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Faculty of Mathematics and Physics

University of Ljubljana, Slovenia

gasper.kosmrlj@student.fmf.uni-lj.si

Douglas F. Rall

Herman N. Hipp Professor of Mathematics

Department of Mathematics, Furman University

Greenville, SC, USA

doug.rall@furman.edu

January 22, 2013

Abstract

Two players, Dominator and Staller, alternate choosing vertices of a graph G, one

at a time, such that each chosen vertex enlarges the set of vertices dominated so far.

The aim of the Dominator is to finish the game as soon as possible, while the aim of

the Staller is just the opposite. The game domination number 
g(G) is the number of

vertices chosen when Dominator starts the game and both players play optimally. It

has been conjectured in [7] that 
g(G) ≤ 3∣V (G)∣
5

holds for an arbitrary graph G with no

isolated vertices, which is in particular open when G is a forest. In this paper we present

constructions that lead to large families of trees that attain the conjectured 3/5-bound.

Some of these families can be used to construct graphs with game domination number
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3/5 of their order by gluing them to an arbitrary graph. All extremal trees on up to

20 vertices were found by computer. In particular, there are exactly ten trees T on 20

vertices with 
g(T ) = 12 all of which belong to the constructed families.

Keywords: domination game, game domination number, 3/5-conjecture, computer search

AMS subject classification (2010): 05C57, 91A43, 68-04, 05C69

1 Introduction

The domination game, introduced in [2], is played by two players on an arbitrary graph G.

The two players are called Dominator and Staller, which indicates the role they are supposed

to play in the game. They are taking turns choosing a vertex from G such that whenever

they choose a vertex the set of vertices dominated so far increases. The game ends when all

vertices of G are dominated, and the aim of Dominator is that the total number of moves

played in the game is as small as possible, while Staller wishes to maximize this number.

By Game 1 we mean a game in which Dominator has the first move, while Game 2 refers

to a game in which Staller begins. Assuming that both players play optimally, the game

domination number 
g(G), respectively the Staller-start game domination number 
′g(G), of

a graph G, denotes the number of moves played, equivalently the number of vertices chosen,

in Game 1, respectively Game 2.

Similarly as in the case of the game chromatic number (see e.g. [1] for a survey on

this related graph invariant and [4] for the general framework of combinatorial games), the

game domination number is intrinsically different from the ordinary domination number. In

particular it is not trivial to determine 
g(G) even in the simple case when G is a path [8]. In

addition, in [2] it was wrongly asserted that 
g(X) = 
′g(X) for a comb X (a graph obtained

from a path by attaching a leaf to each vertex, also known as the corona of a path). The

correct values for combs were determined in [9]. It is thus clear that the game is very non

trivial even when played on trees.

The main purpose of this paper is to explore extremal trees that attain the bound in the

following conjecture.

Conjecture 1.1 ([7, Conjecture 5.1]) If G is an isolate-free forest of order n, then


g(G) ≤ 3n/5 .

Along the way we will encounter an infinite family of trees that can be glued to an

arbitrary graph so that the obtained graphs achieve the upper bound in the following more

general conjecture.

Conjecture 1.2 ([7, Conjecture 6.2]) If G is an isolate-free graph of order n, then


g(G) ≤ 3n/5 .

Note that the truth of Conjecture 1.2 implies the same for Conjecture 1.1, however it is

not obvious at all whether they are equivalent. In particular the game domination number

of a spanning tree T of a connected graph G can be arbitrarily smaller than 
g(G) [3].
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Isolate-free graphs and trees with game domination number equal to 3/5 of their order

will be called 3/5-graphs and 3/5-trees, respectively. An infinite class of such graphs (in

particular trees) can be constructed in the following way. Let G′ be the graph obtained

from an arbitrary graph G of order n, where for each vertex v ∈ V (G), a path of order 5 is

added and the center of the new path is identified with v. Clearly G′ is of order 5n and it

is not difficult to see that 
g(G′) = 3n. This construction was independently discovered by

several authors [6, 2, 7] and eventually culminated in the above two conjectures.

Attempts to settle Conjecture 1.1 led to a search for graphs that would achieve the

conjectured bound. Using computer we found out that there are only one, two, and four

3/5-trees on 5, 10, and 15 vertices, respectively. Three of these seven do not belong to

the family mentioned above. In all of these three trees the so-called fork appears as a

subgraph. In order to better understand this phenomenon, in particular, to understand the

role of the fork, the computation was extended to all trees of order 20. As there are 823065

non-isomorphic such trees, certain optimizations (see Section 4) were needed to finish the

computation in reasonable time. It turned out that there are ten 3/5-trees, eight of them

being new (that is, not covered by the previously known construction). The variety of these

examples was then large enough to grasp the patterns that are the core of this paper.

The paper is organized as follows. In the rest of this section we present concepts, conven-

tions and known results needed. Then, in the next section, we present a construction using

a path and two special trees (P5 and the so-called fork) that yields an infinite family of trees

that attain the bound in Conjecture 1.1. In Section 3 we give a different approach that uses

an arbitrary graph instead of a path yielding additional extremal graphs with respect to the

two conjectures. The list of all extremal trees on up to 20 vertices is presented in Section 4.

They were obtained by computer and can all be constructed by the methods of this paper.

We conclude the paper with some open problems.

Recall that a set D ⊂ V (G) is dominating if every vertex from V (G)−D has a neighbor

in D. The minimum size of a dominating set of a graph G is called the domination number

of G, denoted 
(G); we refer to the monograph [5] on domination theory. Throughout the

paper we will use the convention that d1, d2, . . . denotes the sequence of vertices chosen by

Dominator and s1, s2, . . . the sequence chosen by Staller. A partially-dominated graph is a

graph together with a declaration that some vertices are already dominated, that is they

need not be dominated in the rest of the game. For a vertex subset S of a graph G, let

G∣S denote the partially dominated graph in which vertices from S are already dominated.

In particular, if S = {x} we will write G∣x. The Staller-pass game is the domination game

in which, on each turn, Staller may pass her move. Let 
̂g(G) be the number of moves in

such a game played optimally on G when Dominator starts, and 
̂′g(G) when Staller starts.

The turns when Staller passes do not count as moves. With these concepts in hand we now

recall several very useful results due to Kinnersley, West, and Zamani [7].

Lemma 1.3 (Continuation Principle) [7, Lemma 2.1] Let G be a graph and A,B ⊆ V (G).

If B ⊆ A, then 
g(G∣A) ≤ 
g(G∣B) and 
′g(G∣A) ≤ 
′g(G∣B).

Theorem 1.4 [7, Theorem 4.6] Let F be a forest and S ⊆ V (F ). Then 
g(F ∣S) ≤ 
′g(F ∣S).

Lemma 1.5 [7, Corollary 4.7] Let F be a forest and S ⊆ V (F ). Then 
̂g(F ∣S) = 
g(F ∣S)

and 
̂′g(F ∣S) = 
′g(F ∣S).
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2 Construction using paths and forks

In this section we present a large family of trees which attain the conjectured 3/5 bound

using two special trees. One is the so-called “fork” that we denote by F , and the other is

the path of order 5. For convenience we will refer to them as basic trees. Both are shown in

Fig. 1 together with the labels that will be used in the rest of the paper.

wi

xi yi zi

ai

vi

bi ci

ai

Figure 1: The fork F and P5 each labeled as Ti

It can be easily verified by inspection that if G is one of the fork F or P5 then 
g(G∣ai) =


g(G) = 
′g(G), where ai is as in Fig. 1.

Let k ≥ 6 and 3 ≤ ℓ ≤ k − 2. For a path of order k we denote the first two vertices by s

and s′ and the last two in natural order by t′ and t. In addition, the vertex at distance ℓ−1

from s we denote by x. Denote the remaining vertices, starting from the degree 2 neighbor of

s′, by u1, u2, . . . , uk−5. We refer to this labeled path as P . Then the tree T
(ℓ)
k [T1, . . . , Tk−5]

is constructed from this labeled path as follows. For any vertex ui, i = 1, 2, . . . , k− 5, let Ti
be a basic tree and identify the vertex ai ∈ V (Ti) with ui ∈ V (P ). See Fig. 2.

s s′ u1 u2 x uk−5 t′ t

T1 T2 Tk−5

Figure 2: Construction for Theorem 2.1

Theorem 2.1 For any k ≥ 6, any 3 ≤ ℓ ≤ k − 2, and any list of basic trees T1, . . . , Tk−5,

T
(ℓ)
k [T1, . . . , Tk−5] is a 3/5-tree.

Proof. Let n =
∣∣∣V (T (ℓ)

k [T1, . . . , Tk−5]
)∣∣∣ and ni = ∣V (Ti)∣, where 1 ≤ i ≤ k − 5. We first

show that Dominator has a strategy to ensure that no more than 3n/5 vertices are played.

4



This goal of Dominator will be accomplished if for every 1 ≤ i ≤ k − 5, at most 3ni/5

vertices are played from Ti and at most three of {s, s′, x, t, t′} are played.

Suppose first that ℓ = 3, that is x is adjacent to s′. Dominator begins by playing x. This

will guarantee that at most two of {s, s′, x} are played during the game. As long as Staller

plays a vertex from some Ti, Dominator follows with an optimal strategy in Ti if possible.

In particular, after the first move of Staller in some Ti, Dominator responds in Ti with a

move that dominates ui. Note that in the fork F and the path of order five this is always

possible. If Staller’s move in Ti ends the game there, then Dominator plays optimally in

some other Tj in which the game is not yet finished. If this is the first move in Tj , then

Dominator will play uj which is an optimal move in Tj whether it is a fork or path of order

5. Note that if this was not the first vertex played in Tj , then a Staller-pass game is being

played in Tj , which by Lemma 1.5 is no worse for Dominator.

Suppose at some point in the game Staller plays t. If no vertex of Tk−5 has been played,

then Dominator responds by playing uk−5. Since this is an optimal move by Dominator

when beginning Game 1 on Tk−5, whether it is a fork or a path of order 5, at most 3nk−5/5

vertices in Tk−5 will be played. Moreover, his goal of preventing both of t′ and t from being

played has been achieved. On the other hand, if some vertices from Tk−5 have already been

played, then uk−5 has been dominated and hence t′ can never be played.

If ℓ = k − 2, then x is adjacent to t′ and the argument is the same as above. Assume

finally that 3 < ℓ < k − 2. Dominator begins as in the first case by playing x. He then

follows Staller in any Ti using the same strategy as above which guarantees that on each Tj
at most 3nj/5 vertices are played. More precisely, when he follows Staller for the first time

on Tj , Dominator’s move will be uj . Moreover, just as above he can guarantee that at most

one of t′ and t is played and that at most one of s and s′ is played.

Now we demonstrate a strategy for Staller that will guarantee that at least 3n/5 moves

are made in Game 1.

Suppose first that d1 = x. In this case at least three vertices from {s, s′, x, t′, t} will be

played, and in fact, an optimal first move for Staller is to play s. After her first move, the

strategy of Staller is to follow Dominator, if possible, in any Ti using an optimal strategy

for Ti. If such a move is not possible, then either the game is over (or she plays t as the final

move in the game) or Staller can select a vertex from some partially dominated Tj ; either

this is the first move in Tj or the last move previously made in Tj was also made by her.

Note that if Staller is the first to play in some Ti and if the usual game is played in that

Ti (i.e., Dominator follows Staller in all moves in Ti), then exactly 3ni/5 vertices from Ti
will eventually be played. This follows because 
g(Ti∣ui) = 
g(Ti) = 
′g(Ti). (Recall that ai
is identified with ui.) On the other hand, if Dominator allows Staller to play two consecutive

moves in a partially dominated Ti, then by Theorem 1.4 the total number of vertices played

in such a Ti will be at least 3ni/5.

Therefore, if d1 = x, then Staller can force at least 3n/5 vertices to be played.

By the Continuation Principle d1 ∕= s and d1 ∕= t. If d1 = s′, then Staller plays x and the

situation is essentially the same as when d1 = x and s1 = s. By the assumptions imposed

on T1, we can argue the same as above to ensure that at least 3n/5 vertices are played.

Similarly, a parallel argument works if d1 = t′.

In the last case the first move of Dominator is in some Tm. Then Staller replies with

s1 = x. For convenience let us call a basic tree open if exactly one of its vertices has been
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played and this was on a move of Dominator. Hence after the first two moves the tree Tm
is the only open tree. In the course of the game there are four essentially different moves by

Dominator.

1. Dominator creates a new open tree,

2. Dominator plays s′ or t′,

3. Dominator plays in a tree in which the last move was made by Staller, and

4. Dominator plays in an open tree.

We now treat each of these cases separately and along the way describe the strategy for

Staller.

Suppose a move by Dominator creates an open tree Ti. If this is the only open tree, then

Staller responds with an optimal move in Ti. Otherwise, suppose there is another open tree

Tj . If both i and j are smaller than ℓ, say, i < j < ℓ, then Staller makes an optimal move

in Tj . On the other hand, if one of i and j is bigger than ℓ, say i > ℓ, then Staller plays

optimally in Tmin{i,j}. Note that this strategy of Staller ensures that there are never more

than two open trees after a move of Dominator and at most one open tree after a move of

Staller.

If Dominator plays s′ or t′ and there are no open trees, then Staller plays the other one

(that is, t′ or s′). (By Continuation Principle, an even better move for Staller would be to

play t or s, but for her purposes this makes no difference.) On the other hand, if there is an

open tree, then she plays in it.

In the third case when Dominator played in some Ti in which Staller was the last player

to have made a move, Staller plays in Ti if this is possible. If not, then she plays in an open

tree if one exists. If there is no open tree, then Staller either makes the first move in some

basic tree or plays in a basic tree, say Tj , in which she was the last one to have made a move.

This latter type of move leads to a game on Tj in which Staller has made two consecutive

moves. Using Theorem 1.4 we see that the total number of vertices played in Tj will be at

least 3nj/5.

Finally suppose that Dominator plays in the (only) open tree Ti. That Ti is indeed the

only open tree follows from the strategy of Staller.

Claim. If the first two moves on Ti were made by Dominator and neither is ui, then ui is

a legal move for Staller.

Let the first two moves on Ti made by Dominator be dp and dq, where q > p and

dp, dq ∕= ui. We may assume without loss of generality that i > ℓ. Suppose that the right

neighbor y of ui on P was dominated before the move dq. Note that either y = ui+1 or

y = t′. If y = t′ and it was played before by Dominator, then by the strategy of Staller (case

2) moves dp and dq of Dominator in Ti were not possible in the first place. Suppose next

that y = ui+1. We distinguish two subcases. Assume first that the right neighbor of y was

played earlier in the game. Then dp was not played before the right neighbor of y, because

otherwise Staller would have replied with an optimal move in Ti (and thus Dominator would

not have two consecutive moves in Ti). Hence, after dp was played, Ti is the most left open

tree so Staller would have replied in Ti. Using the same argument we also get a contradiction

when y was dominated before with a move within Ti+1. This proves the claim.
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If Ti is P5 and Dominator played bi and ci, then Staller plays ui. (This is a legal move

by the above claim.) If Dominator plays ui in one of these two moves, then at least one

of the leaves of Ti is not dominated and Staller plays it. Suppose next that Ti is F . If

{dp, dq} is one of {xi, wi}, {xi, vi}, or {vi, wi}, then Staller playing ui guarantees six moves

in Ti. (Recall again that this is a legal move by the above claim.) On the other hand, if

{dp, dq} is either {xi, ui} or {xi, yi}, then Staller plays wi. In the former case this already

guarantees six moves on Ti, which also obviously happens in the latter case unless the next

move of Dominator in Ti is vi. Using symmetry and the Continuation Principle this covers

all possible cases. □

If the above construction is extended to k = 5 and the condition 3 ≤ ℓ ≤ k − 2 is

interpreted that no Ti is attached to the starting Pk = P5, we get the path on five vertices

which is a 3/5-tree.

In Theorem 2.1 it would be good to extend the definition of basic trees to contain more

than two graphs. However, in the proof we intrinsically use specific properties of P5 and

F , see for instance the last paragraph of the proof. Moreover, while designing the strategy

of Dominator, we also need the property that if Staller first plays in some basic tree Ti,

then Dominator can respond with an optimal move that dominates ui. This is another

obstruction in an attempt to extend the set of basic trees.

In order to see the sensitive nature of the theorem’s construction, consider the tree S

which is shown in Fig. 3 in bold. It can be verified directly (cf. also Theorem 3.7) that


g(S) = 9 = 3
5 ∣V (S)∣ = 
′g(S) and that 
g(S∣ai) = 
g(S). Now consider the graph T

(4)
6 [S]

(see Fig. 3 again) where as before, the attachment of S to P6 is made in the vertex ai (of S).

It can be checked that 
g(T
(4)
6 [S]) = 11, hence T

(4)
6 [S] is not a 3/5-tree. One could also try

to attach S to P6 at the vertex a′i, but also in this case the game domination number of the

resulting graph is 11. This example demonstrates that one would need to be very careful in

an attempt to extend the set of basic trees.

ai

a′i

x

Figure 3: Trees S (in bold) and T
(4)
6 [S] (the whole graph)

3 Generalized constructions

We begin this section with a construction that yields graphs whose game domination number

is at least 3/5 of their order in which trees with certain special properties are glued to
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vertices of an arbitrary graph. In Theorem 3.3 we then present an infinite family of such

trees obtained by gluing two trees to K2. Strengthening the conditions that these two trees

must satisfy leads us to introduce attachable trees. In Proposition 3.5 we then prove that

the trees constructed in the previous section (in Theorem 2.1) are attachable. To be able

to attach trees to general graphs in Theorem 3.7 we impose an additional condition on

attachable trees and call them special.

Let G be an arbitrary graph on n vertices v1, v2, . . . , vn, let Hi, 1 ≤ i ≤ n, be a connected

graph of order mi ≥ 2, and let xi ∈ V (Hi). We denote by

G
[
H1[x1], H2[x2], . . . ,Hn[xn]

]
the graph of order

∑n
i=1mi formed by identifying xi and vi for 1 ≤ i ≤ n. Whenever all

vertices xi fromHi are clear from the context we simplify this notation toG
[
H1, H2, . . . ,Hn

]
.

Proposition 3.1 Let G be an arbitrary graph of order n and for each 1 ≤ i ≤ n let Ti be a

tree containing a vertex xi such that 
g(Ti) = 
g(Ti∣xi). Then


g(G
[
T1[x1], T2[x2], . . . , Tn[xn]

]
) ≥

n∑
i=1


g(Ti) .

Proof. To prove the proposition it suffices to give a strategy for Staller that will ensure for

each i at least 
g(Ti) moves are made in Ti. Her strategy is to follow Dominator in whichever

Tj he plays if possible. In this way she guarantees that whenever Dominator makes a move

in some Tj the last move previously made in Tj was made by Staller. On the other hand,

it can happen that Staller can make consecutive moves in the game restricted to some Tj .

This is possible when a move by Dominator ended the game restricted to a different Ti. It

follows that when the game has ended, the game restricted to Tj is the version of either

Game 1 or Game 2 in which Dominator may have passed some moves. By Theorem 1.4, in

the case of Game 1 the number of moves made in Tj is at least 
g(Tj ∣xj) = 
g(Tj), while in

Game 2 at least 
′g(Tj ∣xj) ≥ 
g(Tj ∣xj) = 
g(Tj) moves were made in Tj . □

In the construction of Proposition 3.1 trees Ti cannot be replaced by arbitrary graphs.

To see this, note first that for any vertex x of C6 we have 
g(C6) = 
g(C6∣x). Observe that


g
(
G
[
C6[x], C6[x] . . . , C6[x]

])
= 2n+ 1 < 3n =

∑n
i=1 
g(C6) where n is the order of G.

Corollary 3.2 Let G be a graph of order n and for each 1 ≤ i ≤ n let Ti be a tree containing

a vertex xi with 
g(Ti) = 
g(Ti∣xi) = 3∣V (Ti)∣/5. For G̃ = G
[
T1[x1], T2[x2], . . . , Tn[xn]

]
we

have


g(G̃) ≥ 3

5
∣V (G̃)∣ .

As noted in Section 2, the path of order 5 and the fork are two examples of trees that

fulfil the assumption of Corollary 3.2. Hence given an arbitrary graph G and attaching to

each of its vertices either a fork or a P5 in appropriate vertices (corresponding to ai as in

Fig. 1) we get a large family of graphs that attain the conjectured 3/5-bound, unless this

family contains a counter-example. More generally, attaching at each vertex of a graph

an arbitrary 3/5-tree that fulfils the assumption of Proposition 3.1 either yields a larger

3/5-graph or a counterexample to Conjecture 1.2.
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We next present an infinite family of trees that can be attached in the same way as P5

and fork that attain the bound in Corollary 3.2. A vertex x in a graph G is called an optimal

start vertex if Dominator has an optimal strategy for Game 1 such that d1 = x.

Theorem 3.3 Let T1 and T2 be trees, and for 1 ≤ i ≤ 2 let xi ∈ V (Ti) such that 
g(Ti) =


g(Ti∣xi). If x1 is an optimal start vertex of T1 and 
g(T2) = 
′g(T2), then


g(K2

[
T1[x1], T2[x2]

]
) = 
g(T1) + 
g(T2).

In addition, x1 is an optimal start vertex of K2

[
T1[x1], T2[x2]

]
.

Proof. Set H = K2

[
T1[x1], T2[x2]

]
.

For the upper bound we will prove that Dominator has a strategy on H that requires at

most 
g(T1) + 
g(T2) moves. Let d1 = x1. After the first move he always follows (playing

optimally) Staller in the same subgraph Ti in which the previous move was made, as long as

this is possible. Note that Staller might jump from one subtree to the other in the course of

the game. In particular, Staller may be the first to play in T2. In this case the game restricted

to T2 corresponds to Game 2 on T2∣x2. We are assuming that 
′g(T2) = 
g(T2) = 
g(T2∣x2).

If Staller is the last one to play in one of the subtrees (that is, Staller makes a move in

one of the subtrees that finishes the game restricted to that subtree), then the corresponding

game in the other subtree Ti, is a Staller-pass game. Note that even if all the moves were

made in T1 until the game in that subtree ended on a move of Staller, then Dominator will

actually be the first to play in T2∣x2. This situation can also be thought of as a Staller-

pass game in which Staller passed on her first move. Since Ti is a tree, by Lemma 1.5, the

Continuation Principle, and our hypothesis, it follows that


̂′g(Ti∣xi) = 
′g(Ti∣xi) ≤ 
′g(Ti) = 
g(Ti) .

We conclude that 
g(H) ≤ 
g(T1) + 
g(T2).

The lower bound 
g(H) ≥ 
g(T1) + 
g(T2) follows immediately from Proposition 3.1.

Finally, from the above strategy of Dominator on H, in which he started the game by

playing x1, we infer that x1 is an optimal start vertex of H. □

Let T be a tree and x ∈ V (T ). Then we say that (T, x) is an attachable tree (with the

attaching vertex x) provided that

(i) x is an optimal start vertex in T ,

(ii) 
g(T ∣x) = 
g(T ), and

(iii) 
′g(T ) = 
g(T ).

With this definition in hand we can state:

Corollary 3.4 If (T1, x1) and (T2, x2) are attachable trees, then


g(K2

[
T1[x1], T2[x2]

]
) = 
g(T1) + 
g(T2).

We already know that (P5, ai) and (F, ai) are attachable trees. They are in fact the

first two trees that are obtained by Theorem 2.1. We now show that eventually any tree

constructed in that result is such:
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Proposition 3.5 If T is a 3/5-tree as constructed in Theorem 2.1 with x as specified there,

then (T, x) is attachable.

Proof. Since in all cases the strategy of Dominator in the proof of Theorem 2.1 is to play

x as the first move, the condition (i) to be attachable is fulfilled.

To prove (ii), note first that 
g(T ∣x) ≤ 
g(T ) follows from the Continuation Principle.

To prove the reverse inequality, let Game 1 be played on T . We are going to show that

Staller has a strategy on T ∣x that lasts at least as many moves as the game played on T

which will imply that 
g(T ∣x) ≥ 
g(T ). Suppose first that d1 = x. Then Staller copies this

move to T ∣x. At this point the set of vertices dominated is the same in both games. Staller

replies optimally in the imaginary game and copies her move to the real game. Continuing

in this way, the game on T ∣x will last the same number of moves as the game on T . Assume

next that d1 ∕= x. Then Staller copies this move to the imaginary game on T ∣x. Note that

this move is legal in T ∣x. Then Staller plays x. Observe that this move is then a legal move

of Staller also in the real game on T because x has two (non-adjacent) neighbors. Moreover,

by the strategy of Staller as described in the proof of Theorem 2.1, this move of Staller is

an optimal move in the real game. At this point once again the set of vertices dominated

is the same in both games and arguing as in the first case the number of moves will be the

same in both games.

To prove (iii), we first observe that 
′g(T ) ≥ 
g(T ) follows by Theorem 1.4. To prove that


′g(T ) ≤ 
g(T ) also holds, we need to give a strategy of Dominator in Game 2 that guarantees

that the game lasts no more than 3
5 ∣V (T )∣ moves. The basic strategy of Dominator is to

follow Staller in trees Ti as long as possible. Moreover, if the first move of Staller in some Ti
is not ui, then Dominator responds by playing ui (which is, as we know from the proof of

Theorem 2.1, an optimal move). Note that in this way on each Ti one of Game 1, Game 2,

or Staller-pass will be played. In each case (in the first two cases because Ti is P5 or F , and

in the last case due to Lemma 1.5), at most 3
5 ∣V (Ti)∣ moves will be played on Ti. Suppose

that s is played at some stage of the game by Staller. Then Dominator responds with a

move on the neighbor of s′ if possible. If this is not possible, s′ cannot be played in the rest

of the game; in this case, Dominator makes an optimal move in some Tj in which the game

is not yet finished. The strategy of Dominator is parallel after Staller plays t. Similarly, if

Staller plays x, Dominator simply replies with an optimal move in some Tj . By this strategy

of Dominator, at most three vertices from {s, s′, x, t, t′} are played. □

Corollary 3.6 Let (T1, x1) and (T2, x2) be any (attachable) trees constructed in Theo-

rem 2.1. Then K2

[
T1[x1], T2[x2]

]
is a 3/5-tree.

To extend Theorem 3.3 from K2 to an arbitrary graph G, we need the following additional

assumption on attachable trees. We say that an attachable tree (T, x) is special if for any

optimal first move of Staller in Game 2 that is different from x, Dominator can optimally

reply with d1 = x.

Theorem 3.7 Let G be a connected graph of order n and for each 1 ≤ i ≤ n, let (Ti, xi) be

a special attachable tree. Then


g(G
[
T1[x1], T2[x2], . . . , Tn[xn]

]
) =

n∑
i=1


g(Ti).
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Proof. We only need to prove 
g(G
[
T1[x1], T2[x2], . . . , Tn[xn]

]
) ≤

∑n
i=1 
g(Ti) because the

reverse inequality follows from Proposition 3.1. That is, we need to provide a strategy for

Dominator that limits the number of moves made in each Ti to 
g(Ti). His strategy is to

play d1 = x1, and then to follow Staller in whichever Tj she plays, if possible. If this is

not possible and the game is not yet over, Dominator plays in some Ti in which the game

is not yet finished. If no vertex on that Ti has been played, Dominator plays xi. This is

an optimal move because (Ti, xi) is attachable. Otherwise he plays optimally in Ti. Note

that it is possible that in such a Ti the last two moves played in Ti were both made by

Dominator, in other words, Staller-pass game is played on Ti. Suppose next that the first

move in some Tj was made by Staller. We distinguish two cases.

Assume first that this first move in Tj (played by Staller) was optimal with respect to

the game restricted to Tj . If this move was not xj , then Dominator replies by playing xj .

This is optimal since (Tj , xj) is a special attachable tree. If on the other hand her first move

was xj then Dominator replies with an optimal move in Tj .

Suppose next that Staller played the first move in Tj which is not optimal with respect

to Tj (but is of course optimal with respect to the entire graph). Then Dominator replies

with an optimal move with respect to Tj which will guarantee that after at most 
g(Tj)− 1

moves played on Tj all its vertices will be dominated. Hence even if eventually xj is played

by Staller, at most 
g(Tj) vertices of Tj are played.

Using this strategy, Dominator can guarantee that on each Tj one of Game 1, Game 2,

or Staller-pass game will be played. In each of these cases his goal will be reached using

Lemma 1.5 and the definition of the special attachable tree. □

The reader is invited to verify that P5 and F are special attachable trees as well as are

T
(3)
7 [P5, P5] and T

(4)
7 [P5, P5].

For an example of an attachable tree that is not special consider the lower right tree

from Fig. 4, call it T . Let x be a vertex of degree 3 in T . Then one can check that (T, x) is

attachable. On the other hand, let y be a vertex of T at distance 5 from x. (So y is one of

the leaves eccentric to x.) Then the first move s′1 = y of Staller followed by d′1 = x enables

Staller to enforce 13 vertices to be played. Therefore, (T, x) is not special.

4 All 3/5-trees up to 20 vertices

Using computer all 3/5-trees of order n = 5k were obtained for k ≤ 4. We present the

complete list of these trees and show how each of them can be obtained by the constructions

from previous sections. Some of these 3/5-trees can be obtained in more than one way.

The unique 3/5-tree on 5 vertices is P5. Using the notation of Section 2, we can write

P5 = T
(3)
5 [ ], that is, we attach no tree to P5.

There are two 3/5-trees on 10 vertices. The first one is the fork F . Note that F =

T
(3)
6 [P5]. The second one is obtained from two copies of P5 by connecting their central

vertices x and x′ by an edge. In other words, this is the graph K2

[
P5[x], P5[x′]

]
, in the

simplified notation K2

[
P5, P5

]
. In the following we will use this simplified notation, always

using the convention that P5 and F are attached in vertices ai as in Fig. 1.

On 15 vertices we have four 3/5-trees. They are

S = K2

[
F, P5

]
, P3

[
P5, P5, P5

]
, T

(4)
7 [P5, P5], and T

(3)
7 [P5, P5] = T

(3)
6 [F ] ,
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see Fig. 3 again for S. Fig. 4 displays all 3/5-trees on 20 vertices, there are exactly 10 of

them.

The first row shows three trees that can be expressed as T
(ℓ)
k trees, they are T

(3)
7 [F, P5],

T
(4)
7 [F, P5], and T

(3)
7 [P5, F ]. Note that the second and the third can also be represented as

T
(5)
8 [P5, P5, P5] and T

(3)
8 [P5, P5, P5], respectively, cf. the figure. The second row of the figure

contains three 3/5-trees that are obtained using Theorem 3.3, where the K2 is indicated in

bold. The last line contains four trees that are obtained using Theorem 3.7 where the graphs

G (twice P3, K1,3, and P4) are shown in bold.

Figure 4: All 3/5-trees on 20 vertices.

Note that the left tree in the middle of Fig. 4, that is, the graph K2[F, F ], can be obtained

from the tree T
(4)
6 [S] shown in Fig. 3 by removing the edge aia

′
i and adding the edge a′ix.

So these two trees are very similar but 
g(T
(4)
6 [S]) = 11 and 
g(K2[F, F ]) = 12.

In the rest of the section the computational approach is explained. We used the list

of trees due to Brendan McKay [10]. To be able to do the computations for n = 20, the

following algorithm was designed. During the course of the game a vertex is called saturated

if every vertex in its closed neighborhood is dominated by the set of vertices already played.

For any graph G the algorithm finds 
g(G∣S) or 
′g(G∣S) for any S ⊆ V (G) by the following
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recursive formulas:


g(G∣S) = 1 + min{
′g(G∣S ∪N [v]) ∣ v is not saturated} , (1)


′g(G∣S) = 1 + max{
g(G∣S ∪N [v]) ∣ v is not saturated} . (2)

For every set S, the algorithm memorizes 
g(G∣S) if it was Dominator who played last, and

memorizes 
′g(G∣S) if Staller played last. On each step the algorithm checks if the result for

some particular set S is already known. Otherwise the algorithm picks some vertex that is

not saturated and uses Equations (1) and (2). The algorithm stops when all possibilities are

exhausted. The final output is then 
g(G) = 
g(G∣{ }) and 
′g(G) = 
g(G∣{ }). The actual

program is written in C++, here is its pseudocode:

Procedure GD(game, G, S):

G graph,

S set of dominated vertices

if S == V (G): return 0

if game == 1 and 
g(G∣S) is known: return 
g(G∣S)

else if game == 2 and 
′g(G∣S) is known: return 
′g(G∣S)

else

results = empty list

foreach v ∈ V (G):

if v is not saturated:

add 1+GD(3-game, G, S ∪N [v]) to results

if game == 1: remember 
g(G∣S) = min(results)

else: remember 
′g(G∣S) = max(results)

Using an independently designed algorithm, in particular by generating the required lists

of trees directly, Bill Kinnersley found the same set of 3/5-trees of order at most 20.

5 Concluding remarks

We have verified by computer that all the trees constructed by Theorem 2.1 on up to and

including 30 vertices have the property that s′1 = x is the unique optimal move for Staller

in Game 2. Hence by Proposition 3.5 all these trees are special attachable. Hence we pose:

Question 5.1 Are all attachable trees constructed by Theorem 2.1 special?

Let T be the following tree on 35 vertices. Start with P7 and identify its third vertex

with the vertex x of T
(3)
7 [P5, P5] as constructed in Theorem 2.1 and repeat this for its fifth

vertex. We have checked that 
g(T ) = 21. This naturally gives rise to the following

Question 5.2 Can the set of basic trees be enlarged?

We close with another question.

Question 5.3 Are the trees constructed by Corollary 3.6 attachable?
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