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Abstract

The median (antimedian) set of a profile π = (u1, . . . , uk) of vertices of
a graph G is the set of vertices x that minimize (maximize) the remoteness
∑

i
d(x, ui). Two algorithms for median graphs G of complexity O(n idim(G))

are designed, where n is the order and idim(G) the isometric dimension of G.
The first algorithm computes median sets of profiles and will be in practice
often faster than the other algorithm which in addition computes antimedian
sets and remoteness functions and works in all partial cubes.

Keywords:

1 Introduction

The problems of locating medians and antimedians of profiles are natural general-
izations of facility location problem in graphs. Given a profile (that is, a multiset of
vertices) on a graph/network one wants to locate vertices whose remoteness, that is,
the sum of distances to the vertices of the profile, is minimum or maximum. This is
a model for those practical problems where vertices of the profile present customers
and the resulting median (resp. antimedian) set consists of optimal locations of
desirable (resp. undesirable) facilities in the network.

The median problem for profiles on graphs was considered by many authors; see,
for example, [1, 3, 4, 6, 18]. On the other hand, not much work has been done so
far for the general antimedian problem for profiles on graphs. To be exact, there
are some papers that deal with the special case of this problem—the obnoxious
facility location problem on graphs—where profiles always coincide with the vertex
set of a graph; see [7, 9, 20, 22, 24]. We think that the problem of antimedian for
profiles could be of similar interest for applications, as well as theoretically, being
the opposite extremum to the median problem.

Median graphs form a closely investigated and well understood class of graphs;
see [16] for a survey, in particular for their role in location theory. Many important
and interesting classes of graphs are median, let us just mention trees, hypercubes,
square grids, graphs of acyclic cubical complexes, simplex graphs, and Fibonacci and
Lucas cubes. Most of these classes have been considered from the algorithmic point
of view. Median graphs themselves can be recognized in subquadratic time [12, 14],
in fact, their recognition complexity is essentially the same as the complexity of
recognizing triangle-free graphs [15], see also [10]. On the other hand, the recognition
complexity can be reduced to O(m log n) for acyclic cubical complexes [13] and for
Fibonacci cubes [21]. Here and later n and m denote the number of vertices and
edges of a given graph. For additional fast algorithms on classes of median graphs
see [8].

The main purpose of this paper is to present efficient algorithm(s) for comput-
ing median and antimedian sets of profiles on median graphs. As the main tool
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we use isometric (that is, distance preserving) embeddings of median graphs into
hypercubes. In the next section we fix notation, state necessary definitions, and
present a simple algorithm for computing median and antimedian sets in general
graphs. In the subsequent section we prove that, given a graph G, embedded via a
weak contraction into a graph H, the median set of a profile on G can be obtained
from the corresponding median set in H. We elaborate this idea in Section 4 for the
case when a median graph G is isometrically embedded into a hypercube to obtain
a fast algorithm for computing median sets in median graphs. (Unfortunatelly, a
similar theorem does not hold for antimedians.) We follow with another algorithm
in Section 5 that in addition computes antimedian sets and the remoteness functions
within the same time and works in arbitrary isometric subgraphs of hypercubes. In
practice, however, the first algorithm will often be faster. In the final section we
consider possible generalizations and variations of our approach.

2 Preliminaries

In this paper we consider simple, undirected, connected graphs. The distance con-
sidered is the usual shortest path distance d. For a connected graph G and subsets of
vertices X,Y ⊆ V (G) we will write d(X,Y ) = min{d(x, y) | x ∈ X, y ∈ Y }. In par-
ticular, for a vertex u of G and a set of vertices X we have d(u,X) = min{d(u, x) | x ∈
X}. The distance d(x, π) between the vertex x and the profile π is defined analo-
gously.

A profile π = (x1, . . . , xk) on a graph G is a finite sequence of vertices of G. Note
that in a profile a vertex may be repeated. Given a profile π on G and a vertex u of
G the remoteness D(u, π) (see [17]) is

D(u, π) =
∑

x∈π

d(u, x) .

The vertex u is called a median (antimedian) vertex for π if D(u, π) is minimum
(maximum). The median (antimedian) set M(π,G) (AM(π,G)) of π in G is the set
of all median (antimedian) vertices for π.

A vertex x is a median of a triple of vertices u, v and w if d(u, x) + d(x, v) =
d(u, v), d(v, x) + d(x,w) = d(v,w) and d(u, x) + d(x,w) = d(u,w). A (connected)
graph G is a median graph if every triple of its vertices has a unique median. The
hypercube or d-cube Qd, d ≥ 1, is the graph with vertex set {0, 1}d, two vertices being
adjacent if the corresponding tuples differ in precisely one position. A vertex u of Qd

will be written in its coordinate’s form as u = u(1) . . . u(d). Note that the distance
in Qn between two vertices is the number of coordinates in which they differ. The
latter distance is known as the Hamming distance.

A subgraph H of a (connected) graph G is an isometric subgraph if dH(u, v) =
dG(u, v) holds for any vertices u, v ∈ H. Let G be an isometric subgraph of some
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hypercube (such graphs are also called partial cubes). The smallest integer d such
that G is an isometric subgraph of Qd is called the isometric dimension of G and
denoted idim(G). An important structural result due to Mulder [19] asserts that
every median graph G can be isometrically embedded in a hypercube such that the
median set of every profile π of cardinality three in G on the hypercube coincides
with the median set of π in G.

The median and the antimedian set of a profile π on a connected graph G can
be obtained by the following straightforward algorithm. For each vertex x ∈ π (of
course, taking into account multiple occurrences of x as well), perform a BFS from
x. In this way the distances from x to all vertices of G are obtained and summed
up along the way. After this is done, the sum of the distances to the vertices of
the profile is obtained, and then the vertices with minimum and maximum sum are
easily determined. The time complexity of this algorithm is the number of edges of G

(the time complexity for performing a BFS) times the number of different vertices
that appear in π. Although this is quite efficient, it may be the case that faster
algorithms are required, in particular in large networks when the results are needed
in real-time.

3 Median sets with respect to isometric embeddings

Recall that median graphs are isometric subgraphs of hypercubes [19]. The main
idea of this paper is to compute median and antimedian sets in median graphs using
these embeddings. In this section we give a fundamental theoretical observation for
this purpose which holds in a more general setting.

The concept of a weak contraction was used by Feder [11, Theorem 6.28] to
prove a fixed box theorem for the distance center of subgraphs of Cartesian product
graphs. (The distance center of G is the median of the profile consisting of the vertex
set of G.) Let G be a subgraph of H. A mapping f : V (H) → V (G) is called a weak
contraction (or weakly nonexpansive map) if for all u ∈ V (H) and all v ∈ V (G) we
have dG(f(u), v) ≤ dH(u, v). Note that for v ∈ V (G) we have f(v) = v because
dG(f(v), v) ≤ dH(v, v) = 0. Therefore, for any u, v ∈ V (G),

dG(u, v) = dG(f(u), v) ≤ dH(u, v) .

Hence, since G is a subgraph of H, dG(u, v) = dH(u, v), that is, every weak con-
traction is an isometry. So the condition dG(f(u), v) ≤ dH(u, v) is equivalent to
dH(f(u), v) ≤ dH(u, v).

Theorem 3.1 Let G be a subgraph of H such that there exists a weak contraction
f from H to G. Then for any profile π on G, M(π,G) = M(π,H) ∩ V (G).

Proof. Note that we only need to prove that M(π,H) ∩ V (G) 6= ∅. Suppose
u ∈ V (H) \ V (G) such that u ∈ M(π,H). We claim that f(u) ∈ M(π,H) (since
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f(u) ∈ V (G) this will be sufficient). Clearly,

DH(u, π) =
∑

x∈π

dH(u, x) ≥
∑

x∈π

dG(f(u), x) =
∑

x∈π

dH(f(u), x) = DH(f(u), π)

which readily implies f(u) ∈ M(π,H). �

It is easily seen that every (weak) retract is a weak contraction, hence the above
theorem holds also for these two special cases. In particular, it is well-known that
median graphs are precisely retracts of hypercubes [2], hence we deduce

Corollary 3.2 Let G be a median graph, isometrically embedded into a hypercube
H. Then for any profile π on G, M(π,G) = M(π,H) ∩ V (G).

Not all partial cubes can be obtained as weak contractions of hypercubes. For
instance, it is easy to see that the cycle C6 is not a weak contraction of the hypercube
Q3. We wonder whether only median graphs have this property.

In the formula of Theorem 3.1 it is necessary to make the intersection with
V (G). For instance, let π = (u, v), then the median set of π consists of all vertices
lying on shortest u, v-paths which can in Qd yield a larger set than in G. As the
smallest example consider the path on three vertices embedded in Q2. For another
small example see Fig. 1, where G is the graph induced with black vertices. Then
M(π,G) = V (G) but M(π,Q3) = V (Q3).

Figure 1: A small example

Note that the analogue of Theorem 3.1 for antimedian sets does not hold in
general. In fact, in many cases the corresponding intersection will be empty which
makes this problem more difficult as the median problem.

4 Fast computation of median sets in median graphs

In this section we design an efficient algorithm for computing the median set of a
profile on a median graph by applying Corollary 3.2. Thus we first have a closer look
to median (and antimedian) sets in hypercubes. Part of this might be a folklore.
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Let π = (x1, . . . , xk) be a profile on Qd. For i = 1, . . . , k let n
(i)
0 and n

(i)
1 be the

number of vertices from π with the ith coordinate equal 0 and 1, respectively. More
formally,

n
(i)
0 (π) = |{x ∈ π | x(i) = 0}|

and
n

(i)
1 (π) = |{x ∈ π | x(i) = 1}| .

Define Majority(π) as the set of vertices u = u(1) . . . u(d) of Qd, where

u(i)











= 0; n
(i)
0 (π) > n

(i)
1 (π),

= 1; n
(i)
0 (π) < n

(i)
1 (π),

∈ {0, 1}; n
(i)
0 (π) = n

(i)
1 (π) .

We say that vertices u ∈ Majority(π) are obtained by the majority rule. Minority(π)
and the minority rule are defined analogously.

Note that it follows immediately from the definitions that if |π| is odd then
|Majority(π)| = 1 and |Minority(π)| = 1.

Proposition 4.1 Let π = (x1, . . . , xk) be a profile on Qd. Then M(π,Qd) =
Majority(π) and AM(π,Qd) = Minority(π).

Proof. Let u ∈ Majority(π) and let w be an arbitrary vertex of Qd. For b, b′ ∈ {0, 1}
set δ(b, b′) = 0 if b = b′ and δ(b, b′) = 1 otherwise. Then,

D(u, π) =
k

∑

i=1

d(u, xi) =
k

∑

i=1

d
∑

j=1

δ(u(j), x
(j)
i )

=
d

∑

j=1

k
∑

i=1

δ(u(j), x
(j)
i )

≤
d

∑

j=1

k
∑

i=1

δ(w(j), x
(j)
i )

= D(w, π) .

Note that the above inequality holds by the construction of the Majority(π). More-
over, equality holds if and only if w ∈ Majority(π). We conclude that M(π,Qd) =
Majority(π).

The arguments for the antimedian set are analogous. �

Combining Theorem 3.1 with Proposition 4.1 we get the following algorithm for
computing median sets in median graphs.
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Algorithm 1

Input: A median graph G isometrically embedded into a hypercube Q. A profile π.
Output: M(π,G).
Step 1: Find M(π,Q) using the majority rule.
Step 2: Compute M(π,G) = M(π,Qd) ∩ V (G).

Theorem 4.2 Algorithm 1 correctly computes the median set M(π,G) in a median
graph G and can be implemented in O(n idim(G)) time.

Proof. Correctness of the algorithm follows from Theorem 3.1 and Proposition 4.1.
For the time complexity we first note that if π contains multiple occurrences of

the same vertex it is not difficult to modify the algorithm such that this vertex is
considered only once. (We do not list multiple occurrences of it but only count its
frequency when computing M(π,Q) using the majority rule.)

Since every vertex of π has idim(G) coordinates, Step 1 can be performed in
O(n idim(G)) time. Along with Step 1 we can perform Step 2 as follows. As soon
as we determine the majority in the ith coordinate, we mark all the vertices of G

that have the ith coordinate different from the majority as non-median. (Note that
if the frequency of 0’s and 1’s in the ith coordinate is equal, we do nothing.) At the
end we are left with the median set. Altogether we need O(n idim(G)) operations.
�

Algorithm 1, together with the general BFS approach for computing median sets
(as described in Section 2) yields an algorithm of complexity

min{O(n idim(G)), O(m |π ∩ V (G)|)}

for computing median sets in median graphs. Since in these graphs m = O(n log n)
(see [14]), Algorithm 1 will be better than the general algorithm if idim(G) is smaller
than |π ∩ V (G)| log n. In many practical situations this is indeed the case, as for
instance when the median graph G is close to a hypercube structure. (Recall that
for a hypercube Qd we have idim(Qd) = d = log n, where n = |Qd|.)

In practice Algorithm 1 can perform less than n idim(G) operations if M(π,Qd)
is relatively small and we are somehow lucky with the coordinatization of the median
graph G. Namely, when implementing Step 2 by marking vertices as non-median
it may happen that almost all vertices are marked as non-median after only a few
coordinates were checked. By putting each such vertex at the end of the list, we
then need to examine only vertices that are not marked (in the ideal case only those
that are in M(π,G)). Denoting the number of different elements in the profile π

with ‖π‖, in such events the complexity of Algorithm 1 is O(‖π‖ idim(G)), which is
better than O(n idim(G)).
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5 A more general fast algorithm

In this section we give another algorithm for computing median sets in median
graphs of the same complexity O(n idim(G)). Its advantage is that it can also
be used for computing the antimedian sets and values of D(x, π) for all x and any
profile on a (median) graph. In addition, it works in arbitrary isometric subgraphs of
hypercubes. Its disadvantage is that the number of its operations is fixed (regardless
of the coordinatization of the graph, the choice of the profile, etc.), which means
that in practice Algorithm 1 will in many cases run faster.

Note that when performing the majority rule values n
(j)
0 (π) and n

(j)
1 (π) are

computed, and then compared. We may store these values in two vectors, that is,
for any profile π on a median graph G with k = idim(G), let

−→
0 (π) = (n

(1)
0 (π), . . . , n

(k)
0 (π)),

and
−→
1 (π) = (n

(1)
1 (π), . . . , n

(k)
1 (π)).

For a vertex x of G we define the vector
−→
d (x, π) as follows:

−→
d j(x, π) =

{ −→
0j (π); x(j) = 1,
−→
1j (π); x(j) = 0,

for j = 1, . . . , k. It is easy to see, using the definition of the Hamming distance, that
for any vertex x ∈ V (G) we have

D(x, π) =
k

∑

j=1

−→
d j(x, π) . (1)

We derive the following algorithm for computing D(x, π) for any vertex of a
partial cube G.

Algorithm 2

Input: A graph G, isometrically embedded into a hypercube Q. A profile π.
Output: D(x, π) for all vertices x ∈ V (G), M(π,G) and AM(π,G).

Step 1: Using the majority rule in Q, determine
−→
0 (π) and

−→
1 (π).

Step 2: For every x ∈ V (G) compute D(x, π) using (1).
Step 3: Determine M(π,G) and AM(π,G) as the vertices with the smallest (largest)

D(x, π).

Theorem 5.1 Let x be a vertex of a graph G, and let π be a profile on G. Then
Algorithm 2 correctly computes D(x, π), the median set and the antimedian set of
π, and can be implemented in O(n idim(G)) time.
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Proof. Observations preceding the algorithm imply the correctness of the algorithm.
For the time complexity observe first that Step 1 is the same as Step 1 of Algo-

rithm 1 except that in the present algorithm vectors
−→
0 (π) and

−→
1 (π) are explicitly

determined and saved. Hence Step 1 can be performed in O(n idim(G)) time. For
Step 2 we need O(n idim(G)) operations since for every vertex of G we check each
of its coordinates, and this check is done in a constant time (upon the value of x(j)

decide to choose either
−→
0j or

−→
1j , and add this number to the sum in (1)). Along

with Step 2 we can perform Step 3 in such a way that vertices x with current largest
and smallest value of D(x, π) are kept during the entire algorithm. This yields a
constant number of operations while processing each vertex. Hence the overall time
complexity is O(n idim(G)). �

We conclude this section with a word on the preprocessing required by Algo-
rithms 1 and 2. In practice we suppose that a graph/network is already given, so
that we only need to embed it into a hypercube. It was proved in [12] that this can
be done in O(m log n) time for semi-median graphs (a class of partial cubes that
include median graphs). On the other hand, the fastest known algorithm for recog-
nizing median graph is presented in [14] and is of complexity O((m log n)2ω/(ω+1)),
where ω is the exponent of matrix multiplication.

6 Concluding remarks

Median graphs have many natural generalizations; one such well studied class is the
family of quasi-median graphs; see [5]. Among many similarities with median graphs,
quasi-median graphs admit isometric embeddings into Hamming graphs. Moreover,
they are weak retracts of Hamming graphs [23], hence Theorem 3.1 can be applied
for quasi-median graphs as well. By using a natural extension of majority rule to
Hamming graphs, one can easily generalize Algorithm 1 to work for quasi-median
graphs.

Step 1 of this algorithm indeed directly extends from hypercubes to Hamming
graphs. Having in mind that the vertices of a Hamming graph are t-tuples (whose
coordinates are taken from {0, 1, . . . , ki}, respectively), the majority/minority rule is
generalized to the set of integers that are most/least frequent in a given coordinate.
This implies that in a Hamming graph an (anti)median set induces a Hamming sub-
graph, and it yields an efficient algorithm for finding (anti)median sets in Hamming
graphs. We note that Algorithm 2 also extends to nonbipartite case, because the
Hamming distance can be applied in partial Hamming graphs (we leave details to
the reader).

In this paper we have embedded median graphs into hypercubes to obtain fast
algorithms for computing median and antimedian sets. Since Theorem 3.1 is more
general, it can perhaps be applied to other situations as well. In particular it could
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be useful to embed isometrically median graphs into other Cartesian products, say
products of paths or trees. Moreover, one could embed isometrically other classes
of graphs into appropriate host graphs, say ℓ1-graphs.
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[15] W. Imrich, S. Klavžar and H.M. Mulder, Median graphs and triangle-free
graphs, SIAM J. Discrete Math. 12 (1999) 111–118.
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