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Abstract

For a graph G, an infinite series of self-similar graphs is formed by the gen-
eralized Sierpiński graphs St

G, t ≥ 1. In the case when G is complete we have
the classical Sierpiński graphs St

n = St
Kn

. In this paper the Wiener index, the
Wiener complexity, and the metric dimension of their antipode family St

K1,n
are

determined. Along the way some other properties of the family are also obtained
such as the number of vertex and edge orbits of the automorphism group of St

K1,n
.
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1 Introduction

A common approach in studying mathematical structures is to decompose them into
special sub-structures inheriting important properties. This approach is especially in-
teresting when the considered structures have self-similarity properties, because then
we typically only need to understand the substructures and the way they are linked
together. An example is provided by polymer networks, where one of the models for
these networks is based on generalized Sierpiński graphs, cf. [14, 35]. We also refer
to [39] where (classical) Sierpiński graphs are studied as the dual Sierpiński gaskets.

In this article, we consider the classes of generalized Sierpiński graphs that are
generated from stars. This yields in a way the most fragmented classes among all gen-
eralized Sierpiński graphs and can be considered as the classes opposite to (classical)

1



Sierpiński graphs. The latter graphs that are generated from complete graphs were
introduced in [24]. The original motivation came from topological studies of univer-
sal spaces and from the Tower of Hanoi puzzle [21]. The classical Sierpiński graphs
are by now quite well-understood, see the recent extensive survey [22] containing 121
references.

Sierpiński graphs were extended to generalized Sierpiński graphs in [17], where
several of their properties were listed, mostly without proofs. They were further inves-
tigated with respect to the total chromatic number [15], the strong metric dimension
in [12], the Roman domination number [33], and metric aspects [13]. The paper [34]
studies several invariants of generalized Sierpiński graphs including the chromatic num-
ber, the vertex cover number, the clique number, and the domination number. More-
over, the paper [26] investigates the connectivity of generalized Sierpiński graphs as well
as some additional properties including the existence of 1-factors and Hamiltonicity.

We proceed as follows. In the next section we formally define generalized Sierpiński
graphs and give an intuitive explanation of their construction. Basic concept from
metric graph theory are also recalled. In Section 3 we determine the Wiener index
of the generalized Sierpiński graph over stars T t

n. Some properties of the obtained
polynomials are also deduced. In Section 4 the number of vertex and edge orbits of
T t
n is deduced and as a consequence their Wiener complexity determined. In the last

section we determine the metric dimension of T t
n.

2 Preliminaries

Let G = (V (G), E(G)) be a graph. If t is a positive integer, then the generalized
Sierpiński graph St

G is a graph with V (St
G) = V (G)t. We will abbreviate the notation for

a vertex u = (u1, . . . , ut) of St
G to u = u1 . . . ut. Vertices u = u1 . . . ut and v = v1 . . . vt

are adjacent if and only if there exists an i ∈ [t] such that for every j ∈ [t] the following
three conditions are fulfilled:

(i) uj = vj , if j < i;
(ii) ui 6= vi and uivi ∈ E(G); and
(iii) uj = vi and vj = ui if j > i.

Rephrasing the definition of E(St
G) we can say that uv is an edge of St

G if and only if
there exist an edge xy ∈ E(G) and a sequence of symbols from [t], say w, such that
u = wxyy . . . y and v = wyxx . . . x. The graph St

G can be constructed recursively from
G by the following process: Let S1

G = G. For t ≥ 2, consider n = |V (G)| disjoint copies
of the graph St−1

G and in the ith copy, i ∈ [n], add i at the beginning of each vertex of
the copy. We will denote these n subgraphs of St

G by iSt−1
G , i ∈ [n]. Finally, for every

edge ij of G, add an edge between the vertices ijn−1 and jin−1.
In this paper we are primarily interested in the generalized Sierpiński graphs St

K1,n
,

n ≥ 2, t ≥ 1. (We assume that n ≥ 2 because T t
1 is isomorphic to the path P2t .)

To simplify notation we will denote St
K1,n

by T t
n. We will also assume throughout the
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paper that V (K1,n) = {0, 1, . . . , n}, where 0 is the vertex of degree n. The vertex 0t of
T t
n will be called the central vertex of T t

n. As an example consider the graph T 3
4 shown

in Fig. 1.
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Figure 1: The generalized Sierpiński graph T 3
4 = S3

K1,4

Note that T t
n is a tree for each t ≥ 1. Indeed, T t

n is connected and it easily follows
by induction that |E(T t

n)| = |V (T t
n)| − 1. (More generally, if T is an arbitrary tree,

then St
T is also a tree.) By jT t−1

n , j ∈ {0, 1, . . . , n}, we will denote the subgraph of T t
n

induced by the vertices whose first coordinate is j. Each jT t−1
n is isomorphic to T t−1

n ,
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and the subgraph 0T t−1
n will be called the central copy of T t−1

n in T t
n.

The distance between vertices u and v of a (connected) graph G is denoted by
dG(u, v) or d(u, v) if G is clear from the context. The maximum distance between u
and all the other vertices is the eccentricity ecc(u) of u. The maximum and the minimum
eccentricity among the vertices of G are the diameter diam(G) and the radius rad(G).
The transmission of a vertex u is denoted by TrG(u) (Tr(u) for short) and defined as
the sum of distances between u and all the other vertices of G [37], that is,

TrG(u) =
∑

v∈V (G)

d(u, v) .

The transmision of a vertex is also known as the transmission index of a vertex [1], or
the distance of a vertex [10]. Different additional notations are used for the transmission
of a vertex including TG(v), dG(v) [10], d(x, V (G)) [5], and WG(v) [27].

Finally, the automorphism group of a graphG will be denoted by Aut(G). Whenever
we will speak about (vertex or edge) orbits, this will refer to the orbits under the action
of the group Aut(G).

3 Wiener index

The Wiener index W (G) of a graph G is defined as W (G) =
∑
dG(u, v), where the

summation runs over all unordered pairs of vertices of G. This index is the oldest [38]
and among the most frequently studied and used topological indices in mathematical
chemistry, see a selection of very recent developments [1, 7, 19, 23] and references
therein. In particular, the Wiener index of trees has been extensively studied. We
refer to [30] for a linear algorithm on trees, to the extensive survey [9], and to recent
papers [8, 16]. In this section we add the following result to the area:

Theorem 3.1 If n ≥ 2 and t ≥ 1, then

W (T t
n) =

(
2(2t − 1)n2 − n− 2t

)
(n+ 1)2t−1

2n+ 1
+

(
(2t+1 − 1)n+ 2t

)
(n+ 1)t−1

2n+ 1
. (1)

In the rest we will frequently use the formulas d(10t, 0t+1) = 2t and d(10t, 1t+1) =
2t−1. The formulas can be obtained directly (by induction), or deduced from the more
general results obtained in [13].

If H and K are disjoint subgraphs of a graph G, then let

W (H,K) =
∑

x∈V (H)

∑
y∈V (K)

dG(x, y) .
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By the structure of T t+1
n and its symmetries, the Wiener index of T t+1

n can be decom-
posed as follows:

W (T t+1
n ) =

∑
0≤j≤n

W (jT t
n) +

∑
0≤r<s≤n

W (rT t
n, sT

t
n)

= (n+ 1)W (T t
n) +

(
n

2

)
W (1T t

n, 2T
t
n) + nW (0T t

n, 1T
t
n) . (2)

To further simplify (2) we proceed with a series of lemmas.

Lemma 3.2 If t ≥ 1, then W (1T t
n, 2T

t
n) = 2(n+ 1)t

(
TrT t

n
(0t) + 2t(n+ 1)t

)
.

Proof. Using the fact that 10t and 20t are central vertices of the trees 1T t
n and 2T t

n,
respectively, we obtain

W (1T t
n, 2T

t
n) =

∑
x∈1T t

n

∑
y∈2T t

n

d(x, y)

=
∑

x∈1T t
n

∑
y∈2T t

n

(
d(x, 10t) + d(10t, 20t) + d(20t, y)

)
=

∑
x∈1T t

n

∑
y∈2T t

n

(
d(x, 10t) + 2t+1 + d(y, 20t)

)
= (n+ 1)tTr1T t

n
(10t) + (n+ 1)2t2t+1 + (n+ 1)tTr2T t

n
(20t)

= 2(n+ 1)tTrT t
n
(0t) + (n+ 1)2t2t+1

as claimed. �

Lemma 3.3 If t ≥ 1, then W (0T t
n, 1T

t
n) = (n+ 1)t

(
dT t

n
(0t) + dT t

n
(1t) + (n+ 1)t

)
.

Proof. Now we compute as follows, where we again use the fact that 10t is the central
vertex of the tree 1T t

n:

W (0T t
n, 1T

t
n) =

∑
y∈0T t

n

∑
x∈1T t

n

d(x, y)

=
∑

x∈1T t
n

∑
y∈0T t

n

(
d(x, 10t) + 1 + d(01t, y)

)
= (n+ 1)tTr1T t

n
(10t) + (n+ 1)2t + (n+ 1)tTr0T t

n
(01t)

= (n+ 1)tTrT t
n
(0t) + (n+ 1)2t + (n+ 1)tTrT t

n
(1t),

and we are done. �

Lemma 3.4 If t ≥ 1, then TrT t
n
(0t) = n(n+ 1)t−1(2t − 1).
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Proof. Having in mind the symmetry of T t+1
n we compute as follows:

TrT t+1
n

(0t+1) = TrT t
n
(0t) + n ·

∑
x∈1T t

n

d(0t+1, x)

= TrT t
n
(0t) + n ·

∑
x∈1T t

n

(2t + d(10t, x))

= TrT t
n
(0t) + n(n+ 1)t2t + nTr1T t

n
(10t)

= (n+ 1)TrT t
n
(0t) + n(n+ 1)t2t.

Solving the above first-order inhomogeneous linear recurrence with coefficients, inde-
pendent of t, for TrT t

n
(0t) yields the claimed result. �

Lemma 3.5 If t ≥ 1, then

TrT t
n
(1t) =

1

n
·
((

2(2t − 1)n2 − n− 2t
)

(n+ 1)t−1 + 2t
)
. (3)

Proof. If i, j ∈ [n], then the mapping V (T t
n)→ V (T t

n) that exchanges the coordinates i
and j, and fixes all the other coordinates, is an automorphisms of T t

n. Hence the extreme
vertices jt, 1 ≤ j ≤ n, are in the same orbit. Consequently TrjT t

n
(jt) = TrsT t

n
(st) for

t, s, j ≥ 1.

TrT t+1
n

(1t+1) =
∑

x∈0T t
n

d(1t+1, x) +
∑

x∈1T t
n

d(1t+1, x) + · · ·+
∑

x∈nT t
n

d(1t+1, x)

=
∑

x∈0T t
n

(
(2t − 1) + 1 + d(01t, x)

)
+ TrT t

n
(1t)

+ (n− 1)
∑

x∈2T t
n

(2t+1 + 2t − 1 + d(20t, x))

= 2TrT t
n
(1t) + 2t(n+ 1)t + (n− 1)(n+ 1)t(2t+1 + 2t − 1)

+ (n− 1)TrT t
n
(0t) .

Using Lemma 3.4, we obtain the first-order inhomogeneous linear recurrence

TrT t+1
n

(1t+1) = 2TrT t
n
(1t) + 2t(n+ 1)t + (n− 1)(n+ 1)t(2t+1 + 2t − 1)

+ (n− 1)n(n+ 1)t−1(2t − 1). (4)

It is straightforward to check that TrT t
n
(1t), as given in (3), satisfies both (4) and the

obvious initial condition TrT 1
n
(11) = 2n− 1. �

6



We are now ready to complete the proof of Theorem 3.1. Combining (2) with
Lemmas 3.2 – 3.5 we obtain, after some calculation, that for n ≥ 2 and t ≥ 1, the
Wiener index W (T t

n) satisfies the recurrence

W (T t+1
n ) = (n+ 1)W (T t

n) + (n+ 1)2t
(
(2t+1 − 1)n2 − 2t

)
+ 2t(n+ 1)t. (5)

It is now straightforward to check that W (T t
n), as given in (1), satisfies both (5) and

the obvious initial condition W (T 1
n) = n2, finishing the proof of Theorem 3.1. �

The first few values of W (T t
n) are given in Tables 1 and 2.

t W (T t
n)

1 n2

2 3n4 + 7n3 + 2n2 − 2n
3 7n6 + 31n5 + 48n4 + 21n3 − 13n2 − 10n
4 15n8 + 97n7 + 255n6 + 331n5 + 174n4 − 54n3 − 104n2 − 34n
5 31n10 + 263n9 + 964n8 + 1960n7 + 2308n6 + 1345n5 − 116n4 − 742n3 − 459n2 − 98n

Table 1: The first five values of W (T t
n) as polynomials in n

t W (T t
n)

1 n2

2 n(n+ 1)
(
3n2 + 4n− 2

)
3 n(n+ 1)2

(
7n3 + 17n2 + 7n− 10

)
4 n(n+ 1)3

(
15n4 + 52n3 + 54n2 − 2n− 34

)
5 n(n+ 1)4

(
31n5 + 139n4 + 222n3 + 114n2 − 67n− 98

)
6 n(n+ 1)5

(
63n6 + 346n5 + 737n4 + 692n3 + 109n2 − 324n− 258

)
7 n(n+ 1)6

(
127n7 + 825n6 + 2187n5 + 2893n4 + 1637n3 − 409n2 − 1157n− 642

)
Table 2: The first seven values of W (T t

n) in factored form

Proposition 3.6 W (T t
n) is a polynomial in n of degree 2t with integer coefficients,

with leading coefficient 2t − 1, divisible by n(n+ 1)t−1.

Proof. By induction on t.

t = 1: W (T 1
n) = n2 obviously has the stated properties.

t → t + 1: By induction hypothesis, the first term on the right-hand side of (5)
is a polynomial in n of degree 2t + 1 with integer coefficients, divisible by n(n + 1)t.
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The second term on the right-hand side of (5) is a polynomial in n of degree 2t + 2
with integer coefficients, with leading coefficient 2t+1 − 1, divisible by (n + 1)2t. The
third term on the right-hand side of (5) is a polynomial in n of degree t with integer
coefficients, divisible by (n + 1)t. It follows that the right-hand side of (5), and hence
W (T t+1

n ), is a polynomial in n of degree 2t + 2 with integer coefficients, with leading
coefficient 2t+1− 1, divisible by (n+ 1)t. At n = 0, the right-hand side of (5) evaluates
to 0− 2t + 2t = 0, so W (T t+1

n ) is divisible by n as well. �

4 Wiener complexity

The Wiener complexity CW (G) of G is the number of different distances of the vertices
of G. This concept was introduced in [2] under the name Wiener dimension; here we
follow the notation and terminology of a general approach from [3], see also [4].

For trees T of order at least 3, formulas for diam(St
T ) and rad(St

T ) were proved
in [13, Theorem 14] and [13, Theorem 15], respectively. Applying these formulas to T t

n

we get
diam(T t

n) = 2t+1 − 2 (6)

and
rad(T t

n) = 2t − 1 . (7)

We note that the central vertex 0t of T t
n is the unique vertex u with ecc(u) = 2t − 1.

To determine CW (T t
n) we first give two lemmas. The first one reads as follows,

where Ov(G) and Oe(G) denote the number of vertex orbits and the number of edge
orbits under the action of Aut(G), respectively.

Lemma 4.1 If n ≥ 2 and t ≥ 1, then Ov(T t
n) = 5 · 2t−2 − 1 and Oe(T

t
n) = 5 · 2t−2 − 2.

Proof. It is easy to see that for n ≥ 2 we have Ov(T 1
n) = 2, Ov(T 2

n) = 4, Oe(T
1
n) = 1,

and Oe(T
2
n) = 3. Let now t ≥ 2. In T t+1

n , the subgraphs iT t
n and jT t

n have the same
edge orbits and vertex orbits for any i, j ∈ [n], i 6= j. On the other hand, the vertex
and edge orbits of the subgraphs 0T t

n and 1T t
n are disjoint. Moreover, the edge between

01t and 10t yields one additional vertex orbit and two additional edge orbits. Hence
we have the following recurrence relations,

Ov(T t+1
n ) = 2Ov(T t

n) + 1 ,

Oe(T
t+1
n ) = 2Oe(T

t
n) + 2 .

Solving these recurrence relations yields the result. �

Our second lemma is a consequence of a more general result from [11] that is stated
also in [9, Theorem 3]. Since its prove is short, we include it for completeness.
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Lemma 4.2 Let uv be an edge of a tree T . Let Tu and Tv be the components of T −uv
containing u and v, respectively. If |V (Tu)| > |V (Tv)|, then Tr(v) > Tr(u).

Proof. Since uv is a cut edge, we can compute as follows:

Tr(v)− Tr(u) =
∑
x∈Tu

(d(v, x)− d(u, x)) +
∑
y∈Tv

d(v, y)− d(u, y)

=
∑
x∈Tu

1 +
∑
y∈Tv

−1 = |V (Tu)| − |V (Tv)| > 0

and we are done. �

We are now ready for the main result of this section.

Theorem 4.3 If n ≥ 4, then

CW (T t
n) = Ov(T t

n) = 5 · 2t−2 − 1 .

Proof. Using again the fact that automorphisms preserve distances, the vertices from
the same vertex orbit have the same distance. Hence by Lemma 4.1, CW (T t

n) ≤
Ov(T t

n). To complete the proof we thus need to show that CW (T t
n) ≥ Ov(T t

n). Let
P = u1u2 . . . u2t be a path of length 2t− 1 starting at 0t and ending at 1t. Such a path
exists by (7), and we have u1 = 0t and u2t = 1t. Using the notation of Lemma 4.2
for the components in edge-deleted T t

n we infer that |V (Tui)| > |V (Tui+1)|, i ∈ [2t − 1].
Hence by Lemma 4.2, Tr(u1) < Tr(u2) < · · · < Tr(u2t). Let u = u2t−1−1, v = u2t−1

and w = u2t−1+1. Then vw is the edge between 0T t−1
n and 1T t−1

n . Let x be a pendant
vertex that is adjacent to u. (For instance, in the example from Fig. 1, each of the
vertices 012, 013, and 014 can be considered as x.) By Lemma 4.2, we have

Tr(x)− Tr(u) = (n+ 1)t − 2 ,

Tr(x)− Tr(v) = 2(n+ 1)t−1 ,

Tr(w)− Tr(v) = (n+ 1)t − 2(n+ 1)t−1 ,

Tr(w)− Tr(x) = (n+ 1)t − 4(n+ 1)t−1 .

Clearly, for n ≥ 4 it holds that Tr(v) < Tr(x) < Tr(w). Note that the vertices of
the path P together with vertices such as x above form a set of representatives of the
vertex orbits. Hence the vertices in different orbits have different distances, which in
turn implies that CW (T t

n) ≥ Ov(T t
n). �

5 Metric dimension

A subset R of the vertex set V (G) is a resolving set for the graph G, if for each pair
of distinct vertices x and y there exists an r ∈ R such that dG(r, x) 6= dG(r, y). The
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metric dimension µ(G) of G is the size of a smallest resolving set. These concepts were
independently introduced in [20, 36] as an intriguing option to uniquely identify the
vertices of a graph. Today, a huge bibliography on the topic exists, hence we rather
only refer to the recent developments [6, 18, 28, 31] and references therein; see also [29]
for an application in digital geometry.

The metric dimension of the classical Sierpiński graphs was independently deter-
mined in [32, Théorème 3.6] and in [25, Corollary 6]: If n, t ≥ 1, then µ(St

Kn
) = n− 1.

In this section we add the following result to the list of families for which the metric
dimension is known.

Theorem 5.1 If n ≥ 2, then µ(T 1
n) = n− 1. Moreover, if t ≥ 2, then

µ(T t
n) = (n+ 1)t−2(n2 − n− 1) + 1 .

Proof. Let u and v be vertices of degree 1 of a graph G, and with a common (support)
neighbor. If R is a resolving set for G then R∩{u, v} 6= ∅ because d(u, x) = d(v, x) holds
for any x 6= u, v. Since T 1

n = K1,n, this fact in particular implies that µ(T 1
n) = n− 1.

Let now t ≥ 2, and let uT 1
n be a subgraph of T t

n, where u ∈ {0, 1, . . . , n}t−1. Note
that uT 1

n is isomorphic to T 1
n = K1,n. We say that uT 1

n is of type 1 if the vertices
u1, . . . , un are all of degree 1, and of type 2 if among the vertices u1, . . . , un all but
one are of degree 1. We infer that if uT 1

n is of type 1 or of type 2, then the vertex u0
has a neighbor in u′T 1

n for some u′ ∈ {0, 1, . . . , n}t−1, where u′ 6= u. We claim that T t
n

contains precisely
(n− 1)(n+ 1)t−2 + 1 (8)

subgraphs uT 1
n that are of type 1, and precisely

(n+ 1)t−2 − 1 (9)

subgraphs uT 1
n that are of type 2.

We first prove (8). Let at, t ≥ 2, be the number of type 1 subgraphs of T t
n.

Since 1T 1
n , . . . , nT

1
n are type 1 subgraphs of T 2

n , we have a2 = n, hence the assertion
holds for t = 2. We proceed inductively and assume that t ≥ 3. Then each of the
subgraphs 1T t−1

n , . . . , nT t−1
n contains precisely n type 1 subgraphs. On the other hand,

in the subgraph 0T t−1
n , there are precisely n edges that connect a vertex of a type

1 subgraph of 0T t−1
n (considered in 0T t−1

n ) with a vertex in some subgraph iT t−1
n . It

follows that inside 0T t−1
n the number of type 1 subgraphs (considered in T t

n) is at−1−n.
Consequently,

at = nat−1 + (at−1 − n) = (n+ 1)at−1 − n .
Solving this recurrence yields (8).

Let now bt, t ≥ 2, be the number of type 2 subgraphs of T t
n. There are no such

subgraphs in T 2
n , hence (9) holds for t = 2. For t ≥ 3 we proceed similarly as in the

above paragraph to get the recurrence

bt = (n+ 1)bt−1 + n ,
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from which (9) follows.
Using the fact from the first paragraph of the proof together with (8) and (9) we

infer that if t ≥ 2, then

µ(T t
n) ≥ (n− 1)

(
(n− 1)(n+ 1)t−2 + 1

)
+ (n− 2)

(
(n+ 1)t−2 − 1

)
= (n+ 1)t−2(n2 − n− 1) + 1 .

On the other hand, it is straightforward to verify that the set X which contains (ar-
bitrary) n − 1 leaves from each of the type 1 subgraphs of T t

n, and (arbitrary) n − 2
leaves from each of the type 2 subgraphs of T t

n, is a resolving set for T t
n. Consequently,

µ(T t
n) ≤ (n+ 1)t−2(n2 − n− 1) + 1 and we are done. �
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domination number of generalized Sierpiński graphs, Filomat 31 (2017) 6515–6528.

[34] J. A. Rodŕıguez-Velázquez, E. D. Rodŕıguez-Bazan, A. Estrada-Moreno, On gen-
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