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Abstract

If G is a graph and P is a partition of V (G), then the partition distance of G is
the sum of the distance between all pairs of vertices that lie in the same part of P .
This concept generalizes several metric concepts and is dual to the concept of the
colored distance due to Dankelmann, Goddard, and Slater. It is proved that the
partition distance of a graph can be obtained from the Wiener index of weighted
quotient graphs induced by the transitive closure of the Djoković-Winkler relation
as well as by any partition coarser than it. It is demonstrated that earlier results
follow from the obtained theorems. Applying the main results, upper bounds on
the partition distance of trees with prescribed order and radius are proved and
corresponding extremal trees characterized.
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1 Introduction

Let G be a graph and let P = {V1, . . . , Vk} be a partition of V (G). Let fP : V (G) →
[k] = {1, . . . , k} be the index function of P defined with fP(v) = i, where v ∈ Vi. The
Wiener index W (G) of G, defined as the sum of the distances between all unordered
pairs of vertices of G, can be decomposed with respect to P as

W (G) =
∑

{u,v}
fP (u)=fP (v)

dG(u, v) +
∑

{u,v}
fP (u) 6=fP (v)

dG(u, v) .

An equivalent approach to the Wiener index of a graph is to study its average distance,
cf. [24].) Denoting the above sums with WP(G) and WP(G), respectively, the Wiener
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index of G thus decomposes as

W (G) = WP(G) +WP(G) . (1)

We call WP(G) the partition distance of G (with respect to P). The function WP(G)
was earlier introduced by Dankelmann, Goddard, and Slater [4] as the colored distance
of G (with respect to P) with a location problem from [14] as a motivation. In this
problem one aims to partition the nodes of a network considered into a set of facility
nodes and a set of customer nodes, such that the average distance between a facility
and a customer is minimized. Clearly, if |P| = |V (G)|, then WP(G) = W (G) and
if |P| = 1, then WP(G) = 0. Moreover, the so-called (un-weighted) median problem
(cf. [12]) asks to determine a partition P = {V1, V2}, where |V1| = 1, such that WP(G)
is smallest possible.

Several invariants of wide interest in chemical graph theory can be expressed as
instances of the partition distance. First of all, if |P| = 1, then WP(G) = W (G).
Consider next a fixed positive integer k and a graph G with vertices v1, . . . , vn, where
deg(v1) = · · · = deg(vr) = k and deg(vi) 6= k for any i > r. Then setting P =
{{v1, . . . , vr}, {vr+1}, . . . , {vn}} we have

WP(G) = TWk(G) ,

where TWk(G) is the generalized terminal Wiener index of G due to Ilić and Ilić [16].
TWk(G) in turn extends the terminal Wiener index TW (G) = TW1(G) introduced
in [11], see also [3, 22]. As another special case of the partition distance, if no con-
dition is imposed on the first part of the partition P, the partition distance coincides
with the concept of the relative Wiener index from [2]. Moreover, some basic graph
invariants can also be expressed using the partition distance. Let us give two examples
here. If G is a graph with vertices v1, . . . , vn, where d(v1, v2) = diam(G), then by
setting P = {{v1, v2}, {v3}, . . . , {vn}} we have WP(G) = diam(G). And if v1, . . . , vn
are vertices of G such that v1, . . . , vω(G) induce a largest clique of G, then by setting
P = {{v1, . . . , vω(G)}, {vω(G)+1}, . . . , {vn}}, the clique number ω(G) of G can be written

as ω(G) =
(

1 +
√

1 + 8WP(G)
)

/2.

In the next section we prove our main results which assert that the partition distance
of a graph can be obtained from certain smaller weighted graphs. We also show that
numerous earlier results follow directly from the obtained theorems. Then, in Section 3,
different general upper bounds on the partition distance of trees are proved. Trees that
attain the respective bounds are also characterized. The obtained bounds are also
applied to the (generalized) terminal Wiener index. We conclude with some remarks
on the relation between the partition distance and the colored distance and on the
concept of the k-diameter from [8].
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2 Partition distance from Θ∗-quotient graphs

In this section we first prove that the partition distance of a graph can be obtained as
the sum of the Wiener indexes of weighted quotient graphs induced by the Θ∗- relation;
see Theorem 2.2. Then, in Theorem 2.3, we observe that the same conclusion holds
for any partition that is coarser than the Θ∗-partition. We close the section by listing
several known results that are consequences of these theorems.

Recall that the edges e = xy and f = uv of a connected graph G are in the Djoković-
Winkler relation Θ [5, 25] if dG(x, u) + dG(y, v) 6= dG(x, v) + dG(y, u). The transitive
closure Θ∗ of Θ is an equivalence relation on E(G), the corresponding partition is
called the Θ∗-partition. In the next result we collect those results from [9] (see also [17,
Lemmas 14.1, 14.2, 14.3]) that we will make use of.

Lemma 2.1 (i) Let P be a shortest path in G. Then no two edges of P are in the
relation Θ.

(ii) Let e = uv be an edge of a graph G, and let W be a u, v-walk in G that does
not contain e. Then there exists an edge f of W such that eΘf .

(iii) Let F be a Θ∗-class of a connected graph G, and let u, v ∈ V (G). If P is a
shortest u, v-path and Q an arbitrary u, v-path, then |Q ∩ F | ≥ |P ∩ F |.

Let G be a connected graph and let {F1, . . . , Fr} be a partition of E(G). For any
i ∈ [r], the quotient graph G/Fi has the connected components of the graph G − Fi

as vertices, components C and C ′ being adjacent if there exists an edge uv ∈ Fi such
that u ∈ C and v ∈ C ′. A weighted graph (G,w) means a vertex-weighted graph, that
is, a graph G together with the weight function w : V (G) → R

+
0 . The Wiener index

W (G,w) of the weighted graph (G,w) was introduced in [18] as:

W (G,w) =
∑

{x,y}∈(V (G)
2 )

w(x)w(y)dG(x, y) .

If w ≡ 1, then W (G,w) = W (G). Now all is ready for our main result.

Theorem 2.2 Let G be a connected graph and let P = {V1, . . . , Vk} be a partition of
V (G). If {F1, . . . , Fr} is the Θ∗-partition of E(G), then

WP(G) =

r
∑

i=1

k
∑

j=1

W (G/Fi, w
(j)
i ) ,

where w
(j)
i (C) = |C ∩ Vj | for any C ∈ V (G/Fi).

Proof. For any vertices x, y ∈ V (G), x 6= y, that belong to some Vj , j ∈ [k], select a
shortest x, y-path and denote it with Px,y. Counting the edges of all the selected paths
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we have:

WP(G) =

k
∑

j=1

∑

{x,y}∈(Vj
2
)

|E(Px,y)| . (2)

Consider an arbitrary pair {x, y} ∈
(Vj

2

)

and assume that |Px,y ∩ Fi| = t > 0 for some
i ∈ [r]. Let Cx and Cy be the connected components of G − Fi such that x ∈ Cx and
y ∈ Cy. Assume for a moment that Cx = Cy. Then there exits an x, y-path Q (in G)
that lies completely in Cx. Clearly, Q contains no edge from Fi. On the other hand,
as t > 0 there exists an edge f = uv ∈ Px,y ∩ Fi. Consider the closed walk between u
and v consisting of the u, x-subpath of Px,y, x, y-path Q, and y, v-subpath of Px,y. By
Lemma 2.1(ii), this closed walk contains an edge f ′ 6= f such that fΘf ′. Since Px,y is
a geodesic, Lemma 2.1(i) implies that f ′ ∈ Q, a contradiction because from fΘf ′ we
know that f ′ ∈ Fi. It follows that Cx 6= Cy.

Let f1 = x1y1, . . . , ft = xtyt be the edges of Px,y ∩ Fi, indexed consecutively along
Px,y. Then any pair of vertices from the set Z = {x1, . . . , xt} ∪ {yt} is connected by a
subpath of Px,y that contains an edge from Fi. (For instance, for the vertices xt and yt,
the edge xtyt itself defines such a subpath.) Since each such subpath is a shortest path,
using the argument from the previous paragraph it follows that the vertices from Z lie
in pairwise different connected components of G− Fi. Consequently, by the definition
of the quotient graph G/Fi, the shortest path Px,y induces a path of length t in G/Fi,
so that dG/Fi

(Cx, Cy) ≤ t. Assume now that dG/Fi
(Cx, Cy) < t holds and let R be

a shortest Cx, Cy-path in G/Fi. Then R can be naturally lifted into an x, y-path in
G which contains less that t edges from Fi. Since this contradicts Lemma 2.1(iii), we
conclude that dG/Fi

(Cx, Cy) ≥ t and consequently dG/Fi
(Cx, Cy) = t.

We have thus proved that if {x, y} ∈
(Vj

2

)

and |Px,y∩Fi| = t > 0, then dG/Fi
(Cx, Cy) =

t, where Cx and Cy are the connected components of G− Fi with x ∈ Cx and y ∈ Cy.
Moreover, the same conclusion holds also in the case when t = 0. Hence if C and C ′

are connected components of G−Fi with |C ∩Vj| = a and |C ′∩Vj| = b, then the paths
Px,y, where x, y ∈ Vj , x ∈ C, y ∈ C ′, contain a · b · dG/Fi

(C,C ′) edges from Fi. Setting

w
(j)
i (C) = |C ∩ Vj | for any connected component C ∈ V (G/Fi) it follows that for any

j ∈ [k],
∑

{x,y}∈(Vj
2
)

|E(Px,y) ∩ Fi| = W (G/Fi, w
(j)
i )

and consequently

k
∑

j=1

∑

{x,y}∈(Vj
2
)

|E(Px,y) ∩ Fi| =

k
∑

j=1

W (G/Fi, w
(j)
i ) .
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Using (2) it follows that

WP(G) =

r
∑

i=1







k
∑

j=1

∑

{x,y}∈(Vj
2
)

|E(Px,y) ∩ Fi|







=

r
∑

i=1

k
∑

j=1

W (G/Fi, w
(j)
i )

and we are done. �

Another concept that is very (but not completely) similar to the partition distance is
the one of the modifiedWiener index introduced in [10]. If G is a graph and {V1, . . . , Vk}
the partition of V (G) into the orbits under the action of Aut(G), then the modified
Wiener index of G is

|V (G)|

k
∑

i=1

1

|Vi|

∑

{u,v}∈(Vi2 )

dG(u, v) .

Hence without the normalization terms, the modified Wiener index would be a special
case of the partition distance. Nevertheless, in [7] it was demonstrated that also for
the modified Wiener index a result parallel to Theorem 2.2 can be designed.

We say that a partition E = {E1, . . . , Et} of E(G) is coarser than F = {F1, . . . , Fr}
if each set Ej is the union of one or more Θ∗-classes of G. Theorem 2.2 then generalizes
as follows.

Theorem 2.3 Let (G,w) be a connected weighted graph and let P = {V1, . . . , Vk} be a
partition of V (G). If {E1, . . . , Er} is a partition of E(G) coarser than the Θ∗-partition,
then

WP(G,w) =

r
∑

i=1

k
∑

j=1

W (G/Ei, w
(j)
i ) ,

where w
(j)
i (C) =

∑

x∈C∩Vj
w(x) for any C ∈ V (G/Ei).

Since the proof of Theorem 2.3 proceed similarly as the proof of Theorem 2.2, we
omit the details but point out that instead of Lemma 2.1(iii) one needs to apply the
following result.

Lemma 2.4 [20, Lemma 3.2] Let {E1, . . . , Er} be a partition of E(G) coarser than the
Θ∗-partition. Let C and C ′ be connected components of G − Ei, and let x, y ∈ V (C),
x′, y′ ∈ V (C ′). If P1 and P2 are shortest x, x′- and y, y′-paths in G, respectively, then
|E(P1) ∩ Ei| = |E(P2) ∩Ei|.
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In the rest of the section we collect some consequences of Theorem 2.2. As already
noted, if |P| = 1, then WP(G) = W (G). Hence Theorem 2.2 implies the following
statement (rewritten here in the present notation) which is the main result of [19].

Corollary 2.5 [19, Theorem 2.1] If {F1, . . . , Fr} is the Θ∗-partition of a connected
graph G, then

W (G) =
r
∑

i=1

W (G/Fi, wi) ,

where wi(C) = |C| for any C ∈ V (G/Fi).

Combining (1) with Theorem 2.2 and Corollary 2.5 we get:

Corollary 2.6 Let G be a connected graph and let P = {V1, . . . , Vk} be a partition of
V (G). If {F1, . . . , Fr} is the Θ∗-partition of E(G), then

WP(G) =

r
∑

i=1



W (G/Fi, wi)−

k
∑

j=1

W (G/Fi, w
(j)
i )



 ,

where wi(C) = |C| and w
(j)
i (C) = |C ∩ Vj | for any C ∈ V (G/Fi).

Another direct consequence of Theorem 2.2 is the following result which is in turn
a generalization of [16, Theorem 5.1] from graphs isometrically embeddable into hyper-
cubes to general graphs.

Corollary 2.7 If G is a connected graph, X the set of vertices of G of degree ℓ, and
{F1, . . . , Fr} the Θ∗-partition of E(G), then

TWℓ(G) =
r
∑

i=1

W (G/Fi, wi) ,

where wi(C) = |C ∩X| for any C ∈ V (G/Fi).

Proof. Let P = {V1, . . . , Vk} be the partition of V (G) in which V1 consists of all the
vertices of degree ℓ, while each of the remaining parts of the partition is of order 1.

Then (in the notation of Theorem 2.2) W (G/Fi, w
(j)
i ) = 0 for any i ∈ [r] and for any

j ∈ [k] \ {1}. Hence the result. �

For results of a similar nature than Corollary 2.7 and are important in chemical
graph theory we refer to the recent survey [21], where the investigation done in the
present paper has been indicated [21, Section 4.5], also see [1].

6



3 Bounds on the partition distance of trees

In this section we apply the results of the previous section to derive bounds on the
partition distance of trees.

Recall that the center of a graph G is the set of its vertices that minimize the
eccentricity of G. It is well-known that the center of a tree can be obtained by iteratively
removing the set of its leaves. Consequently, the center of a tree consists either of a
single vertex or of two adjacent vertices. In the first case the tree is called centered and
in the latter case it is bicentered.

A subdivided star is a tree obtained from a star by subdividing its edges (not neces-
sarily all of them). A subdivided star is balanced if all the edges of a star are subdivided
by the same number of vertices (possibly zero). Similarly, a balanced subdivided double
star is obtained from P2 by attaching to both of its vertices the same number of paths
of the same length. Note that balanced subdivided double stars are bicentered tree.
Note also that paths of odd order are balanced subdivided stars while paths of even
order are balanced subdivided double stars.

Theorem 3.1 Let T be a tree of order n ≥ 3 and radius r, and let P = {V1, . . . , Vk}
be a partition of V (T ).

(i) If T is a centered tree, then

WP(T ) ≤

(

r

n− 1

)

(n− r − 1)

k
∑

i=1
|Vi|≥2

|Vi|
2 ,

where the equality holds if and only if T is a balanced subdivided star, V1 contains the
pendant vertices of T , and |Vi| = 1 for i ≥ 2.

(ii) If T is a bicentered tree, then

WP(T ) ≤

(

1

4
+

(n− r − 1)(r − 1)

n− 2

) k
∑

i=1
|Vi|≥2

|Vi|
2 ,

where the equality holds if and only if T is a balanced subdivided double star, V1 contains
the pendant vertices of T , and |Vi| = 1 for i ≥ 2.

Proof. Suppose first that k = 1. Then because 1 ≤ r ≤ n/2 easy computations show
that both asserted upper bounds are of the form n3/2 + O(n2). Among the n-vertex
graphs (and hence among the n-vertex trees) the Wiener index is maximized on paths
fow which W (Pn) = (n3 − n)/6 holds [6]. It now readily follows that the asserted
inequality holds for k = 1. In the rest we thus assume that k ≥ 2 and set pℓ = |Vℓ|,
ℓ ∈ [k].

Assume first that T is a centered tree with radius r and with v in its center. Let
Ni(v) = {x ∈ V (T ) : d(x, v) = i} and set ni = |Ni(v)|, i ∈ [r]. If Ei is the set of edges

7



between Ni−1(v) and Ni(v), then E = {E1, . . . , Er} is a partition of E(T ). Clearly, E
is a partition coarser than the Θ∗-partition because it is well-known (and easy to see)
that the parts of the latter are single edges. Hence Theorem 2.3 can be applied to T ,
P, and E . The quotient graph T/Ei is the star K1,ni

, its center vertex corresponding
to the component of T − Ei containing v. Let pℓij, i ∈ [r], j ∈ [ni + 1], ℓ ∈ [k], be

the number of vertices from Vℓ that lie in the jth connected component of T − Ei. In
particular, pℓi1 is the number of vertices from Vℓ in the connected component of T −Ei

containing v. Setting

W ℓ
P(T ) = 2

r
∑

i=1

∑

2≤j<j′≤ni+1

pℓijp
ℓ
ij′ +

r
∑

i=1

pℓi1

(

pℓ − pℓi1

)

, (3)

we infer from Theorem 2.3 that

WP(T ) =
k
∑

ℓ=1

W ℓ
P(T ) . (4)

Note that if pℓ = 1, then W ℓ
P(T ) = 0. Hence, in the following we may assume that

pℓ ≥ 2.

Clearly, (3) will be largest when pℓij = pℓij′ =
pℓ−pℓi1

ni
holds for all j 6= j′. Therefore,

W ℓ
P(T ) = 2

r
∑

i=1

∑

2≤j<j′≤ni+1

pℓijp
ℓ
ij′ +

r
∑

i=1

pℓi1

(

pℓ − pℓi1

)

≤ 2

r
∑

i=1

(

ni

2

)(

pℓ − pℓi1
ni

)2

+

r
∑

i=1

pℓi1

(

pℓ − pℓi1

)

(5)

=
r
∑

i=1

(

pℓ − pℓi1

)

(

pℓ −
pℓ − pℓi1

ni

)

= pℓ

r
∑

i=1

(

pℓ − pℓi1

)

−

r
∑

i=1

(pℓ − pℓi1)
2

ni
.

Using the weighted arithmetic-harmonic mean (cf. [23, p. 21]), and having in mind that
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∑r
i=1 ni = n− 1, we can continue as follows:

W ℓ
P(T ) ≤ pℓ

r
∑

i=1

(

pℓ − pℓi1

)

−

r
∑

i=1

(pℓ − pℓi1)
2

ni

≤ pℓ

r
∑

i=1

(pℓ − pℓi1)−

(

r
∑

i=1
(pℓ − pℓi1)

)2

n− 1
(6)

=

(

r
∑

i=1

(pℓ − pℓi1)

)

(

pℓ −
pℓ · r

n− 1
+

∑r
i=1 p

ℓ
i1

n− 1

)

=

(

pℓ · r −

r
∑

i=1

pℓi1

)

(

pℓ

(

1−
r

n− 1

)

+

∑r
i=1 p

ℓ
i1

n− 1

)

= p2ℓ · r

(

1−
r

n− 1

)

+

(

r
∑

i=1

pℓi1

)

(

pℓ

(

2r

n− 1
− 1

)

−

∑r
i=1 p

ℓ
i1

n− 1

)

. (7)

Since n ≥ 2r + 1, the second term of (7), that is,

(

r
∑

i=1

pℓi1

)

(

pℓ

(

2r

n− 1
− 1

)

−

∑r
i=1 p

ℓ
i1

n− 1

)

, (8)

is non-positive. Therefore, for any fixed ℓ, we have:

W ℓ
P(T ) ≤ p2ℓ · r

(

1−
r

n− 1

)

= p2ℓ(n− r − 1)
r

n− 1
. (9)

The claimed inequality for centered trees now follows immediately.
The asserted inequality for centered trees now follows by combining (9) with (4).
In the second case assume that T is a bicentered tree of radius r. Let u and v

be the central vertices of T , set e = uv, and let Ni(e) = {x ∈ V (T ) : d(x, e) = i},
i ∈ {0, 1, . . . , r − 1}. Let Ei be the set of edges between Ni−1(e) and Ni(e) and set
ni = |Ni(e)|. Then E = {E0 = {e}, E1, . . . , Er−1} is a partition of E(T ) coarser than
the Θ∗-partition. Therefore, using the notation of the first case,

W ℓ
P(T ) = pℓ01 · p

ℓ
02 + 2

r−1
∑

i=1

∑

2≤j<j′≤ni+1

pℓij · p
ℓ
ij′ +

r−1
∑

i=1

pℓi1

(

pℓ − pℓi1

)

, (10)

where pℓ0j, j ∈ [2], are the weights of the vertices in the quotient graph T/E0. Applying
the same arguments as for centered trees we get:

W ℓ
P(T ) ≤

p2ℓ
4

+
p2ℓ (n− r − 1)(r − 1)

n− 2
=

(

1

4
+

(n − r − 1)(r − 1)

n− 2

)

p2ℓ ,
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hence the inequality of the theorem follows also for bicentered trees.
It remains to prove the equality part of the theorem. Let us prove it for centered

trees, the arguments for bicentered trees are parallel. So let T be a centered tree with
the center v. Then the equality holds if and only if for any ℓ ∈ [k], the inequalities (5),
(6) and (9) are equalities. Now fix ℓ. Then in the equality case, for any i ∈ [r] and any
j, 2 ≤ j ≤ ni + 1,

pℓij = (pℓ − pℓi1)/ni, (11)

pℓ − pℓ11
n1

=
pℓ − pℓ21

n2
= · · · =

pℓ − pℓr1
nr

, (12)

and
r
∑

i=1

pℓi1 = 0 (13)

or

pℓ (2r/(n − 1)− 1)−

r
∑

i=1

pℓi1/(n − 1) = 0 (14)

For any i ∈ [r] and any j, 2 ≤ j ≤ ni+1, the equality pℓij = (pℓ−pℓi1)/ni demonstrates
that the weights of the leaves in the quotient graphs T/Ei are the same. We now claim
n1 = · · · = nr and pℓ11 = · · · = pℓr1. First, we prove n1 ≤ · · · ≤ nr. Assume on the
contrary that there exists 1 ≤ t ≤ r − 1 such that nt > nt+1. Hence Nt(v) contains at
least one pendant vertex, say u. Since k ≥ 2, we may assume without loss of generality
that u /∈ V1. Note that the expression on the right-hand side of (11) is independent
from j, and since p1tj′ = 0, where j′ corresponds to the components {u} of G− Et, we

infer that w /∈ V1 for any vertex w with d(w, v) ≥ t+1. It follows that p1 − p1t+1,1 = 0,

and from (12) we find out that p1 = p111 = 1 which is not possible.
We have thus proved that n1 ≤ · · · ≤ nr. It then follows from (12) that pℓ11 ≥

· · · ≥ pℓr1. Since on the other hand we clearly have pℓ11 ≤ · · · ≤ pℓr1, we conclude that
pℓ11 = · · · = pℓr1. Using (12) again we also get that n1 = · · · = nr.

It implies that the central vertex of the star quotient graph has constant weight for
each i. Since pℓ ≥ 2, it follows from the above that only pendant vertices at distance
r from v and the vertex v can belong to Vℓ. If v ∈ Vℓ, then

∑r
i=1 p

ℓ
i1 = r and must

pℓ (2r/(n− 1)− 1)− r/(n− 1) = 0, that is, n = 2r+1− r/pℓ. On the other hand, T is
a centered tree and then n ≥ 2r + 1 which is not possible. Hence,

∑r
i=1 p

ℓ
i1 = 0 must

be true and just pendants vertices are in Vℓ that are all at distance r from the root,
and since n1 = · · · = nr, we conclude that T is a balanced subdivided star. As already
mentioned, using similar arguments the equality case follows for bicentered trees. �

With respect to Theorem 3.1 we mention that for each fixed pair (n, r), n ≤ 20,
trees that maximize the Wiener index among the n-vertex trees of radius r were found
by computer in [15].
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The next result on the terminal Wiener index follow immediately from Theorem 3.1
by partitioning V (T ) into the class of leaves and singletons.

Corollary 3.2 Let T be a tree of order n ≥ 3, radius r, and with p pendant vertices.
(i) If T is a centered tree, then

TW (T ) ≤
p2r(n− r − 1)

n− 1
,

where the equality holds if and only if T is a balanced subdivided star.
(ii) If T is bicentered tree, then

TW (T ) ≤ p2
(

1

4
+

(n− r − 1)(r − 1)

n− 2

)

,

where the equality holds if and only if T is a balanced subdivided double star graph.

Although the following results has a simple direct proof, we state it here as a
consequence of Theorem 3.1. To do so, one only has to observe that r(n−r−1)/(n−1) ≤
(n−1)/4 holds for any possible r in the case of center trees, and similarly for bicentered
trees.

Corollary 3.3 If T is a tree of order n ≥ 3 and P = {V1, . . . , Vk} is a partition of
V (T ), then

WP(T ) ≤
n− 1

4

k
∑

i=1
|Vi|≥2

|Vi|
2 .

Moreover, equality holds if and only if T is a path, V1 contains the two pendant vertices
of T , and |Vi| = 1 for i ≥ 2.

Corollary 3.3 in turn implies the following result on the generalized terminal Wiener
index.

Corollary 3.4 If T is a tree of order n ≥ 3 and with dk vertices of degree k ≥ 1, then

TWk(T ) ≤
d2k
4
(n− 1) .

In particular, if p is the number of pendant vertices of T , then

TW (T ) ≤
p2

4
(n − 1) ,

where the equality holds if and only if T = Pn.
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4 Concluding remarks

As mentioned in the introduction, the generalized terminal Wiener index [16] and the
terminal Wiener index [11] are special cases of the partition distance. We point out
that the (generalized) terminal Wiener index can not be defined in terms of WP(G)
only. For instance, if T is a tree on at least three vertices, then it has at least two
leaves. In order to define WP(T ), all the leaves would have to be in pairwise different
parts of P, but then WP(T ) would take into the account also some distances between
leaves and non-leaves. This example shows that the duality of the partition distance
and the colored distance must be taken with care.

If X ⊆ V (G), then the relative Wiener index WX(G) (introduced in [2] and men-
tioned in the introduction) is defined is the sum of the distances between all pairs
of vertices form X. In [8] the k-diameter dk(G) of a graph G was introduced as
max{WX(G) : |X| = k}, that is, as the maximum over all partition distances with
all but one parts being singletons, while the remaining part is of size k. Note that
d2(G) = diam(G) and d|V (G)|(G) = W (G). In [8] the 3-diameter has been considered,
the maximum size of a graph with given order and 3-diameter was determined. No
further developments on the k-diameter are known, except that based on it, the (k, ℓ)-
eccentricity has been introduced in [13]. It would certainly be interesting to further
investigate the k-diameter, in particular to obtain general (optimal) bounds on it as
well as to classify corresponding extremal graphs.
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[21] S. Klavžar, M.J. Nadjafi-Arani, Cut method: update on recent developments and
equivalence of independent approaches, Curr. Org. Chem. 19 (2015) 348–358.

[22] H. Kurata, R.B. Bapat, Moore-Penrose inverse of a Euclidean distance matrix,
Linear Algebra Appl. 472 (2015) 106–117.

13
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