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Abstract

We have computed distance-based topological indices of nanosheets, nanotubes and nanotori

of SiO2 which find potential applications in drug, food, and cosmetic industry. As topological

indices correlate with physico-chemical properties and estimating efficiency of drug deliveries of

these species, we compute the topological indices based on their degrees and distances of the

associated molecular graphs. We have obtained exact analytical expressions of various topological

indices such as the Wiener, vertex-Szeged, edge-Szeged, edge-vertex Szeged, Padmakar-Ivan,

Schultz and Gutman indices of SiO2 nanosheet, nanotube and torus using the cut method which

involves decomposing a molecular graph by means of the transitive closure property of Djoković-

Winkler relation to smaller strength-weighted quotient graphs.

Keywords: Silicon dioxide nanostructures, drug delivery, QSAR/QSPR, cut method, topolog-

ical indices.

1 Introduction

Graph theory finds numerous applications in several areas of chemistry such as quantitative structure-

activity relations, topological characterization of chemical structures, prediction of biological activ-

ities, quantum chemistry, proteomics, spectroscopy, isomer enumeration, graph polynomials for
∗Corresponding author : shagufamushtaq95@gmail.com
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structural characterizations, nuclear spin statistics, NMR spectroscopy, statistical and other meth-

ods for prediction of toxicity, structure-property relations of fullerenes, mesoporous materials, nano-

materials and so on [3–5,7–9,11–15,17,18,47,52,53].

Quantitative structure activity and property relationships (QSAR/QSPR) make use of the rela-

tion between the molecular connectivity of chemical compounds and their properties and thus the

underlying graph-theoretical properties constitute the basis for computer-aided drug discovery and

predictive toxicology. Consequently, successful uses of quantitative structure-activity and property

relationships have stimulated the emergence of various topological descriptors of molecules, periodic

structures, fullerenes, lattices, proteomes and nanomaterials [8, 9, 11–15,17, 18,20, 32, 47–49,53,63].

The basic mathematical techniques of graph reductions, iterative methods, recursive methods,

tree-pruning algorithms etc., have been applied to the derivations of a number of topological

properties such as spectral polynomials, matching polynomials, distance polynomials of chemi-

cal structures, fullerenes, organic polymers, nanotubes and lattices of varied complexity as seen

from refs. [6, 9, 10, 12, 13, 15]. The nature of intermolecular interactions depends on the degree and

distance parameters, and moreover a number of physico-chemical properties of compounds such as

boiling points, melting points, vapor pressures, dermal penetration, octanol partition coefficients,

chromatographic retention indices, 2D-gel electrophoresis patterns of proteomes [14] etc., have been

shown to correlate with topological properties as good starting points. Although one may need

more sophisticated quantum chemical and biodescriptors as well as quantum molecular dynamics

simulations for more accurate predictions of chemical and biological properties, due to computa-

tionally intensive nature of such methods, topological methods have found useful applications due

to relative ease with which they can be computed.

Wiener index [62] which is a distance-based topological descriptor has been studied over the

years since it is readily computed and it appears to correlate with many physico-chemical properties

of organic compounds and has found to have applications in other fields such as crystallography,

communication theory, facility location, ornithology [16], and so on [42, 56]. In fact as shown

in [16], interaction between a flock of birds depends more intimately on the topological distance

rather than the Euclidian distance. Hence there are properties that depend more on topological

relation than geometric relation. Since the advent of Wiener index several other topological indices

have been formulated such as the Schultz index [57], Gutman index [29], hyper-Wiener [55], edge-

Wiener [44], vertex-edge Wiener [44], vertex-Szeged [29], edge-Szeged [30], edge-vertex Szeged [43],

total Szeged [46], PI index [35], Randić index [54], Zagreb indices [31], ABC [24], harmonic [25],
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geometric-arithmetic [60], sum-connectivity index [64], and so on.

Silicon dioxide, one of the most important materials, finds wide-ranging applications in semi-

conductor industry to biology. It is widely used as an absorbent, anti-caking agent and in drugs as

an inactive filler. Silica based nanomaterials have attracted considerable attention in recent years

due to their tunable particle size and specific surface area, abundant Si-OH bonds on the particle

surface that lend to functionalization [52], chemical/thermal stability, high drug loading capability,

and sustained drug release thereby enhancing bioavailability of drugs [21,33,50,59,65]. In order to

study the utilization of silica nanoparticles in pharmaceutical industry, the study of QSAR/QSPR

properties is of paramount importance for determining the efficacy and toxicity of these compounds.

In recent years functionalized mesoporous silicate based nanomaterials have found applications in

a number of areas ranging from efficient drug delivery, nanomedicine to sequestration of high-level

nuclear materials [21, 33, 50, 52, 59, 65]. Many properties such as toxicity, dermal penetrations,

guest-host interactions, protein-drug interactions, receptor binding propensity, drug metabolomics,

etc., depend on the structural parameters, pore sizes, intermolecular interactions, electronic and

electrostatic properties many of which depend on the underlying topological distances and thus

topological indices are attractive starting points to any statistical approach for obtaining structure-

activity relations. In this paper, we have computed topological indices for SiO2 nanosheets and

then we proceed to form nanotubes and nanotori from these sheets in order to compute various

topological indices for such newly formulated structures.

In the following section we recall graph-theoretical terminology needed and define the distance-

based topological indices of interest. In Section 3 we develop the computational techniques to

be applied and derive a new theoretical result that allows their implementation. In Section 4

we proceed to compute the topological indices of various SiO2 nanostructures and discuss the

asymptotic behaviors for the analytical expressions obtained based on the large values of their

parameters along with a comparative analysis of the indices. The key tool for these computations is

the so-called cut method that was first introduced in [38] for the situation when cuts coincide with

the Θ-classes of a given graph and the topological index considered is the classical Wiener index.

Later the method was extended to arbitrary graphs where cuts are Θ∗-classes [36]. Numerous

papers followed in which the cut method was developed for other distance-based (and also some not

distance-based) topological indices of families of (chemical) graph. For a survey on the cut method

see [42].
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2 Graph-theoretical terminology and distance-based indices

Throughout this paper, we consider only simple and finite connected graphs. If G = (V (G), E(G))

is a graph, then dG(u, v) denotes the usual shortest-path distance between the vertices u, v ∈ V (G),

that is, the number of edges on a shortest u, v-path. The shortest distance between the vertex u

and the edge f = xy ∈ E(G) is defined as dG(u, f) = min{dG(u, x), dG(u, y)}. The degree of a

vertex v is denoted with dG(v), and the open neighborhood NG(v) is the set of vertices adjacent to

v. For an edge e = uv ∈ E(G), the following sets will be utmost important:

Nu(e|G) = {x ∈ V (G) : dG(u, x) < dG(v, x)} ,

Mu(e|G) = {f ∈ E(G) : dG(u, f) < dG(v, f)} .

The cardinality of Nu(e|G) and Mu(e|G) is denoted by nu(e|G) and mu(e|G) respectively. The

quantities nv(e|G) and mv(e|G) are defined analogously. Using these notations we collect in Table 1

the definitions of relevant distance-based topological indices.

Table 1: Topological indices of a simple graph G

Topological indices Mathematical expressions

Wiener [61] W (G) =
∑

{u,v}⊆V (G)

dG(u, v)

Vertex-Szeged [29] Szv(G) =
∑

e=uv∈E(G)

nu(e|G)nv(e|G)

Edge-Szeged [30] Sze(G) =
∑

e=uv∈E(G)

mu(e|G)mv(e|G)

Edge-vertex-Szeged [43] Szev(G) = 1
2

∑
e=uv∈E(G)

[
nu(e|G)mv(e|G) + nv(e|G)mu(e|G)

]
Total-Szeged [46] Szt(G) = Szv(G) + Sze(G) + 2Szev(G)

Padmakar-Ivan [35] PI(G) =
∑

e=uv∈E(G)

[
mu(e|G) +mv(e|G)

]

Schultz [57] S(G) =
∑

{u,v}⊆V (G)

[
dG(u) + dG(v)

]
dG(u, v)

Gutman [29] Gut(G) =
∑

{u,v}⊆V (G)

dG(u)dG(v)dG(u, v)
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The concept of a strength-weighted graph was introduced in [2] as a triple Gsw = (G,SWV , SWE),

where

• G is a graph,

• SWV is the set of ordered pairs (wv, sv), v ∈ V (G), with wv being the vertex-weight and sv

the vertex-strength of v, and

• SWE is the set of ordered pairs (we, se), e ∈ E(G), with we being the edge-weight and se the

edge-strength of e.

In this paper we restrict to the case we = 1 for every edge. From now on the strength-weighted

graph will be Gsw =
(
G, (wv, sv), se

)
. For any vertex u ∈ Gsw, the open neighborhood of u is given

as NGsw(u) = NG(u) and the degree of the vertex u as dGsw(u) = 2sv(u) +
∑

x∈NGsw (u)

se(ux). Also,

for an edge uv ∈ Gsw we set

nu(e|Gsw) =
∑

x∈Nu(e|Gsw)

wv(x),

mu(e|Gsw) =
∑

x∈Nu(e|Gsw)

sv(x) +
∑

f∈Mu(e|Gsw)

se(f).

Analogously, we define the terms nv(e|Gsw) and mv(e|Gsw). In Table 2 we present the topological

indices for strength-weighted graphs as introduced in [2].

If TI denotes an arbitrary topological index discussed in the paper, then for wv = se = 1 and

sv = 0 we have TI(Gsw) = TI(G). The weighted-Wiener index that was introduced in [37] (see

also [41]) is the particular case of the strength-weighted graph for sv = 0 and se = 1, while the

vertex, edge, and edge-vertex versions of the Szeged index and the PI index were considered using

vertex-edge weighted graphs in [22,58].

3 Computational techniques

In this section we first outline the preliminaries and basic concepts needed to develop the cut

method. Then theorems that express distance-based indices of strength-weighted graphs using the

cut method are presented. The section is concluded with a classification of Θ∗-classes in subdivision

graphs of partial cubes, a key step for the investigation of the SiO2 nanostructures later on.

A subgraph H of a graph G is isometric if dH(u, v) = dG(u, v) holds for all u, v ∈ V (H). If H

and G are disjoint graphs, then a mapping f : V (H) → V (G) is an isometric embedding if f(H) is
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Table 2: Topological indices for strength-weighted graph Gsw

Topological index Mathematical expressions

Wiener W (Gsw) =
∑

{u,v}⊆V (Gsw)

wv(u)wv(v)dGsw(u, v)

Vertex-Szeged Szv(Gsw) =
∑

e=uv∈E(Gsw)

se(e)nu(e|Gsw)nv(e|Gsw)

Edge-Szeged Sze(Gsw) =
∑

e=uv∈E(Gsw)

se(e)mu(e|Gsw)mv(e|Gsw)

Edge-vertex-Szeged Szev(Gsw) =
1
2

∑
e=uv∈E(Gsw)

se(e)
[
nu(e|Gsw)mv(e|Gsw)+

nv(e|Gsw)mu(e|Gsw)
]

Total-Szeged Szt(Gsw) = Szv(Gsw) + Sze(Gsw) + 2Szev(Gsw)

Padmakar-Ivan PI(Gsw) =
∑

e=uv∈E(Gsw)

se(e)
[
mu(e|Gsw) +mv(e|Gsw)

]

Schultz S(Gsw) =
∑

{u,v}⊆V (Gsw)

[
wv(v)dGsw(u) + wv(u)dGsw(v)

]
dGsw(u, v)

Gutman Gut(Gsw) =
∑

{u,v}⊆V (Gsw)

dGsw(u)dGsw(v)dGsw(u, v)

an isometric subgraph of G. A subgraph H of a graph G is convex if for every u, v ∈ V (G), every

shortest u, v-path in H lies completely in G. The Djoković-Winkler relation Θ (due to [23, 62]) is

defined on E(G) as follows: if e = ab ∈ E(G) and f = cd ∈ E(G), then eΘf if dG(a, c) + dG(b, d)

̸= dG(a, d) + dG(b, c). The relation Θ is reflexive and symmetric, but in general not transitive.

Its transitive closure Θ∗ hence forms an equivalence relation on E(G) and partitions E(G) into

Θ∗-classes F(G) = {F1, . . . , Fr}. Let G/Fi, 1 ≤ i ≤ r, be the quotient graph w.r.t. Θ∗, that is, the

graph whose vertices are the connected components of the graph G−Fi, two components C and D

being adjacent if there exists an edge uv ∈ Fi such that u ∈ C and v ∈ D.

A partition E(G) = {E1, . . . , Ek} of E(G) is said to be coarser than the partition F(G), if

each set Ei is the union of one or more Θ∗-classes of G. Vertices x, y ∈ V (G) are in relation R

if NG(x) = NG(y). The relation R is an equivalence relation, and thus the R-equivalence class of

x ∈ V (G) will be denoted [x]R. (We note that using relation R the Wiener index of a weighted

graph from [41] was furthermore reduced in [40].) We can now state the following key theorems for

the rest of the paper.

6



Theorem 1. [2] Let Gsw =
(
G, (wv, sv), se

)
be a strength-weighted graph and let E(Gsw) =

{E1, . . . , Ek} be a partition of E(G) coarser than F(Gsw). If TI ∈ {W,Szv, Sze, Szev, P I, S,Gut},

then

TI(Gsw) =

k∑
i=1

TI(G/Ei, (w
i
v, s

i
v), s

i
e) ,

where

• wi
v : V (G/Ei) → R+ is defined by wi

v(C) =
∑
x∈C

wv(x), ∀ C ∈ G/Ei,

• siv : V (G/Ei) → R+ is defined by siv(C) =
∑

xy∈C
se(xy) +

∑
x∈C

sv(x), ∀ C ∈ G/Ei,

• sie : E(G/Ei) → R+ is defined by sie(CD) =
∑

xy∈Ei
x∈C,y∈D

se(xy), for any C,D ∈ V (G/Ei).

Theorem 2. [2] Let Gsw =
(
G, (wv, sv), se

)
be a strength-weighted graph such that a ∈ V (Gsw) and

A = [a]R. Let G
′
sw =

(
G

′
, (w

′
v, s

′
v), s

′
e

)
be defined with G

′
= G − (A − {a}), w

′
v(a) =

∑
x∈A

wv(x),

s
′
v(a) =

∑
x∈A

sv(x), for any b ∈ NG
′
sw
(a), s

′
e(ab) =

∑
x∈A

se(xb) and w
′
v(x) = wv(x), s

′
v(x) = sv(x),

s
′
e(xy) = se(xy), for any x /∈ A, y /∈ A. Then

(i) W (Gsw) = W (G
′
sw) +

∑
{x,y}∈(A

2
)
2wv(x)wv(y),

(ii) S(Gsw) = S(G
′
sw) +

∑
{x,y}∈(A

2
)
2
(
wv(y)dGsw(x) + wv(x)dGsw(y)

)
,

(iii) Gut(Gsw) = Gut(G
′
sw) +

∑
{x,y}∈(A

2
)
2dGsw(x)dGsw(y).

Recall that the hypercube Qn, n ≥ 1, has all binary strings of length n as vertices, two vertices

being adjacent if they differ in precisely one coordinate. A connected graph G is said to be a partial

cube if there exists n ≥ 1 and an isometric embedding f : V (G) → V (Qn). It is well-known that G

is a partial cube if and only if G is bipartite and Θ = Θ∗. In other words, partial cubes are precisely

bipartite graphs with transitive relation Θ [62]. The Θ-equivalence classes of a partial cube G are

(also) called cuts. Many important classes of chemical graphs are partial cubes as for instance trees,

phenylenes, and benzenoid systems.

If G is a graph, then the subdivision graph Sub(G) of G is the graph obtained from G by replacing

every edge uv of G with a new vertex xuv and connecting xuv with u and v.
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Theorem 3. Let F(G) = {F1, . . . , Fr} be the Θ-partition of a partial cube G. Then the Θ∗-partition

F′(Sub(G)) of the subdivision graph Sub(G) contains the following classes arising from Fi, 1 ≤ i ≤ r:

• If Fi = {uv}, then {uxuv} ∈ F′(Sub(G)) and {vxuv} ∈ F′(Sub(G));

• If Fi = {uv, u′v′}, then {uxuv, v′xu′v′} ∈ F′(Sub(G)) and {vxuv, u′xu′v′} ∈ F′(Sub(G));

• If Fi = {u1v1, . . . , ukvk}, k ≥ 3, then {u1xu1v1 , v1xu1v1 , . . . , ukxukvk , vkxukvk} ∈ F′(Sub(G)).

Proof. It is well-known that |Fi| = 1 if and only if the edge e ∈ Fi is a bridge. Hence in Sub(G) the

edge e = uv ∈ E(G) leads to two bridges of Sub(G) which are then Θ∗-classes of Sub(G). In the

rest of the proof we may assume that |Fi| ≥ 2.

Let uv ∈ Fi and let ab ∈ E(G), where a, b ∈ Nu(e|G). Since G is bipartite, there exists an

integer t such that dG(u, a) = t and dG(u, b) = t + 1. Moreover, since G is a partial cube, we also

have dG(v, a) = t + 1 and dG(v, b) = t + 2. In Sub(G), the distance between any pair of different

vertices from {u, v, a, b} is twice the distance between the same vertices in G, hence in Sub(G) there

exists a shortest path of the following form:

v → xuv → u → · · · → a → xab → b .

As no edges of a shortest path are in relation Θ, it follows that no two different edges from

{uxuv, vxuv, axab, bxab} are in relation Θ in Sub(G). Consequently, none of the edges uxuv and

vxuv is in relation Θ with any of the edges in Sub(G) arising from the edges in Nu(e|G). Analo-

gously, none of the edges uxuv and vxuv is in relation Θ with any of the edges in Sub(G) arising

from the edges in Nv(e|G). In conclusion, uxuv and vxuv can only be in relation Θ with edges of

the form u′xu′v′ and v′xu′v′ , where u′v′ ∈ Fi.

Suppose now that Fi = {uv, u′v′}. Then, clearly, uxuvΘv′xu′v′ and vxuvΘu′xu′v′ . By the above

we conclude that {uxuv, v′xu′v′} and {vxuv, u′xu′v′} ∈ F′(Sub(G)).

Assume finally that Fi = {u1v1, . . . , ukvk}, where k ≥ 3. Then u1xu1v1Θv2xu2v2 , u1xu1v1Θv3xu3v3 ,

. . ., u1xu1v1Θvkxukvk . As similar conclusion holds for any edge uixuivi as well as for viu1xuivi , us-

ing the transitivity it follows that the Θ∗-class containing u1xu1v1 contains all the edges u1xu1v1 ,

v1xu1v1 , . . ., ukxukvk , vkxukvk . Moreover, by the above this class contains no other edge and we are

done.

In view of Theorem 3 we note that it was proven in [39] that for a connected graph G its
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subdivision graph is a partial cube if and only if every block of G is either a cycle or a complete

graph.

If G is not a partial cube, then determining Θ∗-classes of Sub(G) from the Θ∗-classes of G

seems to be more involved. For instance, the complete graph Kn, n ≥ 1, has a single Θ∗-class, that

is, F(Kn) = {E(Kn)}. By the above theorem from [39] we know that Sub(Kn) is a partial cube.

Moreover, it contains n Θ-classes. This example shows that even in the class of graphs G for which

if |F(G)| = 1 holds, the value |F(Sub(G))| is not bounded. A simpler example demonstrating the

same fact is the following: Let C2n+1 represent the odd cycle of 2n+ 1 vertices. Then F(C2n+1) =

{E(C2n+1)} and |F(Sub(C2n+1))| = 2n+ 1.

4 SiO2 nanostructures

Silicon dioxide (SiO2) consists of a giant covalent structure in which each silicon atom is covalently

bonded to four oxygen atoms and each oxygen atom is covalently bonded to two silicon atoms

as depicted in Fig. 1. Since the ratio is two oxygen atoms to each silicon atom, the formula is

Si

O
OO

O

Si

O
O

O

Figure 1: A silicon dioxide

p

q

(a)

p

q

(b)

Figure 2: SiO2(p, q) layer structure (a) Original form (b) Bricks form
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given as SiO2. The molecular structure of silicon dioxide forms an octagon structure and when

these octagons are joined together they form an SiO2 layer structure as shown in Fig. 2(a). For

convenience, we consider the isomorphic structure of SiO2 layer structure as shown in Fig. 2(b) for

efficient computation of topological indices by applying the cut method. The number of rows are

represented by p and the number of columns by q which are the length and width of the nanosheet

respectively, the structure in Fig. 2 is of dimension (p, q). Various degree-based topological indices

of SiO2 layer structure have been computed in [19,26–28]. We now proceed to obtain the distance-

based topological indices for different classes of SiO2 nanostructures.

4.1 Topological indices of SiO2 layer structure

In this section, we compute the distance-based indices of SiO2 layer structure.

Theorem 4. Let G be an SiO2 layer structure of dimension (p, q), p, q ≥ 1.

1. W (G) = 1
3

[
9(p3q2 + p2q3) + 24(p3q + pq3) + 72p2q2 + 16(p3 + q3) + 141(p2q + pq2) + 84(p2 +

q2) + 228pq + 116(p+ q) + 48
]
,

2. SZv(G) = 1
3

[
18p3q3 + 69(p3q2 + p2q3) + 67(p3q + pq3) + 258p2q2 + 16(p3 + q3) + 273(p2q +

pq2) + 84(p2 + q2) + 322pq + 116(p+ q) + 48
]
,

3. SZe(G) = 2
3

[
16p3q3+42(p3q2+ p2q3)+ 34(p3q+ pq3)+ 108p2q2+8(p3+ q3)+ 87(p2q+ pq2)+

18(p2 + q2) + 66pq + 10(p+ q)
]
,

4. SZev(G) = 1
6

[
48p3q3 + 155(p3q2 + p2q3) + 133(p3q+ pq3) + 492p2q2 + 32(p3 + q3) + 451(p2q+

pq2) + 120(p2 + q2) + 442pq + 124(p+ q) + 36
]
,

5. SZt(G) = 2
3

[
49p3q3 + 154(p3q2 + p2q3) + 134(p3q + pq3) + 483p2q2 + 32(p3 + q3) + 449(p2q +

pq2) + 120(p2 + q2) + 448pq + 130(p+ q) + 42
]
,

6. PI(G) = 16p2q2 + 22(p2q + pq2) + 8(p2 + q2) + 28pq + 10(p+ q) + 3,

7. S(G) = 4
3

[
12(p3q2 + p2q3) + 28(p3q + pq3) + 84p2q2 + 16(p3 + q3) + 144(p2q + pq2) + 72(p2 +

q2) + 205pq + 89(p+ q) + 33
]
,

8. Gut(G) = 2
3

[
32(p3q2+p2q3)+64(p3q+pq3)+192p2q2+32(p3+q3)+283(p2q+pq2)+120(p2+

q2) + 352pq + 130(p+ q) + 42
]
.
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Proof. It is clear that |V (G)| = 3pq + 4(p + q) + 5 and |E(G)| = 4(pq + p + q + 1). As already

mentioned, every pendant edge (every bridge) forms a Θ∗-class. Moreover, removing the pendant

edges from the SiO2 layer structure of dimension (p, q), we obtain the graph that is the subdivision

graph of the (p + 1) × (q + 1) square grid (alias the Cartesian product of Pp+1 with Pq+1). As

paths are partial cubes and Cartesian products of partial cubes are again partial cubes, Theorem 3

applies. Consequently, the Θ∗-classes of E(G) formed in this structure are the horizontal, vertical

and pendant edge cuts. We denote the pendant cuts as Pi, where {Pi : 1 ≤ i ≤ 2(p + q + 2)} lie

on the boundary of the structure, vertical cuts as Vi, where {Vi : 1 ≤ i ≤ q} and horizontal cuts as

Hi, where {Hi : 1 ≤ i ≤ p}. Therefore, there are 2(p + q + 2) pendant cuts, q vertical cuts and p

horizontal cuts as shown in Fig. 3. The proof is now divided into three cases for computation. The

quotient graph obtained after applying the cut has edge-strength value 1 in all the cases.

P
11

P
1

P8

P
9

P
10

P
12

P
2 P

3
P
4

P
5 P6

P
7

P
13

P
14

P
15

P
16

P
17

P
18

P
19

P
20

P
21

P
22

(a)

V1 V2
V3 V4 V5

(b)

H
1

H
2

H
3

H4

(c)

Figure 3: Convex cuts on G (a) Pi (b) Vi and (c) Hi

[ ]u v2 , 2

[ ]u v1 , 1

(a)

u3 v3][ ,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

u4 v4][ ,

(b)

u6 6][ ,v

u5 5][ ,v

[ ]1 0, [ ]1 0, [ ]1 0, [ ]1 0, [ ]1 0, [ ]1 0,

(c)

Figure 4: Quotient graphs (a) G/Pi, (b) G/Vi and (c) G/Hi
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(i) G/Pi, {Pi,1 ≤ i ≤ 2(p+q+2)} :

The edge-cut Pi of G and the quotient graph together with its corresponding strength-weighted

function are shown in Figs. 3(a) and 4(a) respectively. Since all the P ′
is are symmetric to each

other, it is enough to compute for a single cut. The quotient graph G/Pi obtained is a complete

graph K2 with vertex-strength-weighted values [u1, v1] and [u2, v2] where,
u1 = 1, v1 = 0,

u2 = |V (G)| − 1, v2 = |E(G)| − 1.

Denote

TI(G1) = TI(G/Pi, (w
i
v, s

i
v), s

i
e) . (1)

(ii) G/Vi, {Vi,1 ≤ i ≤ q} :

Fig. 3(b) is the graph G with edge-cut Vi and Fig. 4(b) is the quotient graph G/Vi with its

corresponding strength-weighted function. From Fig. 3(b), it is easy to see that cut V1 is symmetric

to cut Vq, cut V2 is symmetric to cut Vq−1, cut V3 is symmetric to cut Vq−2 and so on. The quotient

graph with cut G/Vi is a bipartite graph K2,p+1 as shown in Fig. 4(b) and the vertex-strength-

weighted values are not defined given below:
u3 = (3p+ 4)i, v3 = (p+ 1)(4i− 1),

u4 = (3p+ 4)(q + 1− i), v4 = (p+ 1)(4(q − i) + 3).

Denote

TI(G2) = TI(G/Vi, (w
i
v, s

i
v), s

i
e) . (2)

(iii) G/Hi, {Hi,1 ≤ i ≤ p} :

The graph G with edge-cut Hi is shown in Fig. 3(c) and the quotient graph together with its

corresponding strength-weighted function is shown in Fig. 4(c). Due to symmetry, this case becomes

similar to the above case when p is replaced by q and vice-versa. The vertex-strength-weighted values

of the quotient graph in this case are as follows:
u5 = (3q + 4)i, v5 = (q + 1)(4i− 1),

u6 = (3q + 4)(p+ 1− i), v6 = (q + 1)(4(p− i) + 3).

Denote

TI(G3) = TI(G/Hi, (w
i
v, s

i
v), s

i
e) . (3)

12



From Eqs. (1)-(3) we have

TI(G) = 2(p+ q + 2)TI(G1) +

q∑
i=1

TI(G2) +

p∑
i=1

TI(G3).

W (G) = u1u2 + (p+ 1)(u3 + u4 + pq) + 2u3u4 + (q + 1)(u5 + u6 + pq) + 2u5u6.

SZv(G) = u1u2 + (p+ 1)(u3 + u4 + 2u3u4 + p(u3 + u4) + 2p) + (q + 1)(u5 + u6 + 2u5u6 +

q(u5 + u6) + 2q).

SZe(G) = v1v2 + (p+ 1)(v3 + v4 + 2v3v4 + p(v3 + v4) + 2p) + (q + 1)(v5 + v6 + 2v5v6 +

q(v5 + v6) + 2q).

SZev(G) = u1v2 + u2v1 +
(p+ 1)

2
(u3 + u4 + v3 + v4 + p(u3 + u4 + v3 + v4) + 2(u3v4 + u4v3)

+4p) +
(q + 1)

2
(u5 + u6 + v5 + v6 + q(u5 + u6 + v5 + v6) + 2(u5v6 + u6v5) + 4q).

SZt(G) = SZv(G) + SZe(G) + 2SZev(G).

P I(G) = v1 + v2 + 2(p+ 1)(v3 + v4 + p+ 1) + 2(q + 1)(v5 + v6 + q + 1).

S(G) = 2(u1v2 + u2v1 + u1 + u2) + 2(p+ 1)(u3 + u4 + v3 + v4 + 2pq + p+ 1) + 2(2(u3v4 +

u4v3) + u3p+ u4p+ u3 + u4) + 2(q + 1)(u5 + u6 + v5 + v6 + 2pq + q + 1) + 2(2(u5v6

+u6v5) + u5q + u6q + u5 + u6).

Gut(G) = 4v1v2 + 2v1 + 2v2 + 1 + 2(p+ 1)(2v3 + p+ 1)(2v4 + p+ 1) + 2(4v3v4 + 2p(v3 + v4)

+2(v3 + v4) + (p+ 1)2 + 2pq(p+ 1)) + 2(q + 1)(2v5 + q + 1)(2v6 + q + 1) + 2(4v5v4

+2q(v5 + v6) + 2(v5 + v6) + (q + 1)2 + 2pq(q + 1)).

The results are obtained on substituting the values of the parameters.
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The analytical closed formulae presented in Theorem 4 are polynomials in two variables, where

PI(G) is a degree-4 polynomial, W (G), S(G), and Gut(G) are degree-5 polynomial, while the

four expressions for the Szeged indices are degree-6 polynomials. Hence asymptotically the Szeged

indices dominate the other indices, and each of the Wiener, the Schultz and the Gutman index

dominates the PI index. If two polynomials are of the same degree, then their asymptotic behaviors

are determined by the corresponding leading coefficient. For instance,

lim
p,q→∞

W (G)

S(G)
=

18/3

96/3
=

3

16
,

and

lim
p,q→∞

SZv(G)

Sze(G)
=

18/3

32/3
=

9

16
.

The other limit quotients can be deduced analogously.

In all our next theorems the above assertions about the degree of the derived polynomials will

be parallel to the ones from Theorem 4. Hence we will not repeat the above conclusions.

4.2 Topological indices of C8 layer structure

p

q

Figure 5: C8 layer structure

We now form a new structure named as the C8 layer structure of dimension (p, q) by deleting the

pendant vertices and its corresponding edges from the SiO2 layer structure of dimension (p, q) to

form an octagonal mesh as shown in Fig. 5. In this structure, we have |V (G)| = 3pq + 2(p+ q) + 1

and |E(G)| = 4pq + 2(p + q). The distance-based topological indices of the C8 layer structure are

computed as follows.
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Theorem 5. Let G be a C8 layer structure of dimension (p, q), p, q ≥ 1.

1. W (G) = 1
3

[
9(p3q2 + p2q3) + 12(p3q+ pq3) + 36p2q2 +4(p3 + q3) + 33(p2q+ pq2) + 6(p2 + q2) +

24pq + 2(p+ q)
]
,

2. SZv(G) = 1
3

[
18p3q3 +39(p3q2 + p2q3) + 25(p3q+ pq3) + 78p2q2 +4(p3 + q3) + 51(p2q+ pq2) +

6(p2 + q2) + 34pq + 2(p+ q)
]
,

3. SZe(G) = 2
3

[
16p3q3 + 22(p3q2 + p2q3) + 14(p3q + pq3) + 6p2q2 + 2(p3 + q3) + 2(p2q + pq2) −

3(p2 + q2) + 10pq + (p+ q)
]
,

4. SZev(G) = 1
6

[
48p3q3+85(p3q2+p2q3)+51(p3q+pq3)+108p2q2+8(p3+ q3)+53(p2q+pq2)+

30pq − 2(p+ q)
]
,

5. SZt(G) = 2
3

[
49p3q3 + 84(p3q2 + p2q3) + 52(p3q+ pq3) + 99p2q2 + 8(p3 + q3) + 54(p2q+ pq2) +

42pq + (p+ q)
]
,

6. PI(G) = 2
[
4p2q2 + 4pq3 + q3 + p2q + 12pq2 + 2q2 + 2pq − 2q

]
,

7. S(G) = 2
3

[
24(p3q2 + p2q3)+ 28(p3q+ pq3)+ 84p2q2 +8(p3 + q3)+ 63(p2q+ pq2)+ 6(p2 + q2)+

40pq + (p+ q)
]
,

8. Gut(G) = 2
3

[
32(p3q2+p2q3)+32(p3q+pq3)+96p2q2+8(p3+q3)+55(p2q+pq2)+32pq+(p+q)].

Proof. Proceeding as in the proof of Theorem 4 (again applying Theorem 3), we obtain vertical

and horizontal Θ∗-classes of E(G). The vertical and horizontal cuts are denoted as Vi, where

{Vi : 1 ≤ i ≤ q} and Hi, where {Hi : 1 ≤ i ≤ p} respectively.

The graph G with edge-cut Vi and the quotient graph with corresponding strength-weighted

functions are depicted in Figs. 6(a) and 4(b). The vertex-strength-weighted values [u3, v3] and

[u4, v4] are replaced as follows:
u3 = p(3i− 1) + (2i− 1), v3 = 2i(2p+ 1)− 2(p+ 1),

u4 = 3p(q − i) + 2(p+ q − i) + 1, v4 = (4p+ 2)(q − i) + 2p.

Now,

TI(G4) = TI(G/Vi, (w
i
v, s

i
v), s

i
e) . (4)

In a similar way, the graph G with edge-cut Hi and the quotient graph together with its cor-

responding strength-weighted function are shown in Figs. 6(b) and 4(c) respectively. The vertex-

strength-weighted values [u5, v5] and [u6, v6] are replaced as

15



V1 V2
V3 V4 V5

(a)

H
1

H
2
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3

H4

(b)

Figure 6: Convex cuts on C8 layer structure (a) Vi (b) Hi

u5 = q(3i− 1) + (2i− 1), v5 = 2i(2q + 1)− 2(q + 1),

u6 = 3q(p− i) + 2(p+ q − i) + 1, v6 = (4q + 2)(p− i) + 2q,

and now we have

TI(G5) = TI(G/Hi, (w
i
v, s

i
v), s

i
e) . (5)

The edge-strength values in TI(G4) and TI(G5) are 1 each. Therefore, from Eqs. (4)-(5),

TI(G) =

q∑
i=1

TI(G4) +

p∑
i=1

TI(G5) .

Following the approach from the proof of Theorem 4 we obtain the desired result.

4.3 Topological indices of SiO2 nanotube

Silica nanotubes exhibit empty inner space which can be filled by functional loads. In addition,

the mesoporous silica surface is hydrophilic, lends to functionalization and biocompatible so that

the material can be applied in bioseparation, biocatalysis, biosensoring, drug/gene delivery carriers,

adsorption, select sequestration, drug delivery and controlled release [21, 45, 52]. In this section,

we compute the topological indices of SiO2 nanotube structure that we construct from the known

structures of SiO2 sheets. Consequently, in graph-theoretical terms, we form an SiO2 nanotube of

dimension (p, q) by merging all the pendant vertices along right and left sides of SiO2 layer structure

of dimension (p, q−1) forming a tubular structure of the nanotube with length p and circumference

q as shown in Fig. 7. From the structure, we have |V (G)| = q(3p+ 4) and |E(G)| = 4q(p+ 1).
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p

q

Figure 7: SiO2 nanotube (p, q)

Theorem 6. Let G be an SiO2 nanotube of dimension (p, q), where p ≥ 1, q ≥ 2 and q is odd.

1. W (G) = 1
4

[
3(4p3q2 + 3p2q3) + 48p2q2 + 24pq3 + 16q3 + 3p2q + 64pq2 + 32q2 − 4pq − 12q

]
,

2. SZv(G) = 1
2

[
15p3q3 + 57p2q3 − 9p3q + 58pq3 + 16q3 − 21p2q + 16pq2 + 16q2 − 20pq − 8q

]
,

3. SZe(G) = 2
3

[
20p3q3 − 3(4p3q2 − 18p2q3)− 9p3q + 46pq3 − 36p2q2 + 12q3 − 3(5p2q + 11pq2)−

9pq − 12q2
]
,

4. SZev(G) = 1
2

[
20p3q3 − 6p3q2 + 65p2q3 − 12p3q + 59pq3 − 20p2q2 + 16q3 − 2(13p2q + 5pq2) −

22pq − 6q
]
,

5. SZt(G) = 1
6

[
245p3q3 − 3(28p3q2 + 259p2q3)− 135p3q + 712pq3 − 264p2q2 + 192q3 − 9(31p2q +

16pq2)− 228pq − 60q
]
,

6. PI(G) = 2
[
8p2q2 − 2p2q + 15pq2 + 8q2 − 4pq − 3q

]
,

7. S(G) = 2
[
2(4p3q2 + 3p2q3) + 14pq3 + 28p2q2 + 8q3 + p2q + 32pq2 + 12q2 − 3pq − 4q

]
,

8. Gut(G) = 2
3

[
8(4p3q2 + 3p2q3) + 48pq3 + 96p2q2 + 24q3 + 91pq2 − 12pq + 24q2 − 9q

]
.

Proof. Again, each pendant edge forms its own Θ∗-class. Let these pendant edge-cuts be denoted as

Pi, {Pi : 1 ≤ i ≤ 2q}, see Fig. 8(a). Removing these pendant edges, we obtain the subdivision graph

of the Cartesian product of a path with an odd cycle. Since this graph is not a partial cube (in

particular, it is not bipartite), we cannot apply Theorem 3. However, by a direct checking we can

verify that we obtain vertical and horizontal Θ∗-classes as follows. Since q is odd, there is a unique
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Figure 8: Convex cuts on G (a) Pi (b) V1 and (c) Hi

u7 v7][ , u7 7][ , u7 v7][ , u7 v7][ , u7 v7][ ,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0, [ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0, [ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

v

Figure 9: Quotient graph G/V1

vertical Θ∗-class which is denoted as V1, see Fig. 8(b). Horizontal cuts are Hi, {Hi : 1 ≤ i ≤ p},

see Fig. 8(c). The quotient graph thus obtained has an edge-strength value of 1.

(i) G/Pi, {Pi,1 ≤ i ≤ 2q} :

The graph G with edge cut Pi and the quotient graph together with its corresponding strength-

weighted functions are shown in Figs. 8(a) and 4(a), respectively. It is enough to compute for a

single cut due to symmetry of all the Pi’s. The quotient graph G/Pi obtained is a complete graph

K2 with vertex-strength-weighted values [u1, v1], [u2, v2] where
u1 = 1, v1 = 0,

u2 = |V (G)| − 1, v2 = |E(G)| − 1.
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Denote

TI(G6) = TI(G/Pi, (w
i
v, s

i
v), s

i
e) . (6)

(ii) G/V1 :

The graph G with edge-cut V1 and its quotient graph are shown in Figs. 8(b) and 9 respectively.

The quotient graph has vertex-strength-weighted values as follows:

u7 = 2p+ 3, v7 = 2p+ 2,

Now,

TI(G7) = TI(G/V1, (w
1
v, s

1
v), s

1
e) . (7)

(iii) G/Hi, {Hi,1 ≤ i ≤ p} :

The graph G with edge-cut Hi and the quotient graph are shown in Figs. 8(c) and 4(c) respectively.

The quotient graph is a bipartite graph K2,q+1 with vertex-strength-weighted values replaced as

follows:
u5 = 3qi, v5 = q(4i− 1),

u6 = 3q(p+ 1− i), v6 = q(4p− 4i+ 3).
Now,

TI(G8) = TI(G/Hi, (w
i
v, s

i
v), s

i
e) . (8)

From Eqs. (6)-(8) we get

TI(G) = 2qTI(G6) + TI(G7) +

p∑
i=1

TI(G8) .

We obtain the desired result by substituting the values of the parameters.

Theorem 7. Let G be an SiO2 nanotube of dimension (p, q), where p ≥ 1, q ≥ 2 and q is even.

1. W (G) = 1
4

[
3(4p3q2 + 3p2q3) + 24pq3 + 48p2q2 + 16q3 + 4(p2q + 16pq2) + 32q2 − 8q

]
,

2. SZv(G) = 1
2

[
15p3q3 + 57p2q3 − 4p3q + 58pq3 + 16pq2 + 16q3 − 4p2q + 16q2 − 4pq − 4q

]
,

3. SZe(G) = 2
3

[
20p3q3−6(2p3q2−9p2q3)+46pq3−36p2q2+12q3+3(2p2q−11pq2)−12q2+6pq+3q

]
,

4. SZev(G) = 1
2

[
20p3q3−6p3q2+65p2q3−4p3q+59pq3−20p2q2+16q3−2(2p2q+5pq2)−4pq−2q

]
,

5. SZt(G) = 1
6

[
245p3q3 − 3(28p3q2 − 259p2q3)− 4(9p3q − 178pq3)− 264p2q2 + 192q3 − 12(p2q +

12pq2)− 12pq − 12q
]
,
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6. PI(G) = 2
[
8p2q2 − 2p2q + 15pq2 + 8q2 − 4pq − 3q

]
,

7. S(G) = 4
[
4p3q2 + 3p2q3 + 7pq3 + 14p2q2 + 4q3 + p2q + 16pq2 + 6q2 − q

]
,

8. Gut(G) = 2
3

[
4(8p3q2 + 6p2q3) + 48pq3 + 96p2q2 + 24q3 + 6p2q + 91pq2 + 24q2 − 3q

]
.

Proof. We know that |V (G)| = q(3p+4) and |E(G)| = 4q(p+1). After removing the pendant edges

that form their own Θ∗-classes, we are left with the Cartesian product of a path with an even cycle.

This is always a partial cube, hence Theorem 3 applies again. The vertical cuts are denoted as Vi,

{Vi : 1 ≤ i ≤ q
2}, while the pendant and horizontal edge-cuts follow the same lines as in the proof

of Theorem 6.

V1 V2
V3 V1 V2 V3

(a)

u8 v8][ , u8 8][ ,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

[ ]1 0,

v

(b)

Figure 10: (a) Convex cut Vi and (b) Quotient graph G/Vi

Figs. 10(a) and 10(b) depict the graph G with edge cut Vi and the quotient graph together with

its corresponding strength-weighted function respectively. The edge-strength value is 1 and the

vertex-strength-weighted values are as follows: u8 =
3pq
2 + 2q − (p+ 1), v8 = 2(pq + q − p− 1),

Now,

TI(G9) = TI(G/Vi, (w
i
v, s

i
v), s

i
e) . (9)

Therefore,

TI(G) = 2qTI(G6) +
q

2
TI(G9) +

p∑
i=1

TI(G8) .

By substituting the values of the parameters we obtain the desired result.
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Table 3: Asymptotic behaviors of SiO2 nanotube

TI

SiO2 nanotube

p → ∞ q → ∞

q odd q even q odd or even

W 3p3q2 q3(9p2 + 24p+ 16)/4

SZv p3(15q3 − 9q)/2 p3(15q3 − 4q)/2 q3(15p3 + 57p2 + 58p+ 16)/2

SZe p3(40q3 − 24q2 − 18q)/3 p3(40q3 − 24q2)/3 q3(40p3 + 108p2 + 92p+ 24)/3

SZev p3(10q3 − 3q2 − 6q) p3(10q3 − 3q2 − 2q) q3(20p3 + 65p2 + 59p+ 16)/2

SZt p3(245q3 − 84q2 − 135q)/6 p3(245q3 − 84q2 − 36q)/6 q3(245p3 + 777p2 + 712p+ 192)/6

PI p2(16q2 − 4q) q2(16p2 + 30p+ 16)

S 16p3q2 q3(12p2 + 28p+ 16)

Gut 64p3q2/3 q3(16p2 + 32p+ 16)

When the length p and circumference q are tending to large values, all the variants of Szeged

and PI indices become asymptotic to p3q3 and p2q2 as leading terms respectively, while the other

indices increase indefinitely as shown in Table 3.

4.4 Topological indices of SiO2 nanotori

1 2 3 q -1 q

2

p -1

p

Figure 11: SiO2 nanotori (p, q)

Although the exact chemical structures of SiO2 nanotori are unknown at present time, SiO2 nanotori

have been patented [51] and colloidal plasmonic gold nanotori and nanorings have been observed

in pulsed laser photophysical applications [1, 34]. A primary motivation for such studies is that
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such nanorings and nanotori find novel applications in efficient photothermal drug delivery. When

SiO2 nanotube of dimension (p − 1, q) is bent into a ring, it forms a doughnut shaped structure

and we name it as SiO2 nanotori of dimension (p, q) which is shown in Fig. 11. Clearly, we have

|V (G)| = 3pq and |E(G)| = 4pq. We further proceed to compute the topological indices of SiO2

nanotori.

Theorem 8. For p, q ≥ 2, let G be an SiO2 nanotori of dimension (p, q), where p and q are odd.

1. W (G) = 1
4

[
9(p3q2 + p2q3) + 3(p2q + pq2)− 8pq

]
,

2. SZv(G) = 1
2

[
18p3q3 − 9(p3q + pq3) + 12(p2q + pq2)− 8pq

]
,

3. SZe(G) = 2
[
8p3q3 − 4(p3q2 + 4p2q3)− 3(p3q + pq3) + 4(p2q + pq2)− 2pq

]
,

4. SZev(G) = 12p3q3 − 3(p3q2 + p2q3)− 6(p3q + pq3) + 7(p2q + pq2)− 4pq,

5. SZt(G) = 1
2

[
98p3q3 − 28(p3q2 + p2q3)− 45(p3q + pq3) + 56(p2q + pq2)− 32pq

]
,

6. PI(G) = 4
[
4p2q2 − (p2q + pq2)

]
,

7. S(G) = 2
[
6(p3q2 + p2q3) + (p2q + pq2)− 4pq

]
8. Gut(G) = 8

[
2(p3q2 + p2q3)− pq

]
.

Proof. By applying Θ∗ relation, we obtain horizontal and vertical edge-cuts of E(G). Since p and

q are odd, the number of horizontal and vertical cuts are just 1 each and are denoted as H1 and V1

respectively. The quotient graph for both the cuts have the edge-strength values of 1.

V1 V1
V1 V1 V1

(a)

H
1

H
1

H
1

H1

H1

(b)

Figure 12: Convex cuts on G (a) V1 and (b) H1
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(i) G/V1 :

Figs. 12(a) and 9 represent the graph G with edge cut V1 and the quotient graph together with

its corresponding strength-weighted function respectively. The quotient graph G/V1 has vertex-

strength-weighted values [u7, v7] where, u7 = 2p, v7 = 2p, Denote

TI(G10) = TI(G/V1, (w
1
v, s

1
v), s

1
e) . (10)

(ii) G/H1 :

Figs. 12(b) and 9 represent the graph G with edge cut H1 and the quotient graph together with its

corresponding strength-weighted function respectively. This case is similar to the above case with

vertex-strength-weighted values [u7, v7] replaced as u7 = 2q, v7 = 2q, Now,

TI(G11) = TI(G/H1, (w
1
v, s

1
v), s

1
e) . (11)

From Eqs. (10) and (11) we get

TI(G) = TI(G10) + TI(G11) .

By substituting the values of the parameters in the above equation we obtain the desired result.

Theorem 9. For p, q ≥ 2, let G be an SiO2 nanotori of dimension (p, q), where p and q are even.

1. W (G) = 1
4

[
9(p3q2 + p2q3) + 4(p2q + pq2)− 8pq

]
,

2. SZv(G) = 9p3q3 − 2(p3q + pq3) + 4(p2q + pq2)− 4pq,

3. SZe(G) = 16p3q3 − 8(p3q2 + p2q3) + 4(p2q + pq2)− 4pq,

4. SZev(G) = 12p3q3 − 3(p3q2 + p2q3)− 2(p3q + pq3) + 4(p2q + pq2)− 4pq,

5. SZt(G) = 49p3q3 − 14(p3q2 + p2q3)− 6(p3q + pq3) + 16(p2q + pq2)− 16pq,

6. PI(G) = 4
[
4p2q2 − (p2q + pq2)

]
,

7. S(G) = 4
[
3(p3q2 + p2q3) + (p2q + pq2)− 2pq

]
,

8. Gut(G) = 4
[
4(p3q2 + p2q3) + (p2q + pq2)− 2pq

]
.
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Figure 13: Convex cuts on G (a) Vi and (b) Hi

Proof. The Θ∗-classes of E(G) obtained here are horizontal and vertical edge-cuts. Since p and q

are even, Theorem 3 applies because we have the subdivision graph of the Cartesian product of two

even cycles. The number of vertical cuts which are denoted as Vi is q
2 , and the number of horizontal

cuts, denoted as Hi, is p
2 . The quotient graph obtained takes edge-strength value 1.

(i) G/Vi,1 ≤ i ≤ q/2 :

Figs. 13(a) and 10(b) represent the graph G with edge cut Vi and its corresponding quotient

graph respectively. The vertex-strength-weighted values [u8, v8] in the quotient graph G/Vi are

u8 =
3
2pq − p, v8 = 2pq − 2p, Denote

TI(G12) = TI(G/Vi, (w
i
v, s

i
v), s

i
e) . (12)

(ii) G/Hi,1 ≤ i ≤ p/2 :

Figs. 13(b) and 10(b) represent the graph G with edge cut Hi and its corresponding quotient graph

respectively. The vertex-strength-weighted values [u8, v8] are replaced as u8 =
3
2pq − q, v8 = 2pq − 2q,

Denote

TI(G13) = TI(G/Hi, (w
i
v, s

i
v), s

i
e) . (13)

From Eqs. (12) and (13) we get

TI(G) =
q

2
TI(G12) +

p

2
TI(G13) .

We obtain the desired result by substituting the values of the parameter.
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Theorem 10. For p, q ≥ 2, let G be an SiO2 nanotori of dimension (p, q), where p is even and q

is odd.

1. W (G) = 1
4

[
9(p3q2 + p2q3) + 3p2q + 4pq2 − 8pq

]
,

2. SZv(G) = 1
2

[
18p3q3 − 9p3q − 4pq3 + 4(3p2q + 2pq2)− 8pq

]
,

3. SZe(G) = 2
[
8p3q3 − 4(p3q2 + p2q3)− 3p3q + 2(2p2q + pq2)− 2pq

]
,

4. SZev(G) = 12p3q3 − 3(p3q2 + p2q3)− 2(3p3q + pq3) + 7p2q + 4pq2 − 4pq,

5. SZt(G) = 1
2

[
(98p3q3 − 28(p3q2 + p2q3)− 3(15p3q + 4pq3) + 8(7p2q + 4pq2)− 32pq

]
,

6. PI(G) = 4
[
4p2q2 − (p2q + pq2)

]
,

7. S(G) = 2
[
6(p3q2 + p2q3) + p2q + 2pq2 − 4pq

]
,

8. Gut(G) = 4
[
4(p3q2 + p2q3) + pq2 − 2pq

]
.

Proof. The vertical and horizontal edge-cuts obtained upon applying Θ∗ relation follow the same

proof lines as in Case (i) of Theorem 8 and Case (ii) of Theorem 9 respectively. Therefore,

TI(G) = TI(G10) +
p

2
TI(G13) ,

and proceeding along the parallel lines as before we obtain the result.

Theorem 11. For p, q ≥ 2, let G be an SiO2 nanotori of dimension (p, q), where p is odd and q is

even.

1. W (G) = 1
4

[
9(p3q2 + p2q3) + 4p2q + 3pq2 − 8pq

]
,

2. SZv(G) = 1
2

[
18p3q3 − 4p3q − 9pq3 + 4(2p2q + 3pq2)− 8pq

]
,

3. SZe(G) = 2
[
8p3q3 − 4(p3q2 + p2q3)− 3pq3 + 2(p2q + 2pq2)− 2pq

]
,

4. SZev(G) = 12p3q3 − 3(p3q2 + p2q3)− 2(p3q + 3pq3) + 4p2q + 7pq2 − 4pq,

5. SZt(G) = 1
2

[
98p3q3 − 28(p3q2 + p2q3)− 3(4p3q + 15pq3) + 8(4p2q + 7pq2)− 32pq

]
,

6. PI(G) = 4
[
4p2q2 − (p2q + pq2)

]
,

7. S(G) = 2
[
6(p3q2 + p2q3) + 2p2q + pq2 − 4pq

]
,
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8. Gut(G) = 4
[
4(p3q2 + p2q3) + p2q − 2pq

]
.

Proof. Following the same proof lines of Case (i) of Theorem 9 and Case (ii) of Theorem 8, we

obtain the vertical and horizontal edge-cuts respectively. Then,

TI(G) = TI(G11) +
q

2
TI(G12)

and the formulae follow as earlier.

Table 4: Asymptotic behaviors of SiO2 nanotori

TI

SiO2 nanotori

p → ∞ q → ∞

q odd q even p odd p even

W 9p3q2/4 9p2q3/4

SZv p3(18q3 − 9q)/2 p3(9q3 − 2q) q3(18p3 − 9p)/2 q3(9p3 − 2p)

SZe p3(16q3 − 8q2 − 6q) p3(16q3 − 8q2) q3(16p3 − 8p2 − 6p) q3(16p3 − 8p2)

SZev p3(12q3 − 3q2 − 6q) p3(12q3 − 3q2 − 2q) q3(12p3 − 3p2 − 6p) q3(12p3 − 3p2 − 2p)

SZt p3(98q3 − 28q2 − 45q)/2 p3(49q3 − 14q2 − 6q) q3(98p3 − 28p2 − 45p)/2 q3(49p3 − 14p2 − 6p)

PI p2(16q2 − 4q) q2(16p2 − 4p)

S 12p3q2 12p2q3

Gut 16p3q2 16p2q3

As already mentioned earlier, and as can also be seen from Table 4, the leading term of the

polynomials for the variants of the Szeged and for the PI index are p3q3 and p2q2, respectively,

while the other three indices grow like degree-5 polynomials. A comparative analysis of various

topological indices of SiO2 nanostructures is shown in Fig. 14.
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Figure 14: Comparative analysis of the topological indices (a) SiO2 nanosheet (b) C8 nanosheet (c)
SiO2 nanotube (d) SiO2 nanotori

5 Conclusion

In this paper, we have obtained exact analytical expressions of various distance-based topological

indices for SiO2 nanosheets, nanotubes and nanotori. We have applied the cut method and reduced

the original structure to strength-weighted quotient graphs and then computed the topological

indices for these quotient graphs are also found to satisfy the original structure. SiO2 nanostruc-

tures have various applications in the emerging field of nanobiomedicine for efficient drug delivery

because of the optimal pore sizes and rediness for surface functionalization that such nano and
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mesoporous silicates posses. The results obtained in this paper could play a vital role in the design

of QSAR/QSPR relationships for SiO2 nanostructure.
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