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Abstract

Average distance is an important parameter for measuring the communication
cost of computer networks. A popular approach for its computation is to first
partition the edge set of a network into convex components using the transitive
closure of the Djoković-Winkler’s relation and then to compute the average distance
from the respective invariants of the components. In this paper we refine this idea
further by shrinking the quotient graphs into smaller weighted graph called reduced
graph, so that the average distance of the original graph is obtained from the
reduced graphs. We demonstrate the significance of this technique by computing
the average distance of butterfly and hypertree architectures. Along the way a
computational error from [European J. Combin. 36 (2014) 71–76] is corrected.
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1 Introduction and preliminaries

The average distance is an important concept in mathematics, computer science, and
cheminformatics, to mention just some central areas of interest. Moreover, for a very
recent application of the average distance in phylogenetics see [34]. For further infor-
mation on the average distance we refer to [3, 28] and references therein, see also [7]
for the average distance in weighted graphs. In computer science, the average distance
is used as a fundamental parameter to measure the communication cost of networks.
The average distance can be (and in chemistry mostly is) equivalently studied as the
sum of the distances between all pairs of vertices, this invariant being known as the
Wiener index or the network distance.

Fast computation of the average distance or the Wiener index is hence a fundamental
task. While it is straightforward that it can be computed in polynomial time, cf. [27],
scientific community has been active in designing linear or even sub-linear algorithms for
its computation on applicable families of graphs. For instance, in [5] a linear algorithm
was presented for the Wiener index of benzenoid graphs while in [6] a sub-linear time
algorithm for the same task was designed; it runs in time proportional to the number
of the vertices on the circuit bounding a given benzenoid graph. Of course, a closed
formula for the Wiener index of a given graph family also yields such a sub-linear time
algorithm.

A well-established technique that often leads to fast algorithms is to partition the
edge set of a given graph into (convex) components using the Djoković-Winklers relation
Θ [8, 32] or its transitive closure Θ∗, and then to compute the Wiener index from the
cardinalities and/or related properties of the (convex) components. This method was
introduced in [17] and later used, rediscovered, and extended in numerous papers, see
for instance [12, 13, 14, 15, 16, 19, 22, 25, 35], and the survey paper [23] for a complete
picture. The key idea of this technique is to first shrink the original graph into smaller
weighted graphs called quotient graphs and then to compute the Wiener index of the
original graph by computing the Wiener index of the weighted quotient graphs. In this
paper, we refine this idea further. Our technique shrinks the quotient graphs yet further
into smaller weighted graphs called reduced graphs. During this shrinking process, a
part of the Wiener index of the bigger graph is added as a corresponding weight to
the smaller graph. At the end of the process, the Wiener index of the original graph is
calculated by means of the Wiener index of the weighted reduced graphs.

For the new method, the Wiener index of weighted graphs is the key concept. It
was introduced in [20] in order to express the Wiener index of the so-called phenylenes
as the Wiener index and the weighted Wiener index of two smaller graphs, respectively.
Setting the weights of vertices to be their degrees, the weighted Wiener index reduces
to the Gutman index, cf. [26]. The weighted Wiener index turned out to be essential
for several extensions of the cut-method [18, 21, 22] and was recently investigated on
trees in [10]. For an application of the weighted Wiener index in biology see [1].

The paper is organized as follows. In the rest of this section concepts needed are
formally introduced and an earlier result recalled. In the next section two reduction
theorems are stated and proved. By their assistance an error from [21] is corrected.
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In Section 3 we effortlessly reprove the recent result from [30] which have produced
a sub-linear algorithm for the Wiener index of butterfly networks by applying some
complex logics. In the subsequent section the method developed in the paper is applied
to obtain closed formulas for the average distance of hypertrees which form another
family of interconnection networks.

The graphs considered in this paper are simple. If x is a vertex of a graph G, then its
open neighborhood NG(x) is the set of vertices adjacent to x. The closed neighborhood
of x is NG[x] = NG(x) ∪ {x}. Let dG(u, v) or d(u, v) denote the length of the shortest
path between the vertices u and v in G. The Wiener index of a graph G is defined as

W (G) =
1

2

∑
u∈V (G)

∑
v∈V (G)

dG(u, v) ,

and the average distance of G is

µ(G) =
W (G)(|V (G)|

2

) .
Sometimes µ(G) is also defined as W (G)/(|V (G)|(|V (G)|−1)), so that it differs from our
definition by factor 2, cf. [34]. A weighted graph (G,w) is a graph G = (V (G), E(G))
together with the weight function w : V (G) → R+. The Wiener index W (G,w) of
(G,w) was introduced in [20] as follows:

W (G,w) =
1

2

∑
u∈V (G)

∑
v∈V (G)

w(u) w(v) dG(u, v) .

If G is a graph, then the Djoković-Winkler’s relation Θ [8, 32] is a binary relation
defined on E(G) as follows: e = xy is in relation Θ with f = uv if d(x, u) + d(y, v) 6=
d(x, v) + d(y, u). Relation Θ is reflexive and symmetric, hence its transitive closure
Θ∗ is an equivalence relation. The partition of E(G) induced by Θ∗-classes is called
the Θ∗-partition. Let G be a connected graph and let E1, . . . , Ek be the Θ∗-partition
of E(G). If i ∈ {1, . . . , k}, then the quotient graph G/Ei is the graph whose vertices
are the connected components of G − Ei, two vertices C and C ′ being adjacent if
there exist vertices x ∈ C and y ∈ C ′ such that xy ∈ Ei. If X = {X1, . . . , Xr} and
Y = {Y1, . . . , Ys} are partitions of a set X, then we say X is coarser than Y if each
set Xi is the union of one or more sets from Y. Using these concepts, the main result
of [21] reads as follows.

Theorem 1.1 [21, Theorem 3.3] Let (G,w) be a connected, weighted graph, and let
E = {E1, . . . , Ek} be a partition of E(G) coarser than the Θ∗-partition. Then

W (G,w) =
k∑

i=1

W (G/Ei, wi) ,

where wi : V (G/Ei)→ R+ is defined by wi(C) =
∑

x∈C w(x), for all connected compo-
nents C of G− Ei.

Finally, if X is a set and k a non-negative integer, then
(
X
k

)
denoted the set of the

k-subsets of X.
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2 Reduction theorems and an error correction

For our first main result the following relation is convenient. If G is a graph, then
vertices x and y are in relation R if NG(x) = NG(y). It is easy to see that R is an
equivalence relation on V (G) and that (since the graphs considered are without loops)
an R-equivalence class induces an edgeless graph. The R-equivalence class containing
x will be denoted with [x]R.

Theorem 2.1 Let (G,w) be a connected, weighted graph, a ∈ V (G), and A = [a]R.
Let (G′, w′) be defined with G′ = G− (A−{a}), w′(a) =

∑
x∈Aw(x), and w′(x) = w(x)

for any x /∈ A. Then

W (G,w) = W (G′, w′) +
∑

{x,y}∈(A2)

2w(x)w(y) .

Proof. If |A| = 1, then (G′, w′) = (G,w), hence the result is trivial in this case. Assume
now that A = {a1, . . . , ak}, where a1 = a and k ≥ 2. Then we infer that

• dG(ai, x) = dG(aj , x) holds for any ai, aj ∈ A and any x /∈ A;

• dG(ai, aj) = 2 holds for any ai, aj ∈ A, i 6= j; and

• dG′(x, y) = dG(x, y) holds for any vertices x, y ∈ V (G′).

Using these facts we can compute the Wiener index as follows:

W (G,w) =
k∑

i=1

∑
x/∈A

w(ai)w(x)dG(ai, x) +
∑
{x,y}

x,y∈V (G)−A

w(x)w(y)dG(x, y)

+
∑

{ai,aj}∈(A2)

w(ai)w(aj)dG(ai, aj)

=
∑
x/∈A

w(x)

k∑
i=1

w(ai)dG(a, x) +
∑
{x,y}

x,y∈V (G)−A

w(x)w(y)dG(x, y)

+
∑

{ai,aj}∈(A2)

2w(ai)w(aj)

=
∑
x/∈A

w′(x)w′(a)dG′(a, x) +
∑
{x,y}

x,y∈V (G)−A

w′(x)w′(y)dG′(x, y)

+
∑

{ai,aj}∈(A2)

2w(ai)w(aj)

= W (G′, w′) +
∑

{ai,aj}∈(A2)

2w(ai)w(aj) . �
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An important special case occurs when the weight function w is constant on an
R-equivalence class, as is for instance the case when considering the standard Wiener
index. From this reason and for later use we state:

Corollary 2.2 Using the notation of Theorem 2.1 and if w(x) = c for any x ∈ A, then

W (G,w) = W (G′, w′) + 2c2
[
|A|(|A| − 1)

2

]
.

We next define a relation similar to relation R. Vertices x and y of a graph G are
in relation S if NG[x] = NG[y]. Relation S is again an equivalence relation on V (G),
its equivalence classes induce complete graphs. The S-equivalence class containing x is
denoted with [x]S .

Theorem 2.3 Let (G,w) be a connected, weighted graph, a ∈ V (G), and A = [a]R.
Let (G′, w′) be defined with G′ = G− (A−{a}), w′(a) =

∑
x∈Aw(x), and w′(x) = w(x)

for any x /∈ A. Then

W (G,w) = W (G′, w′) +
∑

{x,y}∈(A2)

w(x)w(y) .

Proof. Arguments are parallel to the proof of Theorem 2.1, the only difference is that
now dG(ai, aj) = 1 holds for any ai, aj ∈ A, i 6= j. This leads to the omission of factor
2. �

Corollary 2.4 Using the notation of Theorem 2.1 and if w(x) = c for any x ∈ A, then

W (G,w) = W (G′, w′) + c2
[
|A|(|A| − 1)

2

]
.

Relations R and S are important elsewhere. The reader can check their intrinsic
importance for graph products in [11, Chapters 7 and 8]. Vertices that are in one of
these relations are often called twins. For instance, a graph admits an identifying code
if and only if it is twin-free, that is, if and only if the relation S is trivial, cf. [4]. For
the role of twins in theoretical computer science we refer to the book [31].

In the rest of the section we re-consider the family of graphs Gn, n ≥ 3, from [21].
In Fig. 1 the graph G5 is depicted, the definition of Gn should be then clear by saying
that Gn has four inner pentagonal faces and 2(n−2) inner haxagonal faces, so that the
total number of inner faces of Gn is 2n.

In [21] the Θ∗-classes of Gn were wrongly determined and consequently the expres-
sion for W (Gn). Now, Gn has (n − 1) Θ∗-classes. First, there are n − 2 such classes,
which respectively consist of the six edges of horizontal edges of two hexagons lying
one above the other. Let E1 be the union of these Θ∗-classes. In Fig. 2 the graph
G5−E1, the corresponding weighted quotient graph (G5/E1, w) and the reduced graph
of (G5/E1, w) are shown.
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Figure 1: The graph G5

Figure 2: (a) Graph G5 − E1 (b) Weighted graph (G5/E1, w) (c) Reduced graph
of (G5/E1, w) after applying Corollary 2.2

Note that in each subgraph K2,3 of Gn/E1, the three vertices of weight 1 form an
R-equivalence class. Hence applying Corollary 2.2 (n− 2) times yields

W (Gn/E1, w) = W (P2n−3, w
′) + 6(n− 2) ,

where w′ assigns 8 to the leaves of P2n−3 and 3 to all the inner vertices. It is straight-
forward to get W (P2n−3, w

′) = 12n3 + 6n2 − 82n+ 44, hence

W (Gn/E1, w) = 12n3 + 6n2 − 76n+ 32 . (1)

The remaining Θ∗-class contains the edges of the four pentagons and the vertical edges
of the hexagons. It is denoted by E2, see Fig. 3 for G5 − E2 and the corresponding
weighted quotient graph (G5/E2, w).

Figure 3: (a) Graph G5 − E2 (b) Weighted graph (G5/E2, w)

In general, (Gn/E2, w) is obtained from (G5/E2, w) by replacing each of the three
weights 7 with the weight 2n − 3. By a direct computation we find out (as already
computed in [21]) that

W (Gn/E2, w) = 16n2 + 76n− 28 . (2)
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In view of (1), (2), and Theorem 1.1 we conclude that W (Gn) = 12n3 + 22n2 + 4. The
false expression communicated in [21] for W (Gn) was 12n3 + 22n2 − 2n+ 8.

3 Average distance of butterfly networks

The butterfly network is an important and well known topological structure used as
an interconnection network. It is a bounded-degree derivative of the hypercube which
aims at overcoming some drawbacks of hypercube and is in particular used to perform
Fast Fourier Transform [24]. For a recent appealing application of butterfly networks
see [2].

The r-dimensional butterfly BF (r) has n = 2r(r+ 1) nodes arranged in r+ 1 levels
of 2r nodes each. Each node has a distinct label 〈w, i〉, where i is the level of the node
(1 ≤ i ≤ r+1) and w is a r-bit binary number that denotes the column of the node. All
nodes of the form 〈w, i〉, 1 ≤ i ≤ r+1, are said to belong to column w. Similarly, the ith

level Li consists of all of the nodes 〈w, i〉, where w ranges over all r-bit binary numbers.
Two nodes 〈w, i〉 and 〈w′, i′〉 are linked by an edge if i′ = i + 1 and either w and w′

are identical or w and w′ differ only in the bit in position i′. The description of the
butterfly networks just given is called the normal representation. Another appealing
representation of these networks is the so-called diamond representation, cf. [24]. Fig. 4
illustrates the diamond and the normal representation of BF (5). For basic properties
see [33, Section 11.4]. In this section we add the following fundamental property.

Figure 4: (a) Diamond representation of BF (5) (b) Normal representation of BF (5)

Theorem 3.1 If r ≥ 1, then W (BF (r)) =
22r

6

(
5r3 − 3r2 + 28r − 36 +

36

2r

)
.

Since |V (BF (r))| = 2r(r+ 1), Theorem 3.1 gives the following result which in turn
implies that µ(BF (r)) grows as 5r/3.
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Corollary 3.2 If r ≥ 1, then µ(BF (r)) =
2r
(
5r3 − 3r2 + 28r − 36

)
+ 36

2r (3r2 + 6r + 3)− 3r − 3
.

As already mentioned, Theorem 3.1 was very recently obtained in [30] using quite
involved approach. In the rest of this section we are going to derive the result by the
method of this paper. We first partition E(BF (r)) into r classes Ei, 1 ≤ i ≤ r, where
Ei contains the edges e such that one end-vertex of e lies in level i and the other end-
vertex of e lies in level i+ 1. (The levels refer to the normal representation of BF (r).)
This partition is coarser than the Θ∗-partition, hence we may apply Theorem 1.1. For
the clarity of the exposition we will first compute W (BF (5)) and then proceed to the
general case.

3.1 Computing W (BF (5))

In view of Theorem 1.1 we need to compute the weighted Wiener index of five weighted
quotient graphs which can in turn be computed by applying Corollary 2.2 as follows.

BF(5)/E1: The quotient graph BF(5)/E1 is isomorphic to K2,32. Note that in the
quotient graph K2,32, the two vertices of weight 80 and the 32 vertices of weight 1 form
two R-equivalence classes, see Fig. 5.

Figure 5: (a) Graph of BF (5)−E1 (b) Weighted graph (BF (5)/E1, w) (c) Reduced
graph of (BF (5)/E1, w) after applying Corollary 2.2

Therefore, applying Corollary 2.2 two times yields

W (BF (5)/E1, w) = W (P2, w
′) + 13792 ,

where w′ assigns 160 and 32 to the vertices of P2. Since W (P2, w
′) = 5120, we get

W (BF (5)/E1, w) = 5120 + 13792 = 18912 . (3)
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BF(5)/E2: It is isomorphic to K4,16, where the four vertices of weight 32 and the 16
vertices of weight 4 form two R-equivalence classes, see Fig. 6.

Figure 6: (a) Graph of BF (5)−E2 (b) Weighted graph (BF (5)/E2, w) (c) Reduced
graph of (BF (5)/E2, w) after applying Corollary 2.2

Hence applying Corollary 2.2 two times we get W (BF (5)/E2, w) = W (P2, w
′) +

16128, where w′ assigns 128 and 64 to the vertices of P2. Since W (P2, w
′) = 8192, we

have
W (BF (5)/E2, w) = 8192 + 16128 = 24320 . (4)

BF(5)/E3: It is isomorphic to K8,8. The eight vertices of weight 12 and the eight
vertices of weight 12 form two R-equivalence classes, see Fig. 7.

Applying Corollary 2.2 two times we get W (BF (5)/E3, w) = W (P2, w
′) + 16128,

where w′ assigns 96 and 96 to the vertices of P2. Since W (P2, w
′) = 9216 we conclude

that
(BF (5)/E3, w) = 9216 + 16128 = 25344 . (5)

BF(5)/E4: It is isomorphic to BF (5)/E2, see Fig. 8. It follows that

W (BF (5)/E4, w) = W (BF (5)/E2, w) = 24320 . (6)

BF(5)/E5: It is isomorphic to the quotient graph of BF (5)− E1, see Fig. 9. Hence,

W (BF (5)/E5, w) = W (BF (5)/E1, w) = 18912 . (7)

Inserting (3), (4), (5), (6), and (7) into Theorem 1.1 we conclude that W (BF (5)) =
111808.

9



Figure 7: (a) Graph of BF (5)−E3 (b) Weighted graph (BF (5)/E3, w) (c) Reduced
graph of (BF (5)/E3, w) after applying Corollary 2.2

Figure 8: (a) Graph of BF (5)−E4 (b) Weighted graph (BF (5)/E4, w) (c) Reduced
graph of (BF (5)/E4, w) after applying Corollary 2.2

3.2 The general case

In the general case, the quotient graph BF (r)/Ei, 1 ≤ i ≤ r, is isomorphic to K2i,2r−i+1 .
Note that in the quotient graph K2i,2r−i+1 , 1 ≤ i ≤ r, the 2i vertices of weight (r− i+
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Figure 9: (a) Graph of BF (5)−E5 (b) Weighted graph (BF (5)/E5, w) (c) Reduced
graph of (BF (5)/E5, w) after applying Corollary 2.2

1)2r−i and the 2r−i+1 vertices of weight i2i−1 form two R-equivalence classes. Then

W (BF (r)/Ei, w) = W (P2, w
′) + i2 22i−2 2r−i+1(2r−i+1 − 1)

+22r−2i 2i(2i − 1)(r − i+ 1)2

= i 22r(r − i+ 1) + i2 22i−2 2r−i+1(2r−i+1 − 1)

+22r−2i 2i(2i − 1)(r − i+ 1)2

= i 22r(r − i+ 1) + i222i−22r−i+1(2r−i+1 − 1)

+22r−2i 2i(2i − 1)(r − i+ 1)2 ,

where w′ assigns (r − i+ 1)2r and i 2r to the vertices of P2. Therefore,

W (BF (r)) =

r∑
i=1

(
W (BF (r)/Ei, w) + i2 22i−2 2r−i+1(2r−i+1 − 1)

+22r−2i 2i(2i − 1)(r − i+ 1)2
)

=
r∑

i=1

(
i 22r(r − i+ 1) + i2 22i−2 2r−i+1(2r−i+1 − 1)

+ 22r−2i 2i(2i − 1)(r − i+ 1)2
)

=
2r

6

(
5r32r − 3r22r + 28r 2r − 36 2r + 36

)
,

and Theorem 3.1 follows.
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4 Average distance of hypertrees

The basic skeleton of a hypertree HT (r) is a complete binary tree Tr, that is, Tr is a
spanning subgraph of HT (r). Its vertices are labeled as follows: The root node has
label 1 and is said to be at level 1. The labels of the left (resp. right) children of a vertex
are formed by appending 0 (resp. 1) to the label of the parent vertex, see Fig. 10(a).

Figure 10: (a) HT (5) with binary labels (b) HT (5) with inorder labeling

In the corresponding decimal labelling of the hypertree, the children of the vertex x
are labeled with 2x and 2x+ 1. Additional edges in a hypertree are horizontal, where
two vertices in the same level i, 1 ≤ i ≤ r, are joined by an edge if their label difference
is 2i−2. We denote the r-level hypertree with HT (r), r ≥ 2, [9].

We note that the hypertree HT (r) has 2r − 1 vertices and 3 (2r−1 − 1) edges. The
diameter and connectivity of HT (r) are 2r − 3 and 2 respectively and it is a planar
graph [29], see Fig. 10(b). The main result of this section asserts:

Theorem 4.1 If r ≥ 1, then

W (HT (r)) = 22r−2(4r + 1) + 2r(3r − 8 sinh(r log(2)) + 1)− 1 .

Using the fact that |V (HT (r))| = 2r − 1 we get:

Corollary 4.2 If r ≥ 1, then µ(HT (r)) =
22r(4r − 15) + 2r+1(3r + 1) + 12

22r+1 − 3 · 2r+1 + 4
.

Hence W (HT (r)) grows as 2r.
In the rest of the section we prove the theorem. After determining the Θ∗-classes

of HT (r) we will first compute HT (5) and proceed to the general case at the end of
the section.

4.1 Θ∗-classes of HT (r)

A removal of the horizontal edges of the hypertree HT (r) leaves a complete binary tree
Tr. Label the vertices of Tr using binary codes corresponding to the inorder labeling
begin with 0, see Fig. 10(b). The graph HT (r) contains (2r−1− 1) Θ∗-classes that can
be described as follows.
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• For 1 ≤ i ≤ r−2, 1 ≤ j ≤ 2r−(i+1) and j is odd, let Si
j be the Θ∗-classes in HT (r)

containing the edges {(2i−1(2j − 1)− 1, j2i − 1), (2r−1 + 2i−1(2j − 1)− 1, 2r−1 +
j2i − 1)}.

• For 1 ≤ i ≤ r − 2, 1 ≤ j ≤ 2r−(i+1) and j is even, let Si
j be the Θ∗-classes in

HT (r) containing the edges {(2i−1(2j−1)−1, 2i−1(2j−2)−1), (2r−1 +2i−1(2j−
1)− 1, 2r−1 + 2i−1(2j − 2)− 1)}.

• The remaining Θ∗-class, to be denoted Er−1, containing all the remaining edges:
Er−1 = {(k − 1, k + 2r−1 − 1), (2r−2 − 1, 2r−1 − 1), (2r−1 − 1, 2r−1 + 2r−2 − 1) :
1 ≤ k ≤ 2r−1 − 1}. (In Fig. 10(b) these are all the vertical edges together with
the edge (15, 23).)

In order to apply Theorem 1.1 we now construct a partition {E1, . . . , Er−1} coarser
than the Θ∗-partition as follows. We have already defined Er−1 above, while the other
classes Ei are defined as:

Ei =
2r−(i+1)⋃

j=1

Si
j , 1 ≤ i ≤ r − 2 .

To reduce the quotient graphs HT (r)/Ei, we use the equivalence relation R for
1 ≤ i ≤ r − 2 (that is, we apply Corollary 2.2) and the equivalence relation S for
i = r − 1 (that is, we apply Corollary 2.4).

4.2 Computing W (HT (5))

To apply Theorem 1.1 we need to compute the weighted Wiener index of four weighted
quotient graphs which can in turn be computed applying either Corollary 2.2 or Corol-
lary 2.4 as follows.

HT(5)/E1: It is isomorphic to K1,8. Note that in the quotient graph K1,8, the eight
vertices of weight 2 form an R-equivalence class, see Fig. 11.

Figure 11: (a) Graph of HT (5) − E1 (b) Weighted graph (HT (5)/E1, w) (c) Re-
duced graph of (HT (5)/E1, w) after applying Corollary 2.2
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Corollary 2.2 yields

W (HT (5)/E1, w) = W (P2, w
′) + 224 ,

where w′ assigns 15 and 16 to the vertices of P2. Since W (P2, w
′) = 240 we get

W (HT (5)/E1, w) = 240 + 224 = 464 . (8)

HT(5)/E2: It is isomorphic to K1,4. Note that in the quotient graph K1,4, the four
vertices of weight 6 form an R-equivalence class, see Fig. 12.

Figure 12: (a) Graph of HT (5) − E2 (b) Weighted graph (HT (5)/E2, w) (c) Re-
duced graph of (HT (5)/E2, w) after applying Corollary 2.2

Applying Corollary 2.2 yields W (HT (5)/E2, w) = W (P2, w
′)+432, where w′ assigns

7 and 24 to the vertices of P2. Since W (P2, w
′) = 168 we get

W (HT (5)/E2, w) = 168 + 432 = 600 . (9)

HT(5)/E3: It is isomorphic toK1,2, where in the quotient graphK1,2, the two vertices
of weight 14 form an R-equivalence class, see Fig. 13.

Figure 13: (a) Graph of HT (5) − E3 (b) Weighted graph (HT (5)/E3, w) (c) Re-
duced graph of (HT (5)/E3, w) after applying Corollary 2.2
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Applying Corollary 2.2 again we get W (HT (5)/E3, w) = W (P2, w
′) + 392, where

w′ assigns 3 and 28 to the vertices of P2. As W (P2, w
′) = 84 we now have

W (HT (5)/E3, w) = 84 + 392 = 476 . (10)

HT(5)/E4: It is isomorphic to K3, where the two vertices of weight 15 form an S-
equivalence class, see Fig. 14.

Figure 14: (a) Graph of HT (5) − E4 (b) Weighted graph (HT (5)/E4, w) (c) Re-
duced graph of (HT (5)/E4, w) after applying Corollary 2.4

We now apply Corollary 2.4 to get W (HT (5)/E4, w) = W (P2, w
′) + 225, where w′

assigns 1 and 30 to the vertices of P2. Since W (P2, w
′) = 30, we get

W (HT (5)/E4, w) = 30 + 225 = 255 . (11)

Inserting (8), (9), (10), and (11) into Theorem 1.1 we conclude that W (HT (5)) =
1795.

4.3 The general case

In general, HT (r)/Ei is isomorphic to K1,2r−i−1 , 1 ≤ i ≤ r − 2. Note that in the
quotient graph K1,2r−i−1 , 1 ≤ i ≤ r − 2, the 2r−i−1 vertices of weight 2i+1 − 2 form an
R-equivalence class. The last quotient graph HT (r)/Er−1 is isomorphic to K3, where
the two vertices of weight 2r−1 − 1 form an S-equivalence class. Then

W (HT (r)/Ei, w) = W (P2, w
′) + (2i+1 − 2) (2i+1 − 2) 2r−i−1(2r−i−1 − 1)

= (2r−i − 1)(2r − 2r−i) + (2i+1 − 2) (2i+1 − 2) 2r−i−1(2r−i−1 − 1)

= 2r
(

1− 1

2i

)
(2r − 2i+1 + 1) ,
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where w′ assigns 2r − 2r−i and 2r−i − 1 to the vertices of P2, 1 ≤ i ≤ r − 2. Clearly,
W (K3, w) = 22r−2 − 1, and hence by Theorem 1.1,

W (HT (r)) =
r−2∑
i=1

(W (HT (r)/Ei, w) + 22r−2 − 1

=

r−2∑
i=1

(
2r(1− 1

2i
)(2r − 2i+1 + 1)

)
+ 22r−2 − 1

= 2r (3r − 8 sinh(r log(2)) + r 2r + 1) + 22r−2 − 1.

5 Conclusion

In this paper, we have further refined the cut method. We have demonstrate the power
of the approach by effortlessly computing the Wiener index of butterfly networks and
hypertree networks. On the other hand, the method is applicable only to those families
of graphs that admit non-trivial partitions into Θ∗-classes and whose corresponding
quotient graphs have a structure that enables an efficient computation of their weighted
Wiener index. It would be very desirable to find a unified approach that is applicable to
all classes of graphs, for instance, to all families of fullerenes and nanotubes. Further,
computing other topological indices using the newly introduced technique is widely
open.
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[21] S. Klavžar, M.J. Nadjafi-Arani, Wiener index in weighted graphs via unification
of Θ∗-classes, European J. Combin. 36 (2014) 71–76.

17
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