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Abstract

A profile on a graph G is any nonempty multiset whose elements are ver-
tices from G. The corresponding remoteness function associates to each vertex
x ∈ V (G) the sum of distances from x to the vertices in the profile. Starting
from some nice and useful properties of the remoteness function in hypercubes,
the remoteness function is studied in arbitrary median graphs with respect to
their isometric embeddings in hypercubes. In particular, a relation between
the vertices in a median graph G whose remoteness function is maximum (an-
timedian set of G) with the antimedian set of the host hypercube is found.
While for odd profiles the antimedian set is an independent set that lies in the
strict boundary of a median graph, there exist median graphs in which special
even profiles yield a constant remoteness function. We characterize such median
graphs in two ways: as the graphs whose periphery transversal number is 2, and
as the graphs with the geodetic number equal to 2. Finally, we present an algo-
rithm that, given a graph G on n vertices and m edges, decides in O(m log n)
time whether G is a median graph with geodetic number 2.
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1 Introduction

A profile π = (x1, . . . , xk) on a graph G is a finite sequence of vertices of G, and
k = |π| is called the size of the profile π. Note that in a profile a vertex may be
repeated. Given a profile π on G and a vertex u of G, the remoteness D(u, π) (see
[16]) is

D(u, π) =
∑

x∈π

d(u, x) ,

where d stands for the usual (shortest paths) distance in G.
In the location theory one quests for the location of (un)desirable facilities, so the

following definitions are significant. The vertex u is called a median (antimedian)
vertex for π if D(u, π) is minimum (maximum), and the median (antimedian) set
M(π,G) (AM(π,G)) of π in G is the set of all median (antimedian) vertices for π.
The problem of locating median sets for profiles on graphs was considered by many
authors; see, for example, [1, 3, 4, 17, 18]. On the other hand, not much work has
been done so far on the antimedian problem for profiles on graphs, and though the
two problems look similar, there are important differences. For instance, while it is
clear that any vertex can be in the median set of a graph for some profile, this is
not always true for the antimedian set.

In this paper we give a closer look at the remoteness function in median graphs
with the aim to shed more light on the antimedian problem in this class. Median
graphs form a closely investigated and well understood class of graphs, and are
probably the most important class of graphs in metric graph theory (we refer to a
comprehensive survey on median graphs [15]). Hence it is not surprising that they
were investigated also in location theory [3, 17, 22]. For instance, it is known that
in median graphs median sets are always intervals between two vertices [3], and in
particular, for odd profiles they consist of exactly one vertex [17]. On the other
hand, there are no results on the antimedian set in median graphs, and only a few
observations about their remoteness function as such. In this paper we are trying
to clear up this grey area in the location theory, and also believe that the problem
is of similar applicability as its median set counterpart. First let us introduce some
important notions used throughout this paper.

We consider only finite, undirected, simple and connected graphs. A shortest
path between vertices u and v in a graph G will be called a u, v-geodesic, and the
number of edges on such a path is the distance d(u, v) between u and v (denoted also
dG(u, v) if the graph G is not understood from the context). The set of vertices on
all u, v-geodesics is called the interval between u and v, denoted I(u, v). For a graph
G and subsets of vertices X,Y ⊆ V (G) we will write d(X,Y ) = min{d(x, y) | x ∈
X, y ∈ Y }. In particular, for a vertex u of G and a set of vertices X we have
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d(u,X) = min{d(u, x) | x ∈ X}. A set S of vertices in a graph G is called the geodetic
set of G if for every vertex x ∈ V (G) there exist u, v ∈ S such that x ∈ I(u, v). The
geodetic number g(G) of a graph G is the least size of a set of vertices S such that
any vertex from G lies on a u, v-geodesic, where u, v ∈ S. We refer to [5, 8] for
surveys on geodetic sets in graphs.

A (connected) graph G is a median graph if for any three vertices x, y, z there
exists a unique vertex that lies in I(x, y)∩I(x, z)∩I(y, z). Two of the most important
classes of median graphs are trees and hypercubes. For a graph G and an edge xy
of G we denote Wxy = {w ∈ V (G) | d(x,w) < d(y,w)}. Note that if G is a bipartite
graph then V (G) = Wab ∪ Wba holds for any edge ab. Next, for an edge xy of G
let Uxy denote the set of vertices u that are in Wxy and have a neighbor in Wyx.
Sets in a graph that are Uxy for some edge xy will be called U -sets. Similarly we
define W -sets. If for some edge xy, Wxy = Uxy, we call the set Uxy peripheral set or
periphery. A subset S of vertices in a graph G is convex in G if I(u, v) ⊆ S for any
u, v ∈ S. It is clear that peripheries in median graphs are convex.

In Section 2 we start with the core example of median graphs—hypercubes.
We show that the antimedian set of profiles on a hypercube is precisely the set of
antipodal vertices of the median set. In addition, we extend this result to Hamming
graphs. In Section 3 we deal with the remoteness function in arbitrary median
graphs. A connection between antimedian sets on a median graph G and antimedian
sets on the hypercube, into which G is embedded isometrically, is established. In
Section 4, we obtain some additional properties of antimedian sets in median graphs,
in particular for the case of odd profiles. It turns out that only in the case when
the profile is even, it is possible that the (anti)median set is the whole vertex set
of a median graph. Graph in which this can happen (for some very special even
profiles) are precisely the median graphs with geodetic number 2. They were studied
previously in [6], where several characterizations of these graphs were obtained. In
Section 5 we prove two more characterizations, one of which is used in the algorithm
for the recognition of median graphs with geodetic number 2.

Section 6 is concerned with the algorithm. Median graphs are a subclass of the
class of isometric subgraphs of hypercubes. The complexity of recognizing whether a
given graph G with n vertices and m edges is such a graph is O(mn) in general. For
median graphs this essentially reduces to O(m

√
n); see [11]. There is little hope to

reduce it further in general, since it is closely related to that of recognizing triangle-
free graphs (see [14]). However, in special cases the complexity is much lower. For
example, it is O(m) for planar median graphs. Here we show that median graphs
with geodetic number 2 can be recognized in O(m log n) time.
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2 Remoteness in hypercubes

In this section we study the remoteness function in hypercubes which form the
fundamental example of median graphs. The hypercube or n-cube Qn, n ≥ 1, is the
graph with vertex set {0, 1}n, two vertices being adjacent if the corresponding tuples
differ in precisely one position. A vertex u of Qn will be written in its coordinate’s
form as u = u(1) . . . u(n). A natural generalization of hypercubes are Hamming
graphs, whose vertices are m-tuples u = u(1) . . . u(m), such that 0 ≤ u(i) ≤ mi − 1,
where mi ≥ 2 for each i, and adjacency is defined in the same way (that is, two
vertices are adjacent precisely when they differ in exactly one coordinate). Note
that the distance between vertices in Hamming graphs coincides with the Hamming
distance (that is, the number of coordinates in which the m-tuples differ).

For a vertex x of Qn let x be its antipodal vertex, that is, the vertex that is
obtained from x by reversing the roles of zeros and ones. Let X ⊆ V (Qn). Then

X = {x | x ∈ X}

is called the antipodal set of X. Since x 6= y for x 6= y it follows that X = X.

Let π = (x1, . . . , xk) be a profile on Qd. For i = 1, . . . , k let n
(i)
0 and n

(i)
1 be the

number of vertices from π with the ith coordinate equal 0 and 1, respectively. More
formally,

n
(i)
0 (π) = |{x ∈ π | x(i) = 0}|

and
n

(i)
1 (π) = |{x ∈ π | x(i) = 1}| .

Define Majority(π) as the set of vertices u = u(1) . . . u(d) of Qd, where

u(i)











= 0; n
(i)
0 (π) > n

(i)
1 (π),

= 1; n
(i)
0 (π) < n

(i)
1 (π),

∈ {0, 1}; n
(i)
0 (π) = n

(i)
1 (π) .

We say that vertices u ∈ Majority(π) are obtained by the majority rule. Minority(π)
and the minority rule are defined analogously. It is easy to verify (using that the
distance between vertices in hypercubes coincides with their Hamming distance)
that M(π,Qn) = Majority(π), and similarly AM(π,Qn) = Minority(π). We now
infer:

Lemma 2.1 Let π be a profile on Qn. Then M(π,Qn) induces a subcube of Qn.
Moreover, AM(π,Qn) = M(π,Qn).

Let Q and Q′ be two subcubes of Qn. Then we say that Q and Q′ are parallel
if they are of the same dimension, say r, and if vertices vi of Q and v′i of Q′ can
be ordered such that d(vi, v

′
i) = s for some integer s and for any i = 1, 2, 3 . . . , 2r,

where the mapping vi 7→ v′i is an isomorphism Q → Q′.
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Proposition 2.2 Let π be a profile on Qn and let Q be a subcube parallel to the
subcube induced by M(π,Qn). Then the function D(·, π) is constant on Q.

Proof. If |M(π,Qn)| = 1 there is nothing to be proved. Assume in the rest that
|M(π,Qn)| > 1, hence |π| must be even. By Lemma 2.1, M(π,Qn) induces a subcube
Q′ and let x′y′ be an edge of Q′. Partition the profile π into subprofiles π1 and π2,
where vertices of π1 lie in Wx′y′ and vertices of π2 in Wy′x′ . Since x′, y′ ∈ M(π,Qn),
we have D(x′, π) = D(y′, π). Therefore, the following reasoning

D(x′, π) = D(x′, π1) + D(x′, π2)

= D(y′, π1) − |π1| + D(y′, π2) + |π2|
= D(y′, π) − |π1| + |π2|

implies that |π1| = |π2|.
Let d(Q,Q′) = s and let xy be the edge of Q with d(x, x′) = d(y, y′) = s. Then, it

can be easily verified that d(x, y′) = d(x′, y) = s + 1, and consequently Wxy = Wx′y′

and Wyx = Wy′x′ . From the definition of Wxy and because |π1| = |π2| it follows that
D(x, π) = D(y, π). By the connectivity of Q we conclude that D must be a constant
function on Q. �

We can generalize the concept of antipodes from hypercubes to Hamming graphs,
noting that an antipode of a vertex x is any vertex that is farthest from x. In the
case of hypercubes this vertex is unique, but not in general Hamming graphs. Hence
for a vertex x of a Hamming graph H its antipodal vertex is any vertex y such that
y(i) 6= x(i) for all i = 1, . . . ,m. For X ⊆ V (H), let the antipodal set X of X be the
set of all antipodal vertices over all vertices of X.

Theorem 2.3 A Hamming graph H is a hypercube if and only if for any profile π

AM(π,H) = M(π,H).

Proof. Suppose H is a hypercube. Then AM(π,H) = (M(π,H)) for any profile π
by Lemma 2.1.

For the converse suppose that a Hamming graph H is not a hypercube and let
j be the index (coordinate) with mj ≥ 3. Consider the following profile π = (x, y)
of size 2 such that x(i) = y(i) = 0 for all i 6= j and let x(j) = 0, y(j) = 1. Then
M(π,H) = {x, y}, and M(π,H) consists of vertices z with z(i) > 0 for i 6= j. On
the other hand AM(π,H) consists of vertices z with z(i) > 0 for i 6= j and z(j) > 1.
Hence AM(π,H) ⊂ M(π,H) and the inclusion is strict, by which the theorem is
proved. �
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3 Remoteness in median graphs embedded into hyper-

cubes

In this section we obtain some properties of the remoteness function in arbitrary
median graphs, by using their isometric embedding into hypercubes. Since the
properties of median sets have already been studied in several papers, we restrict
mainly to the properties of antimedian sets in median graphs.

A subgraph H of a (connected) graph G is an isometric subgraph if dH(u, v) =
dG(u, v) holds for any vertices u, v ∈ H. Let G be an isometric subgraph of some
hypercube. An important structural result due to Mulder [19] asserts that every
median graph G can be isometrically embedded in a hypercube such that the median
of every profile π of cardinality three in G on the hypercube coincides with the
median of π in G.

A vertex v of G is called a local minimum of a function D(x, π) if D(v, π) ≤
D(u, π) for any neighbor u of v. It was proved by Bandelt and Chepoi [4] that in
a graph G the set M(π,G) is connected for any profile π on G if and only if for
any π the function D(x, π) has the property that every local minimum is a global
minimum. Since median graphs have the property that M(π,G) is connected for
every π, we derive that in median graphs every local minimum is a global minimum.

For antimedian vertices, that is, vertices achieving global maximum of D(x, π),
the analogous result is not true in median graphs. Consider for example the 3 × 4
grid, and one of the two vertices of degree 4 as the only vertex of the profile π (all
four vertices of degree 2 achieve a local maximum, but only two of them are also
global). Thus there are local maxima which are not global maxima and, moreover,
antimedians need not be connected.

Restricting to hypercubes the fact that local minima are global minima can
be strengthened as follows. First recall that by Lemma 2.1, the median of π is a
subcube in Qn, and the antimedian is its antipodal (hence parallel) subcube. By
Proposition 2.2, D(x, π) is constant on every subcube parallel to them. Hence on any
two shortest paths from M(π,Qn) to AM(π,Qn), the two corresponding sequences
of values of the remoteness function are the same. (Note also that any two distinct
intervals from vertices in M(π,Qn) to their (unique) closest vertices in AM(π,Qn)
are disjoint, and every vertex of G lies on some shortest path from M(π,Qn) to
AM(π,Qn).)

Lemma 3.1 Let π be a profile on Qn and let xx′ be an edge of Qn such that
d(x′, AM(π,Qn)) < d(x,AM(π,Qn)). Then D(x, π) < D(x′, π).

Proof. Let k = |π| and let mj = min{n(j)
0 (π), n

(j)
1 (π)} and Mj = max{n(j)

0 (π), n
(j)
1 (π)}.

Since AM(π,Qn) can be obtained by the minority rule, for all a ∈ AM(π,Qn), we
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have

D(a, π) =

n
∑

j=1

Mj.

Let d(x′, AM(π,Qn)) = d(x′, ax′) = l, where ax′ is the unique closest vertex to x′

from AM(π,Qn). Then

D(x′, π) = D(ax′ , π) −
l

∑

p=1

Mip +

l
∑

p=1

mip ,

= D(ax′ , π) −
l

∑

p=1

(Mip − mip)

where x′ and ax′ differ at coordinates ip, p = 1, . . . , l. Since x, x′ are adjacent and
d(x, ax′) = d(x′, ax′) + 1 there exists a coordinate pl+1, distinct from all coordinates
ip, 1 ≤ p ≤ l, such that

D(x, π) = D(ax′ , π) −
l+1
∑

p=1

(Mip − mip)

and D(x, π) < D(x′, π). �

Theorem 3.2 Let G be a median graph embedded isometrically into Qn, and let
π be a profile on G. Let a ∈ AM(π,G) and let a′ be the closest vertex to a in
AM(π,Qn). Then

I(a, a′) ∩ V (G) = {a} .

Proof. Let b be the closest vertex to a′ in M(π,Qn). From Lemma 2.1 we find that
b is unique (as subcubes of a cube are gated; see [15], if necessary). In addition,
Lemma 3.1 implies that D(x, π) is strictly increasing on any shortest path from
b to a′. Since I(a, a′) ⊆ I(b, a′), it follows that D(x, π) is strictly increasing on
any shortest path from a to a′. Thus c ∈ I(a, a′) ∩ V (G), c 6= a, would imply that
D(c, π) > D(a, π), a contradiction with a ∈ AM(π,G). Hence I(a, a′)∩V (G) = {a}.
�

In Fig. 1 we give an illustration of the above theorem. Vertices of a median
graph G are darkened, and G is isometrically embedded into the 3-cube. Let the
profile π consist of all five vertices of G. Then AM(π,Q3) consists of the vertex w,
where D(w, π) = 10. Vertices u and v are the only vertices from G that enjoy the
condition from the theorem, that is I(a,w) ∩ V (G) = {a} . Hence u and v are the
only candidates to be antimedian vertices with respect to G, and both achieve the
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Figure 1: Example on antimedians

local maximum of D(·, π) with respect to G. Since D(u, π) = 8 and D(v, π) = 7, we
infer that AM(π,G) = {u}. Note that even though v is closer to AM(π,Qn) (that
is, to w) than u, it is not an antimedian vertex.

We proved in [2] that M(π,Qn) ∩ V (G) 6= ∅ holds for any profile π which is
used in an efficient algorithm for computing median sets in median graphs. In the
events when AM(π,Qn) ∩ V (G) 6= ∅ we have AM(π,G) = AM(π,Qn) ∩ V (G), and
then the antimedian set is also connected and it induces isometric subgraph of G.
Unfortunately AM(π,Qn) ∩ V (G) 6= ∅ is not true in general, as can be seen in the
example from Fig. 1. Nevertheless, Theorem 3.2 could occasionally be helpful in
finding the antimedian set for profiles on median graphs, since it can considerably
reduce the number of candidates for the antimedian set to the vertices that achieve
the condition from the theorem.

4 Antimedian sets of some particular profiles in median

graphs

In this section we study the remoteness function in median graphs for two types of
profiles: profiles whose size is odd, and profiles that consist of all vertices of a graph
with no repetitions. These cases indicate that the antimedian set is in many cases
restricted to a rather small subset of the vertex set – the strict boundary of a graph.
A vertex v of a graph G is a strict boundary vertex (with respect to v′) of G if there
exists a vertex v′ such that for any neighbor u of v, d(v′, v) > d(v′, u). (In other
words, the neighborhood of v is contained in I(v, v′).) The strict boundary ∂G of a
graph G is the set of strict boundary vertices in G.

Every vertex can clearly be in some median set of a graph (e.g., by taking this
vertex as the unique vertex in the profile). The antimedian case is different, as one
can readily verify on trees which are not paths (i.e. in any such tree, only leaves
can be in the antimedian set for any profile). We will consider in Section 5 the case
of median graphs with geodetic number 2 which are somewhat special, in the same
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sense as paths are special trees. Note that by taking as the profile both leaves of
a path, the resulting remoteness function is constant, hence all vertices of the path
are (anti)median.

We suspect that the following question has affirmative answer.

Question 4.1 Let G be a median graph and g(G) > 2. Is it true that there exists a
vertex in G that is not in AM(π,G) for all profiles π on G?

We present two partial results that confirm this.
For an edge uv in a median graph G and a profile π, we let πuv = Wuv ∩ π. As

usually, |πuv| denotes the size of the profile π in Wuv. Note that |πuv| > |πvu| implies
that the median set of π on G lies in Wuv which in turn implies that if u and v are
both in a median set then |πuv| = |πvu|. These observations are a basis for several
strategies to find median sets in median-like graphs, see [1, 18].

Lemma 4.2 Let π be an odd profile in a median graph G, then every vertex in
AM(π,G) is a strict boundary vertex.

Proof. Let v ∈ AM(π,G) and |π| be odd. Since for every neighbor ui of v, |πuiv| >
|πvui

| we infer that

|πuiv| >
|π|
2

.

Hence πuiv and πujv intersect for any neighbors ui,uj of v, where i 6= j. Since
πuiv ⊆ Wuiv, the sets Wuiv also pairwise intersect for all neighbors ui of v. Since
W -sets are convex, by the Helly property for convex sets in median graphs (that is,
any family of pairwise intersecting convex sets has a common intersection), there
exists a vertex

v′ ∈
⋂

ui∈N(v)

Wuiv.

Hence ui is strictly closer to v′ than v for any i, and so v is a strict boundary vertex
(with respect to v′). �

From the proof of the lemma above we also see that no neighbor of v ∈ AM(π,G)
achieves D(v, π), hence we derive the following result.

Proposition 4.3 Let π be an odd profile in a median graph G. Then AM(π,G) is
an independent set in G and AM(π,G) ⊆ ∂G .

Note that in the case of even profiles the antimedian vertices need not be in a
strict boundary, even if g(G) > 2. For instance, let G be obtained from the 3×3 grid
(that is the Cartesian product P32P3) so that to the central vertex another vertex a
is attached, and let the profile π consist of two vertices u, v of degree two such that
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d(u, v) = 2. Then AM(π,G) = {x, y, z, a}, where x and y are another two vertices
of degree two (different from u and v), and z is their common neighbor. Note that
z is not a strict boundary vertex in G, even though all the antimedian vertices are
peripheral. For an additional example consider the graph on Fig. 2. For the profile
(a, b) the antimedian vertices are darkened. In particular, x is an antimedian vertex
that is neither in the boundary nor in the periphery of the graph.

a b

x

Figure 2: Vertex x is an antimedian vertex for the profile (a, b).

Now, we consider the remoteness function when the profile is the whole vertex
set, each vertex appearing exactly once. This problem is known in the literature as
the obnoxious center problem, and has been quite well studied, cf. [7, 21, 23, 25].
We prove a result similar to Proposition 4.3.

Proposition 4.4 Let G be a median graph, and let π be the profile, consisting of
vertices of V (G) (with no repetitions). If v ∈ AM(π,G) then v is a strict boundary
vertex.

Proof. Let v ∈ AM(π,G). We infer that for every neighbor ui of v, |Wuiv| ≥ |Wvui
|,

hence

|Wuiv| ≥
|V (G)|

2
.

Let u1, . . . , ut be the neighbors of v. If t = 1, that is, v has only one neighbor, then
v is clearly a strict boundary vertex with respect to any other vertex. Suppose that
ui, uj are neighbors of v and i 6= j. Then by the above

|Wuiv| + |Wujv| ≥ |V (G)|.

Since v /∈ Wuiv, for any i, we find that Wuiv and Wujv intersect. Since W -sets are
convex, we infer by the Helly property for convex sets that there exists a vertex

v′ ∈
t

⋂

i=1

Wuiv .
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Hence v is a strict boundary vertex with respect to v′ which completes the proof of
the proposition. �

5 Median graphs with geodetic number two

As mentioned in the previous section, median graphs with geodetic number two
are somehow a special case which is excluded in Question 4.1. Before we present
characterizations of these graphs, one of which also considers the remoteness function
of some even profiles, we need to introduce a few more natural concepts on median
graphs. The first one concerns peripheries in median graphs.

Let G be a median graph. We say that a set S is a periphery transversal if every
peripheral subgraph of G contains a vertex of S. It was proved in [6] that every
geodetic set is a periphery transversal. Let pt(G) denote the size of a minimum
periphery transversal in a median graph G. Then, clearly, pt(G) ≤ g(G) for any
median graph G. On the other hand, it may happen that any minimum geodetic
set of a median graph G must contain some vertices that are not in a peripheral
subgraph. For instance, in the graph G obtained from the 3-cube by attaching a
leaf to 3 independent vertices we have pt(G) = 3 < 4 = g(G).

The next concept is a generalization of the partition of the edge-set into parallel
classes in hypercubes to more general graphs. Edges e = xy and f = uv of a
graph G are in the Djoković-Winkler relation Θ [10, 24] if dG(x, u) + dG(y, v) 6=
dG(x, v) + dG(y, u). Relation Θ is reflexive and symmetric. If G is bipartite, then Θ
can be defined as follows: e = xy and f = uv are in relation Θ if d(x, u) = d(y, v)
and d(x, v) = d(y, u). It is well-known that the relation Θ is transitive in isometric
subgraphs of hypercubes [24], and so it is an equivalence relation on the edge set of
every median graph. Note that peripheral sets are precisely the U -sets that induce
a connected component of G − F for some Θ-class F .

The following result from [6] will be used in the main theorem of this section.

Theorem 5.1 Let G be a median graph. Then g(G) = 2 if and only if there exist
vertices a, b ∈ V (G) and an a, b-geodesic that contains edges from all Θ-classes of
G.

We also need the following easy facts, see [13].

Lemma 5.2 Let G be a median graph, C a cycle, P a geodesic, and F a Θ-class of
G. Then

(i) F ∩ C 6= ∅ ⇒ |F ∩ C| ≥ 2;
(ii) F ∩ P 6= ∅ ⇒ |F ∩ P | = 1.
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Combining Lemma 5.2 with Theorem 5.1 we infer that if a and b are as in the
theorem, then on any geodesic from a to b all Θ-classes appear. Conversely, g(G) > 2
implies that for any two vertices a and b in G there exists a Θ-class whose edges are
outside I(a, b).

Theorem 5.3 For a median graph G the following statements are equivalent.

(i) g(G) = 2,
(ii) pt(G) = 2,
(iii) D(x, π) is constant on G for some profile π.

Proof. (i)⇒(ii): Let G be a median graph with g(G) = 2. As every W -set in
a median graph contains a periphery, we infer that pt(G) ≥ 2. We have already
observed that in general pt(G) ≤ g(G), hence pt(G) = 2.

(ii)⇒(i): Let G be a median graph with pt(G) = 2, and assume to the contrary
that g(G) > 2. Then for any two vertices a, b ∈ V (G), I(a, b) 6= V (G), and by The-
orem 5.1 we infer that there exists a Θ-class F that lies outside I(a, b). Then there
also exists a W -set Wxy that has an empty intersection with I(a, b). In addition,
Wxy contains a periphery that does not contain a and b. Thus {a, b} is not a periph-
ery transversal, and since a and b were chosen arbitrarily we infer that pt(G) > 2, a
contradiction.

(i)⇒(iii): Let a and b be vertices in G such that I(a, b) = V (G). Set π = (a, b).
Since for any x ∈ V (G) we have d(a, x) + d(x, b) = d(a, b) = diam(G) we get
D(x, π) = diam(G).

(iii)⇒(i): For this direction we recall a result by Bandelt and Barthélemy [3,
Proposition 6] which says that for any profile π on a median graph G, the median
set M(π,G) coincides with the interval I(α(π), β(π)) (where α(π) and β(π) are two
vertices in G obtained by a formula in the associated median semilattice). Hence,
if D(x, π) is constant on G for a profile π, then V (G) = M(π,G) = I(α(π), β(π)),
which in turn implies g(G) = 2. �

6 Recognition of median graphs with geodetic number

two

As already mentioned, median graphs are isometric subgraphs of hypercubes (partial
cubes for short), and the recognition complexity for such graphs is O(mn). In other
words, there exists an algorithm that recognizes whether any given graph G with n
vertices and m edges is a partial cube in O(mn) time. The algorithm also provides
an embedding of G. In the rest of this section n and m will denote the number of
vertices and edges of a given graph.
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However, if it is known that a graph G is a median graph, then G can be embed-
ded isometrically into a hypercube in O(m log n) time. This discrepancy between
the embedding complexity and the recognition complexity was a strong motivation
to find better recognition algorithms for median graphs. The algorithm of Hagauer,
Imrich and Klavžar [11] with complexity O(m

√
n) was the first of this kind. Later

Imrich [13, Theorem 7.27] derived the asymptotically better result O((m log n)1.41).
Here the exponent 1.41 actually is 2ω/(ω+1), where ω is the exponent of matrix mul-
tiplication with its current value 2.376. By a result of Imrich, Klavžar and Mulder
[14] this recognition complexity is closely related with the recognition complexity of
triangle-free graphs. Hence improvements of the recognition complexity of median
graphs seem to be very difficult.

Nonetheless, some classes of median graphs can be recognized much faster. This
includes planar median graphs [14], which can be recognized in linear time and
acyclic cubical complexes [12], which can be recognized in O(m log n) time. Here
we show that median graphs with geodetic number two can also be recognized in
O(m log n) time. This is possible because of a bound on the maximum degree of a
median graph with geodetic number two and the fact that every peripheral subgraph
meets geodetic set, see Brešar and Tepeh Horvat [6].

We begin with the bound on the maximum degree ∆(G) of a median graph G
with g(G) = 2.

Lemma 6.1 Let G be a median graph with g(G) = 2. Then ∆(G) ≤ 2 log2 n.

Proof. Suppose G = IG(v,w) and let L0, L1, . . . , Lr be the levels of the BFS-
ordering of the vertices of G with respect to a root v; see e.g. [13, p. 41]. Let
x ∈ Li and xy ∈ E(G). Since G is bipartite y /∈ Li. If y ∈ Li−1 we call the edge
xy a down-edge and otherwise an up-edge. Clearly y is closer to v than x if xy is a
down-edge, and closer to w if xy is an up-edge. In other words, the up-edges with
respect to v are the down-edges with respect to w. By [13, Lemma 3.35] the number
of down-edges of every vertex x in a median graph is bounded by log2 n. Clearly the
number of up-edges satisfies the same bound, hence d(v) ≤ 2 log2 n for all v ∈ V (G).
�

Next we show how to check efficiently whether a given induced subgraph of a
graph G is also a convex subgraph. For a subgraph H of a graph G let ∂H be the
set of edges with one endvertex in H and the other in G \ H.

Lemma 6.2 Let H be an induced connected subgraph of a partial cube for which
the Θ-classes are already known. Then the complexity of recognizing whether H is a
convex subgraph of G is O(|E(H)| + |∂H|).

Proof. By the convexity lemma [13, Lemma 2.7] it suffices to show that no edge of
∂H is in the relation Θ with an edge of H. In other words, we have to show that
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the list of Θ-classes that meet E(H) is disjoint from the list of Θ-classes that meet
∂H.

Let E1, . . . , Ek, where k < n, be the Θ-classes of G and vH the 0,1-vector of
length k with vH(i) = 0 if Ei ∩ E(H) = ∅ and vH(i) = 1 otherwise. Since the Θ-
classes are known, we can assume that there exists a function c : E(G) → {1, . . . , k}
that computes the index i for which e ∈ Ei in constant time. With a well known
trick, see [9, Exercise 12.1-4], the vector vH can be determined in O(|E(H)|) time,
even if |E(H)| is much less than k, by scanning all edges of H (with the trick we
avoid the initialization and the scan of the entire vector vH which could be more
costly). Moreover we scan all edges of ∂H. If e ∈ Ei and vH(i) = 1, then H is not
convex. We thus have to check whether vH(c(e)) = 0 for all e ∈ ∂H. Clearly this
can be done in O(|∂H|) time. �

Next we show how to efficiently check the convexity of U -sets.

Corollary 6.3 Let H be a partial cube for which the Θ-classes are already known,
and ∆ the maximum degree of vertices in G. Then one can check in O(m∆+m log n)
time whether all U -sets are convex.

Proof. First note that the total size of U -sets (i.e. the sum of the orders of all
U -sets) in G is 2m. Indeed, every vertex from a U -set corresponds uniquely to an
edge, and each such edge appears exactly twice when checking vertices of all U -sets.
Furthermore |E(Uab)| < |Uab| log2 |Uab| by Graham’s density lemma [13, Proposition
1.24]. Hence, for the total number of edges in the U -sets we have the following
inequality

(
∑

|Uab|)max(log2 |Uab|) ≤ 2m log2 n .

Let vUab
be defined as in Lemma 6.2. Then it is clear that the set of vectors vUab

can be determined in O(m log n) time. Since the total size of the sets ∂U over all
U -sets is bounded by m∆ the corollary follows. �

Proposition 6.4 Let G be a graph with ∆(G) ≤ 2 log2 n. Then one can check
in O(m log n) time whether G is a median graph, determine all Θ-classes and all
U -sets.

Proof. By [13, Lemma 7.15] one can check in O(m log n) time whether G is a partial
cube, determine all Θ-classes and all U -sets. By [13, Corollary 2.27] a partial cube
is a median graph if and only if all U -sets are convex. Now the proof is completed
by the observation that the convexity of the U -sets of a given partial cube can be
checked in O(m log n) by Corollary 6.3. �

Next we describe a procedure which can be used to construct all median graphs.
For a connected graph H and its convex subgraph P the peripheral expansion of H
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along P is the graph G obtained as follows. Let P ′ be an isomorphic copy of P and
α a corresponding isomorphism. Take the disjoint union H +P ′ and join each vertex
v ∈ P by an edge with α(v) ∈ P ′. We call the new graph a peripheral expansion of
H along P and denote it by G = pe(H;P ). Mulder [20] proved that a graph is a
median graph if and only if it can be obtained from K1 by a sequence of peripheral
expansions.

We still have to find a geodetic set consisting of two elements. In order to
accomplish this, we will use this sequence of peripheral expansions to determine all
geodetic sets. We begin with a relationship between the geodetic sets of a median
graph H and the graph G = pe(H,P ).

Lemma 6.5 Let G = pe(H;P ) be a median graph and {x, y} a geodetic set of H,
where y ∈ P . Then the set {x, z}, where z is the neighbor of y in G\H is a geodetic
set in G. Moreover, all minimum geodetic sets of G are of this form.

Proof. We have to show that every vertex w of G is on a shortest xz-path. Suppose
first w ∈ H. Then, clearly w is on a xy-geodesic, since {x, y} is a geodetic set in
H. Thus w is also on xz-geodesic going through y. Suppose next w ∈ G \ H and
let w′ be a neighbor of w, where w′ ∈ H. Then w′ lies on xy-geodesic. Let L1

denote the yw′-geodesic and let L2 denote the w′x-geodesic. Since P is a convex
subgraph of H (and therefore also of G) L1 is completely contained in P . Recall
that in median graph for any edge ab we have Uab

∼= Uba and that the isomorphism
is induced by the edges between Uab and Uba. Let L′

1 be the projection of L1 into
P ′ by this isomorphism. Then L′

1 ∪ ww′ ∪ L2 is a zx-geodesic in G containing w.
Conversely if {x, z} is a geodetic set in G = pe(H;P ) then by [6, Lemma 2] x or z
must be in P ′. Suppose z is in P ′. Then we can use the same arguments as above
to see that {x, y} is a geodetic set in H, where y is a neighbor of z in H. �

If {x, y} is a geodetic set in G then this is the only minimum geodetic set con-
taining x, since by Lemma 6.5 x is uniquely determined by y and vice versa.

Corollary 6.6 Let G = pe(H;P ) be a median graph with g(G) = 2. Then all
minimum geodetic sets of G can be obtained from the minimum geodetic sets of H
in O(|P |) time.

Proof. Let P ′ = Uab, where a ∈ G \ H. To find the geodetic sets of G we scan all
vertices z of Uab. If the neighbor y of z in Uba is in the geodetic set {y, x} of H,
then by Lemma 6.5 {z, x} is a geodetic set of G. Clearly the complexity of this task
is O(|Uab|). �

Corollary 6.7 Let G be a median graph with g(G) = 2. If the representation of G
as a series of peripheral expansions, starting from K1, is known, then all minimum
geodetic sets of G can be obtained in O(n) time.
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Proof. At every expansion step |Uab| vertices are added at a total cost of O(|Uab|).
The observation that n − 1 vertices are added altogether completes the proof. �

We are thus left with the task of representing G by a series of peripheral expan-
sions.

Theorem 6.8 Let G be a median graph with ∆(G) ≤ 2 log2 n. Then a representa-
tion of G by a series of peripheral expansions can be found in O(m log n) time.

Proof. By [13, Lemma 7.15] and Proposition 6.4 we know that one can recognize
G as a median graph, partition its edge set into Θ-classes, and determine all U -
sets in O(m log n) time. We show now that we can determine all peripheral U -sets
within the same time complexity. We first observe that the peripheral U -sets are
characterized by the fact that ∂U consist of |U | independent edges that meet every
vertex of a U -set. In other words Uab is peripheral if

degG(v) = degUab
(v) + 1 ,

for every v ∈ Uab. Clearly degUab
(v) + 1 ≤ degG(v) for v ∈ G. Thus, setting

exUab
(v) = degG(v) − degUab

(v) − 1

it is clear that Uab is peripheral if and only if

ex(Uab) =
∑

v∈Uab

exUab
(v) = 0 .

Intuitively, ex(v) is the excess of the degree of v above its minimum.
We thus need the degrees of every vertex in its U -sets and in G. The degrees

of all vertices from a given U -set Uxy can be determined in |E(Uxy)| time and the
degrees of all vertices in G in O(m) time. Since the total number of edges in the U -
sets is O(m log n) (see the proof of Corollary 6.3) we can thus determine all degrees
in O(m log n) time.

In a second run, scanning all vertices in the U -sets, we determine excesses of all
vertices of G and calculate the sum of all corresponding excesses of vertices from
some U -set. Since the total number of vertices in the U -sets is O(m), this can be
done in the required time too.

In this process we keep a record of all these numbers and consider the first
peripheral set we find, say Uab.

We now show that we can remove Uab from G and determine for H = G\Uab the
same data structure we had for G. In other words, we can determine the adjacency
list of all new U -sets in the graph H, all degrees and the new values of the excess
numbers for all vertices in H and all the new U -sets in O(|Uab| log n) time.
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We first find the new adjacency list of the new U -sets of H. We first recall
that the removal of a vertex v and all incident edges from a graph is of complexity
O(deg(v)) if the graph is represented by an extended adjacency list or the adjacency
matrix; see pp. 37 in [13]. In G every vertex v is also a vertex of every Uvw, where
w is a neighbor of v in G. Thus every v ∈ Uab is in at most O(log n) sets Uvw.
The degree of the vertex v in such a Uvw is degG(v) − 1 = degUab

(v). The cost of
removing v from all Uvw is thus O(degUab

(v) log n). For all v ∈ Uab this amounts to
a total of O(|E(Uab)| log n).

We also have to determine all new degrees and the new excess numbers. This
concerns all vertices of Uab. Every such vertex is contained in at most 2 log n graphs
UH

xy. Hence all these numbers can be computed in O(log n|Uab|) time if all vertices of
Uab are removed. In other words, the data structure of H = G\Uab can be determined
from that of G in O(log n|Uab|) time, including all degrees, excess numbers etc. (In
the course of the action we take note of the first peripheral U -sets we encounter.)

We now repeat this process by removing peripheral U -sets until we reach K1.
The total complexity is then O(log n

∑ |Uab|) = O(m log n). �

Now all prerequisites are ready for the following algorithm that recognizes whether
a given graph G is a median graph with g(G) = 2. (Note that the isometric dimen-
sion idim(G) of a partial cube G coincides with the number of its Θ-classes).

Algorithm 1
Input: The adjacency list of a graph G.

Output: YES and a list of all geodetic pairs if G is a median graph with g(G) = 2.
NO otherwise.

Step 0: If ∆(G) > 2 log2 n, reject.
If G is not a median graph, reject.
Otherwise determine all Θ-classes and the adjacency lists of all U -sets.
Set i = k, where k = idim(G), and Gk = G.

Step 1: Compute the excess for all vertices in the U -sets and of all U -sets.
Step 2: Find a peripheral Uab as in Theorem 6.8.
Step 3: Remove Uab to obtain Gi−1.
Step 4: Repeat Step 2 and 3 (sequence of contractions) until G0 = K1.
Step 5: For i = 0 to k − 1 do:

Find all geodetic pairs of Gi and determine those of Gi+1 with the aid of
Corollary 6.7.

Step 6: If there are no such sets, return NO.
Otherwise return YES and the list of all geodetic pairs.

Theorem 6.9 Let G be a graph G. Then Algorithm 1 correctly recognizes whether
G is a median graph with g(G) = 2. It can be implemented to run in O(m log n)
time.
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Proof. Combining Lemma 6.1 and Proposition 6.4 we infer that Step 0 can be
implemented in O(m log n) time. Steps 1–4 are an algorithmic interpretation of the
proof of Theorem 6.8. As stated in Theorem 6.8, one can perfom these steps in
O(m log n) time. From Corollary 6.7 we find that Step 5 can also be performed in
the desired time. �
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