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Abstract

Eppstein [6] introduced semicube graphs as the key tool for efficient com-
putation of the lattice dimension of a graph. In this paper it is shown that,
roughly speaking, every graph can be realized as the semicube graph of some
partial cube. Semicube graphs of trees are studied in detail. In particular
the chromatic number, the independence number and the domination number
of semicube graphs of trees are determined in terms of related invariants of
trees.

1 Introduction

The lattice dimension of a graph G is the smallest d such that G embeds isometri-
cally into the d-dimensional integer lattice Zd. To determine the lattice dimension
of a graph G, Eppstein [6] introduced the semicube graph Sc(G) and proved that
the lattice dimension of G is equal to k−|M |, where k is the isometric dimension of
G and M a maximum matching of Sc(G). He further suggested that it would be of
interest to investigate more carefully the combinatorial properties of the semicube
graph. Motivated by this suggestion we proceed as follows.

In the rest of this section we give concepts and definitions needed in the paper,
introduce the semicube graphs, and observe some preliminary facts about them.
In Section 2 we prove that every graph can be realized as the semicube graph of
some partial cube, in fact, of a median graph. More precisely, if G is a graph on n
vertices, then the semicube graph of the simplex graph of the complement of G is
the disjoint union of G and n isolated vertices. In the final section we have a closer
look at the semicube graphs of trees and determine their chromatic, independence,
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and domination number. For instance, the domination number of the semicube
graph of a tree T is the number of vertices in the union of closed neighborhoods
of the leaves of T .

Let u and v be vertices of a connected graph G. Then dG(u, v), or d(u, v)
for short, denotes the length of a shortest u, v-path in G. A subgraph H of G is
isometric if dH(u, v) = dG(u, v) for all u, v ∈ V (H). The interval I(u, v) between
u and v is the set of all vertices on shortest u, v-paths. A connected graph is a
median graph if for every triple u, v,w of its vertices |I(u, v)∩I(u,w)∩I(v,w)| = 1.

A graph G is a partial cube if G is an isometric subgraph of some hypercube.
Recall that median graphs are partial cubes [12] as well as are trees and many
other important classes of graphs, see [4, 7, 8]. Edges e = xy and f = uv of G
are in relation Θ if d(x, u) + d(y, v) 6= d(x, v) + d(y, u), see [5, 14]. Θ is reflexive
and symmetric. On partial cubes it is also transitive [14] and hence an equivalence
relation. Let [G]Θ denote the set of the Θ-classes of a partial cube G. The number
of these classes, |[G]Θ|, is known as the isometric dimension of G. It is equal to
the smallest k such that G embeds isometrically into the k-cube Qk.

Let G be a graph with finite lattice dimension. This means that G is isomet-
rically embeddable into the Cartesian product of paths. Since Cartesian products
of partial cubes are partial cubes, we infer that G is a partial cube. Conversely,
given a partial cube G isometrically embedded into Qk, it is clear that G has finite
dimension because Qk is the Cartesian product of k paths K2. Therefore, graphs
with finite lattice dimension are partial cubes. (See [6].) We add that the lattice
dimension of combinohedrons has been determined in [13] while in [9] the lattice
dimension of benzenoid systems has been studied. We also refer to the book [4] for
the lattice dimension of several infinite partial cubes and to the recent book [7].

For a connected graph G = (V,E) and an edge ab of G let

Wab = {w ∈ V | d(a,w) < d(b, w)} .

Following [6] we will call the sets Wab semicubes of G. The semicube graph Sc(G)
of a partial cube G is the graph whose vertices are the semicubes of G, semicubes
Wab and Wcd being adjacent if

Wab ∪ Wcd = V and Wab ∩ Wcd 6= ∅ .

Note that these conditions are equivalent to

Wdc ( Wab and Wba ( Wcd .

For instance, Sc(Qn) consists of 2n isolated vertices, and Sc(P3 � P3) (the Carte-
sian product of the path on 3 vertices with itself) is the disjoint union of four
copies of K1 and two copies of K2. More generally, it is not difficult to see that
for any G and any H,

Sc(G� H) = Sc(G) + Sc(H) ,
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where Sc(G) + Sc(H) denotes the disjoint union of Sc(G) and Sc(H).
Let ab be an edge of a connected graph G. In addition to the previously

introduced set of vertices Wab we also set

Fab = {e ∈ E(G)| e is an edge between Wab and Wba} .

In a partial cube G the Θ-class containing ab coincides with the set Fab, see [8].
Hence we may write Fab ∈ [G]Θ.

The following remarks will be (implicitly) used throughout the paper. Let ab
and cd be edges of a partial cube G such that Fab 6= Fcd. Clearly, Wab is in Sc(G)
not adjacent to Wba. Furthermore, Wab is adjacent to Wcd if and only if Wdc is
properly contained in Wab. It follows that the subgraph of Sc(G) induced by Wab,
Wba, Wcd, and Wdc contains at most one edge.

By a terminal semicube we mean a semicube that is minimal with respect to
inclusion. More precisely, Wab is a terminal semicube if Wcd ⊆ Wab implies Wcd =
Wab. We state the following fact for further use. Its proof follows immediately
from definitions.

Lemma 1.1 Let ab be an edge of a partial cube G. Then Wab is an isolated vertex

of Sc(G) if and only if Wab is a terminal semicube.

2 Semicube graphs are universal

In this section we show that every graph can be found in the semicube graph of
some median graph. More precisely, for any graph G there exists a median graph
H such that Sc(H) is the disjoint union of G and some isolated vertices. This
implies that Eppstein’s algorithm needs to use (the best) algorithm for finding a
maximum matching in a general graph.

For our purposes crossing graphs and simplex graphs are of utmost help. We
first introduce the crossing graphs.

Let Fab, Fcd ∈ [G]Θ. Then Fab and Fcd cross, Fab#GFcd, if

Wab ∩ Wcd 6= ∅,Wab ∩ Wdc 6= ∅,Wba ∩ Wcd 6= ∅, and Wba ∩ Wdc 6= ∅ .

The crossing graph G# of a partial cube G has elements of [G]Θ as vertices, where

Fab, Fcd ∈ [G]Θ are adjacent if Fab#GFcd, see [11]. For instance, Q#
n = Kn.

Let ab and cd be edges of a partial cube G. Then note that the subgraph
of Sc(G) induced by Wab, Wba, Wcd, and Wdc contains an edge if and only if
¬(Fab#Fcd).

Let Con(Sc(G)) be the graph obtained from Sc(G) by identifying vertices Wab

and Wba for any Θ-class Fab. Note that Con(Sc(G)) has no loops and no multiple
edges. Let G denote the complement of a graph G. To prove the main result of
this section the following lemma is needed.
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Lemma 2.1 Let G be a partial cube. Then G# ∼= Con(Sc(G)).

Proof. For an edge ab of G, let wab be the vertex of Con(Sc(G)) obtained by

contracting Wab and Wba. Let the mapping g : V (Con(Sc(G))) → V (G#) be
defined with g(wab) = Fab.

We show that g is an isomorphism. Clearly, g is a bijection. Suppose that wab

is adjacent to wcd in Con(Sc(G)). Then we may without loss of generality assume
that Wdc is properly contained in Wab. It follows that Θ-classes Fab and Fcd do not
cross, hence Fab is adjacent to Fcd in G#. Assume next that wab is not adjacent
to wcd in Con(Sc(G)). Then none of Wcd and Wdc is properly contained in Wab

and Wba. But then Fab and Fcd cross, hence Fab is not adjacent to Fcd in G# and
the lemma is proved. �

We next introduce the second crucial concept. The simplex graph S(G) of a
graph G is the graph whose vertices are the complete subgraphs of G including
the empty graph, two vertices of S(G) being adjacent if, as complete subgraphs
of G, they differ in exactly one vertex. The simplex graphs have been introduced
in [2], where it has in particular been shown that they are median graphs. In fact,
simplex graphs can be characterized as the median graphs with a vertex which is
common to all maximal cubes [1, Proposition 2.3].

Theorem 2.2 Let G be a graph on n vertices. Then Sc(S(G)) = G + nK1.

Proof. Let the vertex set of G be {1, . . . , n}. Then all Θ-classes of the simplex
graph S(G) are of the form F∅i, i = 1, . . . , n. In particular, Sc(S(G)) contains 2n
vertices.

Hence all Θ-classes of S(G) meet the vertex ∅ of S(G). Therefore, for any
i ∈ {1, 2, . . . , n} the semicube Wi∅ is terminal, for otherwise we would have a Θ-
class that would be properly contained in the semicube Wi∅, contradicting the fact
that in the simplex graph all Θ-classes meet the vertex ∅. Hence by Lemma 1.1,
these semicubes induce n isolated vertices, nK1, in Sc(S(G)).

Consider next the semicubes W∅i, i = 1, . . . , n. Two such semicubes are ad-
jacent in Sc(S(G)) if and only if the corresponding Θ-classes do not cross. We
now recall from [11, Theorem 3.1] that for every graph G we have G = S(G)#.
Lemma 2.1 completes the proof. �

Let G be an arbitrary graph on n vertices. Then Theorem 2.2 implies that
Sc(S(G)) = G + nK1 which is the announced representation.

Two results of similar nature as Theorem 2.2 are known. In [11, Theorem 3.1]
it was proved that every graph G can be represented as a crossing graph of its
simplex graph S(G), while in [10, Theorem 2.3] it was shown that every graph G
can be represented as a τ -graph of a simplex graph S(G).
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3 Semicube graphs of trees

Since every graph can be realized as a semicube graph of some graph it seems in-
teresting to consider semicube graphs of specific families of graphs. (The situation
is similar as is with intersection graphs, where every graph is an intersection graph
of some set system. Restricting to some specific family of sets interesting classes
of graphs are obtained, for instance interval graphs and chordal graphs.) In this
section we restrict to trees and their semicube graphs.

Each Θ-class of a tree consists of a single edge. Let ab be an edge of a tree T .
Then the semicube Wab is adjacent to all semicubes Wcd, where c, d ∈ Wab and
a, b ∈ Wcd. Therefore deg(Wab) = |Wab|− 1. Furthermore, the terminal semicubes
of T are of the form Wab = {a}, where a is a leaf of T . Hence, using Lemma 1.1,
isolated vertices of Sc(T ) are precisely the leaves of T . The remaining semicubes
of T form a nontrivial connected component.

Consider the following special cases. If T = K1,n, then any two semicubes
different from leaves of T are adjacent in Sc(T ), therefore Sc(K1,n) = Kn + Kn.
Let v1, . . . , vn be the vertices of Pn adjacent in the natural way. Then the sets of
semicubes

A = {Wvivi+1
| 1 ≤ i < n} and B = {Wvi+1vi

| 1 ≤ i < n}

form a bipartition of Sc(Pn). A semicube Wvivi+1
from A is adjacent to a semicube

Wvj+1vj
from B if and only if i > j. For another example consider Fig. 1. In the

figure we have shortened Wij to ij.

Figure 1: A tree and its semicube graph

In the rest of the section we study different properties of the semicube graphs of
trees. For a tree T , let ℓ(T ) denote the number of the leaves of T . As usually, χ(G)
and ω(G) denote the chromatic number and the clique number of G, respectively.

Theorem 3.1 Let T be a tree with at least two edges. Then χ(Sc(T )) = ω(Sc(T )) =
ℓ(T ).
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Proof. Let v1, . . . , vℓ be the leaves of T and let v′1, . . . , v
′
ℓ be their neighbors in T .

Then the semicubes Wv′
i
vi

, i = 1, . . . , ℓ(T ), induce a complete subgraph of Sc(T ).
Therefore χ(Sc(T )) ≥ ℓ(T ).

To construct an ℓ(T )-coloring we inductively construct paths L1, . . . , Lℓ(T ) as
follows. Let v be a vertex of T of degree at least 2 and let L1 be the v1, v-path in
T . Suppose L1, . . . , Lk are already constructed, where 1 ≤ k < ℓ. Then let Lk+1

be the path between vk+1 and the first vertex from ∪k
i=1Li. It follows that paths

L1, . . . , Lℓ(T ) are internally disjoint and they cover the vertices of T . Note that by
the construction, if i 6= j and Li ∩ Lj = {u}, then u is an endvertex for at least
one of Li and Lj.

We partition the set of all semicubes of T into sets C = {Wab | v ∈ Wab} and
D = {Wab | v /∈ Wab}. For any Li, 1 ≤ i ≤ ℓ(T ), the set of semicubes Li ∩C forms
a chain with respect to inclusion and is therefore an independent set of semicubes.
We color Wab ∈ C with i, where ab ∈ Li.

The set D is an independent set of Sc(T ) since no semicube from D contains
the vertex v. Now color Wab ∈ D with color k, where vk is an arbitrary leaf not in
Wab. Such a leaf exists because v is not a leaf. By the construction, Wab is in Sc(T )
not adjacent to any of the semicubes from C∩Lk, because they also do not contain
vk. We conclude that χ(Sc(T )) ≤ ℓ(T ). Since in general χ(Sc(T )) ≥ ω(Sc(T )) the
proof is complete. �

We next determine the independence number α.

Theorem 3.2 Let T be a tree with at least one edge. Then α(Sc(T )) = |V (T )|.
The maximum independent sets are {Wab,Wba} ∪ {Wcd | Wcd ⊂ Wab or Wcd ⊂
Wba}, where ab ∈ E(G).

Proof. Let M be the set of all maximum independent sets of Sc(T ). Consider an
arbitrary edge ab ∈ E(T ). First we show that in every maximum independent set
of Sc(T ) at least one of the semicubes Wab and Wba is included. Suppose on the
contrary that there exists M ∈ M such that none of the sets Wab and Wba is in
M . By the maximality of M there exist semicubes Wcd,Wef ∈ M such that Wcd

is adjacent to Wab and Wef is adjacent to Wba. By the definition of the semicube
graph this is equivalent to Wcd ∩Wab 6= ∅, Wcd ∪Wab = V (T ) and Wef ∩Wba 6= ∅,
Wef ∪Wba = V (T ). Hence also Wcd ∩Wef 6= ∅, Wcd ∪Wef = V (T ), therefore Wcd

and Wef are adjacent in Sc(T ) which is not possible since M is independent.
If Wab is included in a maximum independent set M then also all semicubes

such that Wcd ⊆ Wab are in M . Moreover maximal (with respect to the inclu-
sion) semicubes in M are complementary. Also only one pair of complementary
semicubes can be included in M . Therefore α(T ) = |V (T )| and every independent
set M is as claimed. In addition, any edge of T can be chosen such that its cor-
responding semicubes form maximal semicubes of an independent set. Therefore
Sc(T ) has |V (T )| − 1 different maximum independent sets. �
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Theorem 3.2 and its proof are illustrated in Fig. 2, where the maximum inde-
pendent set is determined with respect to the edge 34.

Figure 2: A tree and a maximum independence set in its semicube graph

For the domination number γ we need the following notation. For a tree T , let
T− be the tree obtained from T by removing all its leaves.

Theorem 3.3 Let T be a tree with at least one edge. Then γ(Sc(T )) = ℓ(T ) +
ℓ(T−).

Proof. Throughout the proof the notation Wuw will be used for the semicube Wuw

considered in T .
The statement is clear for K2, hence assume in the rest that T has at least

two edges. By Lemma 1.1, Sc(T ) contains ℓ(T ) isolated vertices. We need all of
them to dominate themselves. Consider the tree T−. If T− = K1 then T is a
star and the statement of the theorem clearly holds. Suppose in the following that
T− contains at least one edge. Then any leaf of T− has at least one neighbor in
T−. Let u be an arbitrary leaf of T− and w its neighbor in T−. Consider Wuw

and let u1, . . . , ur be the leaves of T adjacent to u. Then in Sc(T ) the semicube
Wuw has degree r; it is adjacent to the semicubes Wuu1

, . . . ,Wuur
. Hence in order

to dominate Wuw, one of the vertices from D(u) = {Wuw,Wuu1
, . . . ,Wuur

} must
be selected. If x is another leaf of T− then we infer that D(x) ∩ D(u) = ∅. We
conclude that γ(Sc(T )) ≥ ℓ(T ) + ℓ(T−).

Let v1, . . . , vd be the leaves of T− and let v′i be a leaf of T adjacent to vi,
1 ≤ i ≤ d. We claim that D = ∪d

i=1Wviv
′

i
dominates the nontrivial connected

component of Sc(T ). Let ab be an arbitrary edge of T . We consider two cases.

Case 1. At least one of a and b is a leaf of T−.
Suppose a = vi for some 1 ≤ i ≤ ℓ(T ). Then b is either a leaf of T (possibly equal
to v′i) or an inner vertex of T . In both cases Wviv

′

i
dominates Wab.

Case 2. None of a, b is a leaf of T−.
In this case both a and b have degrees at least two in T−. Then ab lies on some

7



path between two leaves vi and vj of T−, i 6= j, where d(a, vi) = d(b, vi) − 1 and
d(b, vj) = d(a, vj)−1. Then Wab is adjacent to Wviv

′

i
and Wba is adjacent to Wvjv′

j

in Sc(T ) and both are therefore dominated by D. �

For an illustration of Theorem 3.3 and its proof see Fig. 3, where the tree T ′

is obtained from T by removing its leaves.

Figure 3: A tree and a minimum dominating set in its semicube graph

Note that Theorem 3.3 can be rephrased by saying that γ(Sc(T )) is the number
of vertices in the union of the closed neighborhoods of the leaves of T .
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