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Abstract

Hanoi graphs Hn
p model the Tower of Hanoi game with p pegs and n discs.

Sierpiński graphs Sn
p arose in investigations of universal topological spaces and

have meanwhile been studied extensively. It is proved that Sn
p embeds as a span-

ning subgraph into Hn
p if and only if p is odd or, trivially, if n = 1.
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1 Introduction

The Hanoi graphs Hn
p form a natural mathematical model for the Tower of Hanoi

game with p pegs and n discs. The puzzle with three pegs is well understood, cf. [5].
Surprisingly, even the simplest task—to move a perfect tower of discs to another perfect
tower in an optimal number of moves—presents a notorious open problem for four or
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more pegs, cf. [1, 3, 11]. This means that the distance function on the graphs Hn
p ,

p ≥ 4, is far from being well understood. Some other properties of Hanoi graphs
are less difficult to access. For instance, Hanoi graphs were classified with respect to
planarity [6, Theorem 2]; they are in edge- and total coloring class 1, in other words
their edge- (total) chromatic number is equal to their maximum degree (+1), except
those isomorphic to a complete graph of odd or even order, respectively [7, Theorems 3
and 4]; the automorphism group of Hn

p is isomorphic to the symmetric group on [p]0,
induced by the permutations of pegs [16, Main Theorem].

Sierpiński graphs Snp , introduced and studied for the first time in [10], were in part
motivated by investigations of certain universal topological spaces [14]. (See the recent
book of Lipscomb [13] for the state of the art about these spaces.) It was shown in [10,
Theorem 2] that Sn3 is isomorphic to Hn

3 for any n. In other words, both graphs can be
represented by the same drawing but with different labellings. This difference allows
two approaches to the Tower of Hanoi; a beautiful example for using the Sierpiński
labelling is due to Romik [17]. Sierpiński graphs have been extensively studied by now;
see, e.g., recent papers [2, 4, 7, 8, 12, 15] and references therein. For instance, the
hub number of Sierpiński graphs was determined in [12, Theorem 9] and their average
eccentricity in [8, Corollary 3.5].

Although for any p, n ∈ N, the graphs Snp and Hn
p are defined on the same vertex set,

they cannot be isomorphic anymore for p > 3 and n > 1. This follows, for instance,
from the fact, proved below, that for these values of the parameters ‖Snp ‖ < ‖Hn

p ‖,
where ‖G‖ denotes the size of a graph G. Therefore it is natural to ask whether an
isomorphic copy of Snp can be a spanning subgraph of Hn

p . In this note we will answer
that question exhaustively by proving that such a so-called isomorphic embedding exists
if and only if p is odd. We hope that the result will lead to further insights into the
mathematics of the Tower of Hanoi.

In the next section Sierpiński and Hanoi graphs will be defined, some of their
properties recalled and some notation introduced. In Section 3 the main result of this
note is proved and discussed.

2 Sierpiński and Hanoi graphs

Let p, n ∈ N; then the Sierpiński graph, Snp is defined as follows. The vertex set of Snp is
the set [p]n0 , [p]0 := {0, . . . , p−1}, whose elements we will denote by sn . . . s1, because of
the intimate relation to numbers represented in a base p number system. Two vertices
s and t are adjacent if and only if there exists a δ ∈ [n] := {1, . . . , n} such that

(i) sd = td, for d ∈ [n] \ [δ];

(ii) sδ 6= tδ;

(iii) sd = tδ and td = sδ for d ∈ [δ − 1].
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For any n, Sn1
∼= K1 and Sn2

∼= P2n . Note also that S1
p
∼= Kp for any p. For a

drawing of the graph S2
4 see Figure 1. Vertices of the form k . . . k = kn are called

extreme vertices of Snp . Clearly, Snp contains p extreme vertices and they are of degree
p− 1; all the other vertices are of degree p.
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Figure 1: Sierpiński graph S2
4 (left) and Hanoi graph H2

4 (right)

The Tower of Hanoi consists of p vertical pegs and n discs of mutually different
diameters, each of which can be stacked onto one of the pegs. A distribution of all
discs on the pegs with no larger disc lying on a smaller one is called a regular state. A
perfect state is a regular state with all discs arranged on a single peg. A legal move is
to move a disc from the top of a stack on one peg to the top of the (possibly empty)
stack on another peg, provided both states involved are regular. Labelling pegs with
numbers from [p]0 and discs with numbers from [n] in increasing order according to
size, a regular state can be represented uniquely by a vector s ∈ [p]n0 , which we will
again write as sn . . . s1, and whose component sd is the peg on which disc d is lying.
The Hanoi graph Hn

p is then defined on the vertex set [p]n0 , and two vertices (= two
regular states) are adjacent if one can be obtained from the other by a legal move. Note
that adjacent vertices of Hn

p differ in precisely one coordinate.
As for Sierpiński graphs, we have Hn

1
∼= K1 for every n and H1

p
∼= Kp for any p.

Every vertex (= regular state) of Hn
2 is adjacent to exactly one vertex since only the

smallest disc can move. Therefore, Hn
2 is the disjoint union of 2n−1 copies of K2. H

n
3

is the state graph of the classical Tower of Hanoi. For a representation of the graph
H2

4 see Figure 1. Vertices of the form k . . . k = kn will be called perfect vertices of Hn
p .

Note that Hn
p contains p perfect vertices and that they are all of degree p− 1 because

in a perfect state the only legal moves are moves of the smallest disc. Any other vertex
of Hn

p has degree at least 2p− 3, because the second smallest disc in a top position on
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some peg can move to p− 2 target pegs. (Note that there are no non-perfect vertices if
p = 1 or n = 1.) This shows that Snp

∼= Hn
p if and only if p ∈ {1, 3} or n = 1, because

the maximal degree of Snp is p < 2p− 3 for p > 3 and n > 1.
Moreover, Snp and Hn

p can be viewed as constructed recursively with S1
p = H1

p and
S1+n
p and H1+n

p composed from p copies iSnp and iHn
p , respectively. The copies iSnp and

jSnp are joined by the single edge {ijn, jin}, whereas in the Tower of Hanoi all states
with discs 1 to n not on pegs i and j allow for a move of the largest disc from i to j or
vice versa. This leads to the recurrences

‖S0
p‖ = 0 = ‖H0

p‖ , ‖S1+n
p ‖ = p‖Snp ‖+

(
p

2

)
, ‖H1+n

p ‖ = p‖Hn
p ‖+

(
p

2

)
· (p− 2)n ,

yielding ‖Snp ‖ < ‖Hn
p ‖ for p > 3 and n > 1.

We will consider the following subgraphs of Snp and Hn
p . Let sd ∈ [p]0 for d ∈ [n]\[r],

r ∈ [n − 1]; then sn . . . sr+1S
r
p and sn . . . sr+1H

r
p denote the subgraphs of Snp and Hn

p

induced by vertices whose components sr+1 to sn are fixed. Clearly, sn . . . sr+1S
r
p and

sn . . . sr+1H
r
p are isomorphic to Srp and Hr

p , respectively.
A clique of a graph G is a complete subgraph of G and a q-clique is a clique of order

q. The clique number ω(G) is the order of a largest clique of G. By induction on n one
can show that in Snp , p ≥ 3, the only maximal cliques (with respect to inclusion) are 2-
and p-cliques. The p-cliques are just the subgraphs sn . . . s2S

1
p ; any edge not in these

cliques induces a 2-clique. For the cliques of Hn
p we have:

Lemma 1 Every complete subgraph of Hn
p , p, n ∈ N, is induced by edges corresponding

to moves of one and the same disc. In particular, ω(Hn
p ) = p and the only p-cliques of

Hn
p are of the form sn . . . s2H

1
p .

Proof. The cases p = 1 and p = 2 are trivial. For p ≥ 3 take any vertex s joined to two
vertices s′ and s′′ by edges corresponding to the moves of two different discs. Then the
positions of these discs differ in s′ and s′′. Since vertices in Hn

p can only be adjacent if
they differ in precisely one coordinate, s′ and s′′ cannot be adjacent. This proves the
first assertion. Any state s is contained in the p-clique induced by s and those states
which differ from s only by the position of the smallest disc. On the other hand, a disc
d 6= 1 can be transferred to at most p − 2 pegs, namely those not occupied by disc 1,
such that no clique larger than p exists. �

3 The main result

Theorem 2 Let p, n ∈ N. Then Snp can be embedded isomorphically into Hn
p if and

only if p is odd or n = 1.
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Proof. The case n = 1 is clear, because S1
p = H1

p . The same applies to p = 1 since
Sn1 = Hn

1 . Moreover, for n ≥ 2, we have ‖Sn2 ‖ = 2n− 1 > 2n−1 = ‖Hn
2 ‖, so that Sn2 can

not be embedded isomorphically into Hn
2 . (In fact, Hn

2 is a spanning subgraph of Sn2 .)
Now let p ≥ 4 be even and n = 2. Assume that α : S2

p → H2
p is an isomorphic

embedding. By Lemma 1, the p-cliques of S2
p are mapped onto the p-cliques of H2

p .
The remaining edges of S2

p , which are of the form {ij, ji}, i 6= j, have to be mapped
by α to edges in H2

p corresponding to moves of disc 2. Note that these
(
p
2

)
edges of S2

p

are pairwise non-incident. On the other hand, edges in H2
p corresponding to moves of

disc 2 induce p cliques of order p−1. Among the edges of these cliques, we can select at

most p
⌊
p−1
2

⌋
independent ones. Since p is even, p

⌊
p−1
2

⌋
< p p−12 =

(
p
2

)
. We conclude

that S2
p cannot be embedded isomorphically into H2

p .
We will now reduce the more general case for even p, but with n ≥ 3, to the case just

dealt with by considering the image of subgraph 0n−2S2
p under an assumed isomorphic

embedding α of Snp into Hn
p . Since non-extreme vertices of Snp are of degree p, they

cannot be mapped by α to perfect vertices. Hence, the p extreme vertices of Snp are
mapped to p perfect vertices of Hn

p in such a way that α(0n) = jn for some j. Using
Lemma 1 again, α(0n−1S1

p) = jn−1H1
p . Moreover, the subgraph 0n−2S2

p of Snp contains
p − 1 p-cliques that are at distance 1 from the clique 0n−1S1

p . All the other cliques of
Snp are at distance more than 1 from 0n−1S1

p . Similarly, the subgraph jn−2H2
p of Hn

p

contains p p-cliques that are pairwise at distance 1. Every other p-clique of Hn
p is at

distance at least two from jn−1H1
p . Therefore, α(0n−2S2

p) = jn−2H2
p . Hence α would

embed 0n−2S2
p
∼= S2

p isomorphically onto jn−2H2
p
∼= H2

p , a possibility which we already
excluded.

Suppose next that p ≥ 3 is odd. We will show by induction on n that there is
an isomorphic embedding of Snp into Hn

p , the case n = 1 being trivial. By the degree
condition, any such embedding must map extreme vertices of Snp onto perfect vertices
of Hn

p . For n ≥ 1 let ιn be an isomorphic embedding from Snp onto Hn
p . Since an

arbitrary permutation of the perfect states of Hn
p extends to an automorphism of Hn

p

(cf. [16]), we may without loss of generality assume that ιn(kn) = kn for all k. We
construct the mapping ι1+n : V (S1+n

p ) → V (H1+n
p ) in the following way. For k ∈ [p]0

define the permutation πk on [p]0 as follows:

∀ i ∈ [p]0 : πk(i) =
1

2
(k(p+ 1)− i(p− 1)) mod p ;

it has precisely one fixed point, namely k. Then let πnk denote the bijection on [p]n0
with πnk (sn . . . s1) = πk(sn) . . . πk(s1). Define

∀ k ∈ [p]0 ∀ s ∈ [p]n0 : ι1+n(ks) = kπnk (ιn(s)) .

This obviously constitutes a bijection with

ι1+n(k1+n) = kπnk (ιn(kn)) = kπnk (kn) = k1+n .
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Figure 2: Isomorphic embedding ι2 from S2
5 into H2

5

This construction is illustrated in Figure 2 for the case of S2
5 and H2

5 .
It remains to show that {ι1+n(ijn), ι1+n(jin)} ∈ E(H1+n

p ) for i, j ∈ [p]0, i 6= j. We
have ι1+n(ijn) = iπni (ιn(jn)) = iπi(j)

n and similarly ι1+n(jin) = jπj(i)
n. Moreover,

i 6= πi(j) =
1

2
(ip+ i− jp+ j) mod p =

1

2
(jp+ j − ip+ i) mod p = πj(i) 6= j ,

and so the two vertices are adjacent in Hn
p . �

Let r` ≥ 2, ` ∈ [n], be given integers. Let G be the graph whose vertices are
[r1] × [r2] × · · · × [rn], two vertices being adjacent if the corresponding tuples differ
in precisely one coordinate. Then G is called a Hamming graph. Alternatively, a
Hamming graph is the Cartesian product graph Kr1 2Kr2 2 · · · 2Krn . As observed
in [9, Section 2.2], Hanoi graphs Hn

p are spanning subgraphs of Kp2 · · · 2Kp = Kn
p .

Therefore, we get

Corollary 3 Let p be odd. Then for any n, Snp is a spanning subgraph of the Hamming
graph Kn

p .
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(2012) 1521–1535.

[8] A. M. Hinz, D. Parisse, The average eccentricity of Sierpiński graphs, Graphs
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[9] W. Imrich, S. Klavžar, D. F. Rall, Topics in Graph Theory: Graphs and Their
Cartesian Product, A K Peters, Wellesley, MA, 2008.
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