4. The smallest weighted Padovan graph (Π2,2) with the automorphism group isomorphic to the Klein-four group Z2 ×Z2. 

layer d with respect to ϕ(0), and by Lemma 6.2 it has at most one lonely neighbor, say x′ . Thus ψ(x) can only be x′ (if it 
exists). �
Lemma 6.5. Let p ≠ q and let ϕ : G(2,0) → V (G) map as follows:

⟨0q⟩ →⃓ ⟨0q⟩,
⟨1,0q−1⟩ →⃓ ⟨1,0q−1⟩,
⟨2,0q−1⟩ →⃓ ⟨12,0q−2⟩,

⟨12,0q−2⟩ →⃓ ⟨2,0q−1⟩.
Then ϕ cannot be extended to an automorphism of G.

Proof. Let p < q. Suppose that it is possible to extend ϕ to ψ : G(p,0) → V (G) such that ψ is an automorphism on its 
image. Then we show that ψ(⟨p,0q−1⟩) = ⟨1p,0q−p⟩, ψ(⟨1p,0q−p⟩) = ⟨p,0q−1⟩. This is clearly true for p = 2. Consider 
p ≥ 3 and assume that it is true for p − 1. Neighbors of ⟨p − 1,0q−1⟩ in layer p are ⟨p,0q−1⟩ (which is lonely) and 
⟨p − 1,1,0q−2⟩. Neighbors of ⟨1p−1,0q−p+1⟩ in layer p are ⟨1p,0q−p⟩ (which is lonely) and ⟨2,1p−2,0q−p+1⟩. Since ψ
should be an automorphism, lonely neighbors have to be mapped into lonely neighbors, thus ψ(⟨p,0q−1⟩) = ⟨1p,0q−p⟩, 
ψ(⟨1p,0q−p⟩) = ⟨p,0q−1⟩. Note that ψ is unique by Lemma 6.4.

Observe that G(p +1,0)\ G(p,0) contains all weak partitions of p +1 except from ⟨p +1,0q−1⟩. Thus ⟨p,0q−1⟩ ∈ G(p,0)

has only one neighbor in layer p + 1: ⟨p,1,0q−2⟩. However, ψ(⟨p,0q−1⟩) = ⟨1p,0q−p⟩ has two neighbors in layer p + 1: 
⟨1p+1,0q−p−1⟩ and ⟨2,1p−1,0q−p⟩. Thus, ψ cannot be extended into an automorphism on G(p + 1,0).

An analogous argument settles the case when p > q. �
Theorem 6.6. Let min{p,q} ≥ 2. If p ≠ q, then Aut(G) =Z2 , and if p = q, then Aut(G) =Z2 ×Z2 .

Proof. Since G has exactly two leaves, 0 = ⟨0q⟩ and pq = ⟨pq⟩, every automorphism of G either maps 0 →⃓ 0, pq →⃓ pq, or 
0 →⃓ pq, pq →⃓ 0. This uniquely determines how the unique neighbors 1 = ⟨1,0q−1⟩ and pq − 1 = ⟨pq−1, p − 1⟩ of the leaves 
are mapped. However, since min{p,q} ≥ 2, vertices 1 and pq − 1 each have two neighbors, which can again be mapped 
either identically or into each other. For illustration, see Fig. 4.

Let ϕ : V (G) → V (G) be an automorphism. By the above, there are only 2 · 2 = 4 possibilities of how ϕ maps N[1]. By 
inductively applying Lemma 6.4, ϕ|N[1] determines the whole ϕ uniquely. Thus Aut(G) ⊆Z2 ×Z2.

However, if p ≠ q and ϕ(N[1]) = N[1], then Lemma 6.5 shows that ϕ|N[1] = id|N[1] . Thus Aut(G) ≠Z2 ×Z2, and by the 
Lagrange’s theorem, |Aut(G)| ∈ {1,2}.

Let τ : V (G) → V (G) be defined so that τ ((λ1, . . . , λq)) = (p −λq, . . . , p −λ1). Clearly, τ is well-defined. Let xy ∈ E(G). So 
x = (λ1, . . . , λq) and y is obtained from x by changing λi to λi +1 for some i ∈ [q]. Thus τ (x) = (p−λq, . . . , p−λi, . . . , p−λ1)

and τ (y) = (p − λq, . . . , p − λi − 1, . . . , p − λ1), so τ (x)τ (y) ∈ E(G). Similarly we obtain that τ (N(x)) = N(τ (x)). Hence, τ is 
an automorphism. Thus if p ≠ q, Aut(G) =Z2 = {id, τ }.

If p = q, let ρ : V (G) → V (G) be defined as ρ(λ) = λ′ . Recall that the conjugate λ′ of a weak partition λ = (λ1, . . . , λq)

is obtained by interchanging the rows and columns of the Ferrers diagram of λ. In other words, the number of parts of λ′
equal to i is λi − λi+1. Since λ has q parts which are all at most p, λ′ has at most p parts which are all at most q. Finally, 
we add a sufficient number of parts of size 0 to the end of λ′ so it has exactly p parts. Since p = q, ρ is well-defined. Let 
xy ∈ E(G). So x = (λ1, . . . , λq) and y is obtained from x by changing λi to λi + 1 for some i ∈ [q]. Consider now ρ(x) and 
ρ(y). The number of parts that equal j is equal in both ρ(x) and ρ(y) for all j ∈ [q] \ {i − 1, i}, while the number of parts 
of size i − 1 and i differ for 1 between ρ(x) and ρ(y). Thus ρ(x)ρ(y) ∈ E(G). Similarly, we see that ρ(N(x)) = N(ρ(x)), and 
so ρ is an automorphism of G . Since ρ(0) = 0 and τ (0) = pq, ρ ≠ τ . Thus Aut(G) =Z2 ×Z2 = {id, τ ,ρ, τ ◦ ρ}. �
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7. Concluding remarks

While this paper presents several properties of the weighted Padovan graphs, there is still a lot left to explore. We 
present several metric properties of the graphs, but it would also be interesting to determine the radius of Φn

k , along 
with their center and periphery. We also wonder which graphs Φn

k have a Hamiltonian cycle or path, and what is their 
domination number. Lastly, it would be interesting to know whether Φn

k is a so-called resonance graph, cf. [4], or if it 
belongs to some known subfamily of partial cubes.

The study of recurrence-inspired graphs has gained significant attention in recent years. A companion sequence to 
Padovan numbers is known as the Lucas-Padovan sequence. In [19], the authors studied the corresponding Lucas-Padovan 
cubes. An intriguing direction for further exploration would be the study of a companion sequence to weighted Padovan 
graphs, specifically the weighted Lucas-Padovan graphs. Going in the Lucas direction one can also try to keep the definition 
as similar as possible to Padovan graphs but add the cyclic condition.
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