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Abstract

It is proved that the Wiener index of a weighted graph (G,w) can be ex-
pressed as the sum of the Wiener indices of weighted quotient graphs with re-
spect to an arbitrary combination of Θ∗-classes. Here Θ∗ denotes the transitive
closure of the Djoković-Winkler’s relation Θ. A related result for edge-weighted
graphs is also given and a class of graphs studied in [25] is characterized as
partial cubes.
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1 Introduction

The cut method (see the survey [17]) turned out to be extremely handy when dealing
with distance-based graph invariants which are in turn among the central concepts
of chemical graph theory. The method was initiated in [19] where it was shown how
cuts can be used to compute the Wiener index (see the surveys [8, 9]) of graphs
which admit isometric embeddings into hypercubes. These graphs are know as
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partial cubes. About ten years later, the result was extended in [16] to general
graphs by establishing a connection between the Wiener index of a graph and its
canonical metric representation. (The result of [19] is then obtained by specializing
to bipartite graphs.) The latter representation is due to Graham and Winkler [12],
while in [1] a recent application of the main result from [16] can be found.

Our primary motivation for this paper was the recent paper [25] in which it is
demonstrated that the cut method is applicable also to the edge-Wiener index [6,
15] and the edge-Szeged index [13]. (For some recent invetigations on the relation
between the Wiener index and the Szeged index see [10, 20, 21, 22].) The results
in [25] are stated for graphs that admit certain edge partitions. In Section 2 we show
that this class of graphs is the class of partial cubes, a class of graphs extensively
studied by now, cf. [2, 11, 23].

The main result of this paper, stated and proved in Section 3, is a generalization
of the above mentioned theorem from [16]. The generalization is two-fold. First,
the variety of factor graphs is extended by allowing arbitrary combinations of the
edge classes from the canonical metric representation. Second, the result is extended
to weighted graphs. We add here that very recently, Dankelmann [5] studied the
Wiener index on trees, cycles, and graphs with minimum degree at least 2.

A special case of our main result should be mentioned here. In [4] it was demon-
strated that the Wiener index of benzenoid graphs can be computed in linear time.
The main idea is to merge all parallel cuts into a single set and to deduce the Wiener
index from the three corresponding quotient graphs (that turned out to be trees [3]),
cf. [4, Proposition 2]. This can be seen as another motivation for our investigation.

2 Preliminaries

We consider the usual shortest path distance and write dG(u, v) for the distance in
a graph G between u and v and simplify the notation to d(u, v) when the graph will
be clear from the context. The Wiener index of G is the sum of distances between
all pairs of vertices of G.

A subgraph of a graph is called isometric if the distance between any two vertices
of the subgraph is independent of whether it is computed in the subgraph or in the
entire graph. A subgraph of a graph is called convex if for any two vertices of the
subgraph all shortest path (of the entire graph) between then belong to the subgraph.
For a connected graph G and an edge ab of G we set Wab = {x ∈ V (G) | d(x, a) <
d(x, b)}. Note that if G is bipartite then V (G) = Wab ∪ Wba for any edge ab. By
abuse of language we consider (when appropriate) Wab also as the subgraph induced
by Wab.

The Cartesian product G�H of graphs G and H is the graph with vertex set
V (G) × V (H) where the vertex (g, h) is adjacent to the vertex (g′, h′) whenever
gg′ ∈ E(G) and h = h′, or g = g′ and hh′ ∈ E(H).

For a graph G, the Djoković-Winkler’s relation Θ [7, 24] is defined on E(G) as
follows: if e = xy ∈ E(G) and f = uv ∈ E(G), then eΘf if d(x, u) + d(y, v) ̸=
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d(x, v) + d(y, u). Relation Θ is reflexive and symmetric, its transitive closure Θ∗

is an equivalence relation. The partition of E(G) induced by Θ∗ will be called the
Θ∗-partition.

A weighted graph (G,w) is a graph G = (V (G), E(G)) together with the weight
function w : V (G) → R+. The Wiener index W (G,w) of (G,w) is then defined
as [18]:

W (G,w) =
1

2

∑
u∈V (G)

∑
v∈V (G)

w(u) w(v) dG(u, v) .

Clearly, if w ≡ 1 then W (G,w) = W (G).
As already mentioned in the introduction, the cut method was developed in [25]

for the edge-Wiener/Szeged index. More precisely, the method was developed for
graph G that admit a partition {Fi} of the edge set such that G \ Fi is a two
component graph with convex components. We close this section by pointing out
that these graphs are precisely the partial cubes.

Proposition 2.1 Let G be a connected graph. Then G admits a partition {Fi} of
E(G) such that G \ Fi is a two component graphs with convex components if and
only if G is a partial cube.

Proof. It is well-known that if G is a partial cube, then the Θ∗-partition has the
required property.

Suppose now that G is an arbitrary connected graph that admits a partition
as stated. Then G is bipartite, cf. [25, Theorem 2]. Indeed, consider a shortest
odd cycle C of G. Since G \ Fi has two (convex) components, either |C ∩ Fi| = 0
or |C ∩ Fi| ≥ 2 holds for any i. As C is odd, there exists an index j such that
|C ∩ Fj | ≥ 3. But this contradicts the minimality of C.

We now claim that if e = ab ∈ Fi, then the two connected components C ′ and
C ′′ of G \ Fi are induced by the sets Wab and Wba. Clearly, a and b are in different
components, hence assume without loss of generality that a ∈ C ′ and b ∈ C ′′.
Suppose that x ∈ V (G), x ̸= a, b. Since G is bipartite, d(x, a) ̸= d(x, b). We may
assume without loss of generality that d(x, a) < d(x, b). If x ∈ C ′′ then a shortest
x, a-path together with the edge ab is a shortest x, b-path. But then C ′′ is not convex.
Therefore, x ∈ C ′ which in turn implies that C ′ = Wab and similarly C ′′ = Wba. The
proof is complete by recalling Djoković’s classical theorem from [7] asserting that a
connected graph is a partial cube if and only if it is bipartite and all the subgraphs
Wab are convex. �

3 The main result

In this section we prove that the Wiener index of a connected weighted graph can be
expressed as the sum of the Wiener indices of weighted quotient graphs with respect
to an arbitrary combination of Θ∗-classes.
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Let G be a connected graph. In the rest of the paper let

F = {F1, . . . , Fk}

denote the Θ∗-partition of E(G). A partition E = {E1, . . . , Er} of E(G) is coarser
than F if each set Ei is the union of one or more Θ∗-classes of G.

Lemma 3.1 Let G be a connected graph and let E = {E1, . . . , Er} be a partition
of E(G) coarser than F . Then every connected component of G \ Ej, 1 ≤ j ≤ r,
induces a convex subgraph of G.

Proof. Let C be a connected component of G \ Ej and suppose it is not convex in
G. Then there exists vertices x, y ∈ C and a shortest x, y-path P, not all of its edges
belonging to C. Let e be an edge from (P \ C) ∩ Ej and assume that e is from the
Θ∗-class Fi. Let Q be a x, y-path in C. Since P is a shortest path, e is in relation
Θ with no edge on P , hence by [14, Lemma 11.4], e is in relation Θ with an edge f
on Q. But this is not possible because then f does not belong to C. �

Lemma 3.2 Let G be a connected graph and let E = {E1, . . . , Er} be a partition
of E(G) coarser than F . Let C and C ′ be connected components of G \ Ej and let
x, y ∈ V (C) and x′, y′ ∈ V (C ′). If P1 and P2 are shortest x, x′- and y, y′-paths in
G, respectively, then |E(P1) ∩ Ej | = |E(P2) ∩Ej |.

Proof. From the key lemma of [12] (see [14, Lemma 13.1]) we know that if R is
a shortest u, v-path in G and Q is an arbitrary u, v-path in G, then |E(R) ∩ F | ≤
|E(Q)∩F | holds for any Θ∗-class F . Because Ej is a union of one or more Θ∗-classes
it follows that |E(R) ∩ Ej | ≤ |E(Q) ∩ Ej |, 1 ≤ j ≤ r.

Consider now the shortest paths P1 and P2. Let in addition Q1 be an x, x′-path
that is a concatenation of a shortest x, y-path in C, the path P2, and a shortest
y′, x′-path in C ′. Similarly, let Q2 be a y, y′-path that is a concatenation of a
shortest y, x-path in C, the path P1, and a shortest x′, y′-path in C ′. By the above,
|E(P1) ∩ Ej | ≤ |E(Q1) ∩ Ej | and |E(P2) ∩ Ej | ≤ |E(Q2) ∩ Ej |. On the other
hand, |E(P2) ∩ Ej | = |E(Q1) ∩ Ej | and |E(P1) ∩ Ej | = |E(Q2) ∩ Ej |. Therefore,
|E(P1) ∩ Ej | ≤ |E(Q1) ∩ Ej | = |E(P2) ∩ Ej | ≤ |E(Q2) ∩ Ej | = |E(P1) ∩ Ej | so that
the equality holds everywhere. �

Let G be a connected graph and let F1, . . . , Fk be a partition of E(G). Then
the quotient graph G/Fi, 1 ≤ i ≤ k, is defined follows: its vertices are the connected
components of G \ Fi, two vertices C and C ′ being adjacent if there exist vertices
x ∈ C and y ∈ C ′ such that xy ∈ Fi.

We are now ready for the main result of this paper.

Theorem 3.3 Let (G,w) be a connected, weighted graph, and let E = {E1, . . . , Er}
be a partition of E(G) coarser than F . Then

W (G,w) =
r∑

j=1

W (G/Ej , wj) ,
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where wj : V (G/Ej) → R+ is defined by wj(C) =
∑

x∈C w(x), for all connected
components C of G \ Ej.

Proof. Let C and C ′ be two vertices of (G/Ei, wi), that is, connected components of
G \Ej . Then, by Lemma 3.2, d(G/Ej ,wj)(C,C

′) = |E(P )∩Ej |, where P is a shortest
x, x′-path in G and x ∈ C, x′ ∈ C ′.

Select shortest paths Y = {P1, P2, . . . , P(n2)
} in G such that for every pair of

vertices u, v ∈ V (G), u ̸= v, there exists a unique shortest u, v-path in the list. Let
M = [mij ] be the

(
n
2

)
× r matrix with entries mij = w(u)w(v)|E(Pi) ∩Ej |, where u

and v are the endvertices of the path Pi.
Since

∑r
j=1 |E(Pi)∩Ej | is equal to the distance between the endpoints of Pi, the

sum of the entries of the ith row of M equals w(u)w(v)|E(Pi)|. Therefore, the sum
of all entries of M is equal to W (G,w).

Let Cj,1, . . . , Cj,ij be the connected components ofG\Ej and let |Cj,t| = nj,t. The
number of non-zero elements in the jth column of M is equal to the number of short-
est path from Y that pass through the edges of Ej . By Lemma 3.1 every component

Cj,t is convex, hence this number is equal to
∑ij

p=1

∑ij
q=p+1 nj,pnj,q. Moreover, for any

vertex u ∈ Cj,p and any vertex v ∈ Cj,q we have d(G/Ej ,wj)(Cj,p, Cj,q) = |E(Pi)∩Ej |,
where u and v are the endvertices of Pi. Thus the summation of the jth column of
M yields ∑

p,q

w(Cj,p)w(Cj,q)d(G/Ej ,wj)(Cj,p, Cj,q) .

Summing over all columns we thus get:

W (G,w) =

r∑
j=1

∑
p,q

w(Cj,p)w(Cj,q)d(G/Ej ,wj)(Cj,p, Cj,q) =

r∑
j=1

W (G/Ej , wj) ,

which completes the argument. �
For an example illustrating Theorem 3.3 consider the family of graphs Gn, n ≥ 3,

depicted in Fig. 1. Here n denotes the number of inner faces in one layer, so that
the total number of the inner faces of Gn is 2n.

Figure 1: Graphs Gn

Gn has 2(n− 2)+1 = 2n− 3 Θ∗-classes. We merge them into classes E1, E
′
1, E2,

where E1 is shown in Fig. 2, E′
1 is constructed symmetrically (that is, containing the
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other horizontal edges of the hexagons), and E2 is formed by the remaining edges.
In other words, E2 is the Θ∗-class that contains the edges of the pentagons and the
vertical edges of the hexagons, see Fig. 3.

6 6

6 6 6 6

66

109

Figure 2: Graphs Gn \ E1 and (Gn/E1, w)

Figure 3: Graphs Gn \ E2 and (Gn/E2, w)

Now we have

W (Gn/E1, w) = W (Gn/E
′
1, w) = 3(n− 2)(2n2 + 5n− 3) ,

W (Gn/E2, w) = 16n2 + 76n− 28 ,

so that

W (Gn) = W (G/E1, w) +W (G/E′
1, w) +W (G/E2, w) = 12n3 + 22n2 − 2n+ 8 .

6



4 Concluding remarks

It is also natural to consider edge-weighted graphs, that is, pairs (G,wE), where G
is a graph and wE : E(G) → R+. The Wiener index W (G,wE) of an edge-weighted
graph (G,wE) is defined just as the usual Wiener index, that is, W (G,wE) =
1
2

∑
u∈V (G)

∑
v∈V (G) d(u, v), where the distance function is of course computed in

(G,wE). Again, if all the edges have weight 1, then W (G,wE) = W (G).
With methods analogous to those from Section 3 the following result can be

proved:

Theorem 4.1 Let (G,wE) be a connected, edge-weighted graph. If E = {E1, . . . , Er}
is a partition of E(G) coarser than F such that for any j = 1, . . . , r, the edges from
Ej have the same weight, w(Ej), then

W (G,wE) =

r∑
j=1

w(Ej)W (G/Ej , wj) .
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[17] S. Klavžar, A bird’s eye view of the cut method and a survey of its applications
in chemical graph theory, MATCH Commun. Math. Comput. Chem. 60 (2008)
255–274.
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