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1 Introduction

If G is a graph and i a positive integer, then X ⊆ V (G) is an i-packing if
vertices of X are pairwise at distance more than i. The integer i is called
the width of the packing X. The packing chromatic number χρ(G) of G is the
smallest integer k such that V (G) can be partitioned into packings X1, . . . , Xk

with pairwise different widths. Since such a partition has packings of k distinct
widths and because the objective is to minimize k, we can assume that Xi is
an i-packing for i = 1, . . . , k. Equivalently, a k-packing coloring of G is a
function c : V (G) → {1, . . . , k} such that if c(u) = c(v) = i, then d(u, v) > i,
where d(u, v) is the usual shortest-path distance between u and v. For a subset
X ⊂ V (G) we will denote by c(X) the multiset {c(x) : x ∈ X}. As usual, a
k-coloring is a partition of V (G) into k 1-packings.

The concept of the packing chromatic number was introduced in [14] and
given the name in [3]. For the infinite square lattice, the packing chromatic
number lies between 12 and 17. The upper bound was established in [27]. The
lower bound 9 from [14] was first improved to 10 (cf. [9]), and it was then
reported in [5] that, using extensive computing, it can be further improved to
12. The exact packing chromatic number of the infinite hexagonal lattice is
7, the upper bound being established in [9] and the lower bound in [22]. On
the other hand, the infinite triangular lattice does not have a finite packing
chromatic number [10]. The packing chromatic number of hypercubes Qd,
d ≤ 5, was determined in [14], the result being extended in [29] by determining
χρ(Qd) for 6 ≤ d ≤ 8. For bounds on the packing chromatic number and some
exact values on Cartesian product graphs see [20,26]. The packing chromatic
number was also intensively studied on distance graphs, see [6,7,28].

In the seminal paper [14] it was proved that it is NP-complete to decide
whether χρ(G) ≤ 4 holds for a graph G. Fiala and Golovach later demon-
strated that the packing chromatic number is actually an intrinsically difficult
graph invariant by proving that determining χρ is NP-complete restricted to
trees [8]. On the positive side, Argiroffo, Nasini, and Torres proved in [1] that
for every fixed q, the packing coloring problem is solvable in polynomial time
for the graphs in which no set of at most q vertices induces more than q − 4
distinct paths on four vertices. Furthermore, in [2] the same authors discov-
ered additional classes of graphs on which the packing chromatic number can
be computed in polynomial time, including caterpillars, certain superclasses
of split graphs, and a certain superclass of cographs.

Hence exact values or good approximations of χρ on non-trivial families
of graphs are of interest, and in this paper we study the packing chromatic
number on the class of base-3 Sierpiński graphs. A further motivation to study
the packing chromatic number of these graphs is the fact that they are subcubic
graphs. It is namely an open problem whether the packing chromatic number
of cubic graphs is bounded by a constant [13]. Earlier it was asked in [14] what
is the maximum of the packing chromatic number of a cubic graph of order n.

The Sierpiński graphs Snp were introduced in [21]. Motivations for them
came from investigations of universal topological spaces (see the book [24])
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and from the Tower of Hanoi problems (see the book [18]). We will formally
introduce the base-3 Sierpiński graphs in the next section. Here we only men-
tion that Sierpiński graphs form an intensively investigated class of graphs;
see [4,11,16,17,23,19,25,30] for a selection of (mostly recent) publications.

The result of this paper reads as follows:

Theorem 1 If n ≥ 1 and Sn is the base-3 Sierpiński graph, then

χρ(S
n) =

3; n = 1 ,
5; n = 2 ,
7; n = 3, 4 .

Moreover, if n ≥ 5, then 8 ≤ χρ(Sn) ≤ 9.

In the rest of the section Sierpiński graphs are introduced. Then, in Sec-
tion 2, Theorem 1 is proved with the exception of the fact that χρ(S

5) ≥ 8.
This assertion is then proved in Section 3.

Set [n] = {1, . . . , n} and [n]0 = {0, . . . , n−1}. We will restrict our attention
to the base-3 Sierpiński graphs Sn3 , hence let us simplify the notation from Sn3
to Sn in the rest of the paper. The graphs Sn are defined as follows. S0 = K1

(so that E(S0) = ∅). For n ≥ 1, the vertex set of Sn is [3]n0 and the edge set
is defined recursively as

E(Sn) = {{is, it} : i ∈ [3]0 , {s, t} ∈ E(Sn−1)} ∪
{{ijn−1, jin−1} | i, j ∈ [3]0 , i 6= j} .

In other words, Sn can be constructed from 3 copies of Sn−1 as follows. For
each j ∈ [3]0 concatenate j to the left of the vertices in a copy of Sn−1 and
denote the obtained graph with jSn−1. Then for each i 6= j join copies iSn−1

and jSn−1 by the single edge e
(n)
ij = {ijn−1, jin−1}. In Fig. 1 the construction

of S3 is illustrated.
If 1 ≤ d < n and s ∈ [3]d0, then the subgraph of Sn induced by the

vertices whose labels begin with s is isomorphic to Sn−d. It is denoted with
sSn−d in accordance with the above notation jSn−1. Note that Sn contains
3d pairwise disjoint subgraphs sSn−d, s ∈ [3]d0. The vertices in, i ∈ [3]0, of Sn

are called extreme vertices (of Sn). The triangle in which an extreme vertex
lies is an extreme triangle. We will also use this notation for the subgraphs
sSn−d. For instance, consider S4 and the vertex 123. Although this vertex is
not an extreme vertex of S4, it is an extreme vertex of 1S3.

2 Proof of Theorem 1 except that χρ(S5) ≥ 8

If G is a graph of order n and S ⊂ [n], then let αS(G) denote the size of
a largest set X ⊆ V (G), such that X = ∪i∈SXi, where each Xi is an i-
packing. Using this notation we can redefine the packing chromatic number
as χρ(G) = min{k : α[k](G) = n}. Suppose that a color k ≥ diam(G) is
used in a packing coloring of G. The color k is used exactly once. From this
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Fig. 1 The Sierpiński graph S3

observation, the following result from [1, Lemma 3] (cf. also [29, Lemma 2.3])
readily follows.

Lemma 1 If G is a connected graph of order n and diameter d, then χρ(G) ≤
n+ (d− 1)− α[d−1](G). Moreover, if α[d−1](G) < n, then the equality holds.

The following lemma will be very useful in our arguments, its proof is
straightforward.

Lemma 2 Let c be a partial packing coloring of S3, in which the extreme
triangles are colored with colors different from 4. If |c−1(4)| = 3, then {v :
c(v) = 4} is one of the two sets shown in Fig. 2 with filled dots and squares,
respectively.

Fig. 2 Partial packing coloring with |c−1(4)| = 3
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Since S1 = K3 we clearly have χρ(S
1) = 3.

In any subgraph iS1(= K3) of S2, a packing coloring can use at most one
color 1 and at most one color 2. Therefore, α[2](S

2) ≤ 6 < |V (S2)|. Moreover,
coloring the extreme vertices with color 2 it easily follows that α[2](S

2) = 6.
Hence by Lemma 1, χρ(S

2) = 9 + (3− 1)− 6 = 5.

Consider next S3. We are going to prove that χρ(S
3) ≥ 7. Suppose on

the contrary that c : V (S3) → [6] is a packing coloring. Since S3 partitions
into 9 triangles, |c−1(1)| ≤ 9. If color 2 appears three times in some subgraph
iS2, then the only possibility is that the extreme vertices of iS2 receive color
2. That is, c(i3) = c(ijj) = c(ikk) = 2, where {i, j, k} = [3]0. But then
|c−1(2) ∩ jS2| ≤ 2 and |c−1(2) ∩ kS2| ≤ 2. It follows that |c−1(2)| ≤ 7. Since
diam(iS2) = 3, |c−1(`)| ≤ 3 holds for ` = 3, 4, 5, 6. The maximum possible
frequencies of all colors from [6] thus sum up to 28. As |V (S3)| = 27 we can
conclude that exactly one of |c−1(`)|, 1 ≤ ` ≤ 6, does not reach the established
upper bound and misses the bound by exactly 1.

Case 1. |c−1(2)| = 7.
In this case there exists an i such that |c−1(2) ∩ iS2| = 3. We may assume
without loss of generality that i = 0 and hence c(000) = c(011) = c(022) = 2.
Because |c−1(2)∩1S2| = |c−1(2)∩2S2| = 2, we must be in the position shown
on the left side of Fig. 3, where × next to a vertex s means that c(s) 6= 2.
Note that |c−1(6)| = 3 is only possible if all the extreme vertices are colored
with 6. Hence |c−1(6)| = 2, and 6 is the only color that does not attain the
above frequency bound. In particular, |c−1(5)| = 3. Then color 5 must appear
in each of the extreme triangles. Using the fact that |c−1(1)| = 9, each of
these triangles contains colors 1, 2, and 5. We may without loss of generality
assume that c(001) = 5. Then the coloring looks like as shown in the middle
of Fig. 3. Since |c−1(4)| = 3, it follows from Lemma 2 that c is as shown on
the right-hand side of Fig. 3. But now the uncolored vertices do not contain a
diametrical pair which in turn implies that we cannot color two vertices with
6.
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Fig. 3 Partial 6-packing coloring(s) of S3 when |c−1(2)| = 7
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Case 2. |c−1(2)| = 6.
Then |c−1(6)| = 3 which is only possible when c(000) = c(111) = c(222) = 6.
Further, because |c−1(5)| = 3 and |c−1(1)| = 9, each of the extremal triangles
is colored with colors 1, 5, and 6. Assuming without loss of generality that
c(001) = 5, these triangles are uniquely colored. See the partial coloring pre-
sented on the left-hand side of Fig. 4. Since |c−1(4)| = 3, Lemma 2 implies
that there are exactly two possibilities for assigning color 4. They are shown in
the middle and on the right of Fig. 4. In the first case, since |c−1(2)∩0S2| = 2
must hold, we get c(011) = 2. But then |c−1(2) ∩ 1S2| ≤ 1, a contradiction.
Similarly, in the second case we are forced to have c(022) = 2 and we get a
contradiction because then |c−1(2) ∩ 2S2| ≤ 1 would hold.
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Fig. 4 Partial 6-packing coloring(s) of S3 when |c−1(2)| = 6

We have thus proved that χρ(S
3) ≥ 7. Consequently, χρ(S

n) ≥ 7 holds for
any n ≥ 3. On the other hand, the 7-packing coloring from Fig. 5 (in which
the colors 8 and 9 should be ignored) demonstrates that actually χρ(S

4) = 7
holds (and consequently also χρ(S

3) = 7).

We next show that χρ(S
n) ≤ 9 holds for any n ≥ 5. Recall that Sn contains

3n−4 disjoint copies of subgraphs isomorphic to S4, that is, the subgraphs sS4,
where s ∈ [3]n−40 . First color each of these subgraphs using the packing coloring
from Fig. 5 using 9 colors. More precisely, we color each vertex for which two
colors are listed with the higher color (either 8 or 9). Suppose now that the
subgraphs tS4 and uS4, where t 6= u, are connected by an edge and let x ∈ tS4

and y ∈ uS4 be its endvertices. Vertices x and y are extreme vertices of tS4

and of uS4, respectively. Now modify the above coloring such that in the
extreme triangle of tS4 that contains x, colors 8 and 9 are changed to 2 and
6, respectively. In this way each of the subgraphs sS4 is 9-packing colored.
Moreover, since the distance between any vertices of Sn colored with 8 (or
colored with 9) is at least 10 (actually, at least 14), the whole Sn is 9-packing
colored as well.
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Fig. 5 Packing coloring(s) of S4

3 Proof of χρ(S5) ≥ 8

Let c : V (S3)→ [7] be any 7-packing coloring of S3. We start by recalling that
the possible sizes of color classes with respect to c enjoy the upper bounds:

|c−1(1)| ≤ 9; |c−1(2)| ≤ 7; |c−1(i)| ≤ 3, 3 ≤ i ≤ 6; |c−1(7)| ≤ 1 . (1)

Since the sum of the bounds in (1) is 29, and |V (S3)| = 27, at most two
of |c−1(`)|, 1 ≤ ` ≤ 6, do not reach the established upper bound (we know
already from the previous section that χρ(S

3) = 7, and so |c−1(7)| = 1).
Now, for s, t ∈ [6], we say that a packing coloring c of S3 is of type Cs,t

if |c−1(s)| and |c−1(t)| do not achieve the bounds in (1). For instance, in the
coloring of type C5,2 we have

|c−1(1)| = 9; |c−1(2)| = 6; |c−1(i)| = 3, i ∈ {3, 4, 6}; |c−1(5)| = 2; |c−1(7)| = 1.

Note that we allow s = t, which implies that |c−1(s)| misses the corresponding
bound in (1) by 2 and all the other bounds must then be achieved.

Not all Cs,t are possible. It is clear that whenever |c−1(6)| = 3, the only
possibility for three vertices to receive color 6 is that they are the three extreme
vertices of S3. On the other hand, if |c−1(2)| = 7, then in one of the jS2 three
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vertices are colored 2, which is only possible if these three vertices are the
extreme vertices of the jS2, one of them being the extreme vertex of S3.
Hence, if {2, 6} ∩ {s, t} = ∅, then a packing coloring of type Cs,t does not
exist.

Now suppose that {5, 6} ∩ {s, t} = ∅. This implies that the three vertices
colored 5 lie in the extreme triangles of S3 and the three vertices colored 6
are the extreme vertices of S3. It now follows as before that |c−1(2)| ≤ 6.
If |c−1(1)| = 9 and |c−1(2)| = 6, then the colors in each extreme triangle
are 1, 5, 6, and it is easy to see that c−1(2) = {010, 020, 101, 121, 202, 212}.
The only vertices left uncolored belong to a 12-cycle, and half of the vertices
on this cycle must be colored 1. However, it is now impossible to color the
remaining six vertices on this 12-cycle with either the multiset {3, 3, 4, 4, 4, 7}
or the multiset {3, 3, 3, 4, 4, 7}. Hence, packing colorings of type C3,2 and C4,2

do not exist.
If |c−1(1)| = 9 and |c−1(2)| = 5, then again the three extremal triangles are

colored with colors 1, 5, 6, and, by Lemma 2, either c−1(4) = {010, 121, 202} or
c−1(4) = {020, 212, 101}. In both of these cases it is straightforward to argue
that at most four vertices can be colored 2, a contradiction. Hence, a type C2,2

packing coloring does not exist.
Next, suppose that |c−1(1)| = 8 and |c−1(2)| = 6. All three extreme vertices

are colored 6, and at least two of the three extreme triangles have colors 1, 5, 6.
Without loss of generality we assume the vertices in the extreme triangles 00S1

and 22S1 have colors 1, 5, 6. In addition, there are two vertices colored 2 in each
of 0S2, 1S2, and 2S2. None of 011, 100, 122, 211, 200, 022 is colored 2, which
in turn implies that c−1(2) = {010, 020, 101, 121, 212, 202}. The only vertices
left uncolored are twelve on a 12-cycle and another vertex v at distance 2 from
the 12-cycle. Six of these are colored 1, three are colored 3, three are colored
4 and one is colored 7. Consequently, c(v) = 4 and half of the vertices on the
12-cycle must be colored 1. Regardless of which six vertices are colored 1, it
is not possible to color two of the remaining vertices 4 and three of them 3.
Therefore, a type C2,1 packing coloring does not exist.

Finally, assume that c is of type C6,3. This implies that the vertices in
each of the three extreme triangles of S3 are colored by colors 1, 2, and 5. We
assume without loss of generality that three vertices in 0S2 are colored 2 and
that c(001) = 1 and c(002) = 5. By Lemma 2 either c−1(4) = {010, 202, 121}
or c−1(4) = {020, 212, 101}. It is not possible for c−1(4) = {020, 212, 101}
since three vertices in 0S2 are colored 1. Hence c−1(4) = {010, 202, 121}. It
now follows that c(012) = c(020) = 1 and consequently 6 6∈ c(0S2). We can
conclude that exactly one of 200 or 100 is colored 6 by c. Each of these possi-
bilities would imply that a vertex in one of the extreme triangles receives color
6. This is a contradiction, and thus a 7-packing coloring of type C6,3 does not
exist.

This proves the following lemma.

Lemma 3 If c : V (S3) → [7] is a 7-packing coloring of S3, then c is of one
of the types C6,6, C6,5, C6,4, C6,2, C6,1, C5,2.
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Suppose that c : V (S4) → [7] is a 7-packing coloring of S4. Clearly, the
restriction of c to each jS3 in S4 is then a 7-packing coloring of jS3, hence it
must be of one of the types described in Lemma 3. We will prove that in fact
the only possibility, in which the 7-packing colorings of 0S3, 1S3, and 2S3 are
combined to form a packing coloring of S4, is that all three restricted colorings
of c to jS3 are of type C6,5.

In the following five claims we will use the following construction. Let 2×S3

be the graph obtained from two copies of S3 by adding an edge between two
of its extreme vertices. We will denote the first copy of S3 by S and use the
standard labels for its vertices, while for the second copy of S3 denoted by S′

we will use labels i′j′k′, where i, j, k ∈ [3]0. To define the edges in the second
copy just ignore the prime symbols. We may without loss of generality assume
that 000 is adjacent to 0′0′0′.

We start with the following claim, which follows from the fact that in a
coloring c of type Cs,t with 5 6∈ {s, t} the set c−1(5) consists of three vertices,
each belonging to a distinct extreme triangle of S3.

Claim 1 Let c be a 7-coloring of 2× S3 such that c restricted to S is of type
Cs,t and c restricted to S′ is of type Cs′,t′ . If 5 6∈ {s, t, s′, t′}, then c is not a
7-packing coloring of 2×S3. In particular, this holds when {s, t} = {s′, t′} and
{s, t} is one of the pairs {6, 6}, {6, 4}, {6, 2}, {6, 1}.

By a similar argument we prove the following assertion.
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Claim 2 If c is a 7-coloring of 2× S3 such that c restricted to S and to S′ is
of type C5,2, then c is not a 7-packing coloring of 2× S3.

Claim 2 follows from the fact that 6 6∈ {s, t} implies that in a packing
coloring c of type Cs,t we have c(j3) = 6 for all j ∈ [3]0.

Claim 3 If c is a 7-coloring of 2 × S3 such that c restricted to S is of type
C6,6 or C6,1 and c restricted to S′ is of type C6,5, then c is not a 7-packing
coloring of 2× S3.

Proof Since c is a 7-coloring of 2×S3, which restricted to S is of type C6,6 or
C6,1, it implies that each of the extreme triangles of S contains a vertex colored
5. In particular, this holds for 00S1, which implies that in 0′S′2 no vertex may
be colored 5 if we want c to be a packing coloring (which we assume for the
purposes of obtaining a contradiction). In addition, the extreme vertex 0′0′0′

must not be colored 2, because otherwise it is not possible to use color 2 seven
times on S. It follows that in 0′S′2 only two vertices are colored 2. Moreover, as
c restricted to S′ is of type C6,5, we infer that c(0′S′2) = {1, 1, 1, 2, 2, 3, 4, 6, 7}.
Hence no vertex in 0S2 may be colored 7. But then, as at most two vertices can
be colored 2 in 0S2 (the extreme vertex 000 must not be colored 2 by the same
reason we used for 0′0′0′), we get c(0S2) = {1, 1, 1, 2, 2, 3, 4, 5, 6}. Clearly, the
vertices colored 6 in 0S2 and 0S′2 must be (at least) 7 apart, and so we may
assume without loss of generality that c(0′1′1′) = 6. This readily implies that
the extreme triangle 2′2′S′1 contains colors 1, 2, and 6, which, in addition,
implies the colors that must be used in 2′S′2. (Note that the positions of the
color 2 in S′ are as depicted in the left graph of Fig. 3 with c(1′1′1′) = 2.) In
particular, c(2′0′1′) = 2, hence the only place for the color 5 in 2′S′2 is in one
of the vertices 2′0′0′, 2′0′2′, which also implies c(2′1′S′1) = {1, 3, 4}. Now, not
both vertices 1′2′0′ and 1′2′1′ can receive color 1, but from the location of the
colors in 2′S′2 they also cannot receive colors 3, 4, 5, and 6. Since c(1′2′2′) = 2
and since 0′S′2 contains color 7, we also derive that 1′2′0′ and 1′2′1′ cannot
receive these two colors, which is the final contradiction. Thus c is not a packing
coloring. ut

Claim 4 If c is a 7-coloring of 2 × S3 such that c restricted to S is of type
C6,5 and c restricted to S′ is of type C6,4, then c is not a 7-packing coloring
of 2× S3.

Proof Let c be as in the statement of the claim, and assume that it is a
packing coloring. Clearly, in each of 0S2 and 0′S′2 only two vertices are
colored 2, and since the extreme triangle 0′0′S1 contains a vertex colored
5, we infer that 0S2 does not contain a vertex colored 5. Hence c(0S2) =
{1, 1, 1, 2, 2, 3, 4, 6, 7}. Thus 7 does not appear in 0′S′2, which implies that
c(0′S′2) = {1, 1, 1, 2, 2, 3, 4, 5, 6}, and the vertex colored 6 must be at distance
3 from 0′0′0′. Without loss of generality we may assume that c(0′1′1′) = 6. But
then the extreme triangle 2′2′S′1 must also contain color 6, and we know from
the structure of the coloring of type C6,4 that c(2′2′S′1) = {1, 2, 5}, which is
clearly a contradiction. ut



Packing chromatic number of base-3 Sierpiński graphs 11

Claim 5 If c is a 7-coloring of 2 × S3 such that c restricted to S is of type
C6,4 or C6,1 and c restricted to S′ is of type C5,2, then c is not a 7-packing
coloring of 2× S3.

Proof Assume that c is a packing coloring of 2×S3. Since c restricted to S′ is
of type C5,2, we infer that c(0′0′0′) = 6. In addition, there are (at most) two
vertices colored 2 in 0′S′2, and there is no vertex colored 5 in 0′S′2 (because the
extreme triangles of S contain 5), hence c(0′S′2) = {1, 1, 1, 2, 2, 3, 4, 6, 7}. This
implies that 7 does not appear in 0S2, and so c(0S2) = {1, 1, 1, 2, 2, 2, 3, 4, 5}.
In addition, two vertices with color 6 must appear in S at distance at least 6
from the vertex 000. This can only happen if the vertices colored by 6 are in
the extreme triangles 11S1 and 22S1. But then c(11S1) = c(22S1) = {2, 5, 6},
which is a contradiction because color 1 must also be present in these triangles.
We conclude that c is not a packing coloring. ut

C5,2 C6,2

C6,5

C6,6 C6,1

C6,4

Fig. 8 The relation graph of the remaining compatible types of 7-packing colorings of S3

Claims 1–5 largely restrict the possibilities of two copies of S3 with a
prescribed 7-packing coloring to be combined with a 7-packing coloring of the
(colored) graph, obtained by adding an edge between two extreme vertices, one
from each copy. In Fig. 8 the edges represent the relation between two types
of colorings of S3, which have not been excluded in the preceding claims. The
loop at C6,5 indicates that two copies of an S3, each possessing a 7-packing
coloring of type C6,5, can be combined to a 7-packing coloring of 2 × S3. In
fact, as we know, even three copies of S3, each of type C6,5, can create 7-
packing coloring of S4. Note that altogether there are four possibilities for
three copies of S3 to be combined to form a 7-packing coloring of S4, and they
are represented by the following types:

– C6,5, C6,5, and C6,5,
– C6,5, C6,2, and C5,2,
– C6,5, C6,5, and C5,2,
– C6,5, C6,5, and C6,2.

We will now show that the triples of graphs S3 possessing 7-packing color-
ings of the latter three types described above do not yield a 7-packing coloring
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of S4 (i.e. the only way to obtain a 7-packing coloring of S4 is to combine
three copies of 7-packing colorings of S3 all of type C6,5). This will suffice to
complete the proof of the theorem.

Claim 6 If c : V (S4) → [7] is a 7-coloring of S4 such that the restriction of
c to 0S3 is of type C5,2, the restriction of c to 1S3 is of type C6,5, and the
restriction of c to 2S3 is of type C6,2, then c is not a 7-packing coloring of S4.

Proof Suppose on the contrary that c is a 7-packing coloring. Since the coloring
c restricted to 0S3 is of type C5,2, we have c(0j3) = 6 for all j ∈ [3]0. Because
in 1S3 two vertices receive color 6, the only places to put these two colors into
1S3 are the triangles 13S1 and 122S1, respectively. From the same reason we
find that each of the triangles 23S1 and 211S1 contains a vertex colored 6.
Since the vertices from 122S1 and 211S1 are pairwise at distance at most 3,
the coloring c is not a 7-packing coloring. ut

Using arguments parallel to those from the proof of Claim 6 we get:

Claim 7 If c : V (S4) → [7] is a 7-coloring of S4 such that the restriction of
c to 0S3 is of type C5,2 and the restriction of c to each of 1S3 and 2S3 is of
type C6,5, then c is not a 7-packing coloring of S4.

For the last claim we need two lemmas.

Lemma 4 Let c : V (S3) → [7] be a 7-packing coloring of S3 of type C6,2.
If c(211) = 6, then 2 ∈ c(22S1); and by symmetry, if c(122) = 6, then 2 ∈
c(11S1).

Proof Suppose that the conditions of the statement hold, and for the purposes
of getting a contradiction, assume that in the extreme triangle 22S1 there is
no vertex colored by 2. Since c(211) = 6, and c is of type C6,2, the colors that
appear in the extreme triangle 00S1 are 1, 5, and 6. It is clear that there is
no place to color three vertices by 2 in any of the subgraphs jS2, j ∈ [3]0 (if
this happened in 1S2, then only one 2 could be placed in 0S2 and only one
2 in 2S2). Hence in each of the subgraphs jS2 there are exactly two vertices
colored by 2. In particular this implies that c(212) = c(202) = 2, and this
further implies that c(210) = c(200) = 1. We then also infer that c(020) = 2
and c(021) = 1. Now, the only possible color that can be assigned to 022 is 3,
which then implies that the color of 201 cannot be 3, and so c(201) = 4. This
in turn implies that c(010) = 4, and the positions of both vertices colored 4
further imply that c(11S1) = {1, 4, 5}. Since c(011) = 2, we have c(012) = 1,
but 012 is adjacent to 021, which is also colored 1, the final contradiction. ut

Lemma 5 Let c : V (S3)→ [7] be a 7-packing coloring of S3 of type C6,5. If no
vertex of the subgraph 0S2 is colored 5 or 6, then c(100) = 6 and c(112) = 5,
or c(200) = 6 and c(211) = 5.
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Proof As no vertex is colored 5 or 6 in 0S2, we get c(0S2) = {1, 1, 1, 2, 2, 2, 3, 4, 7}.
Let us assume that a vertex colored 4 in 0S2 is closer to the vertex 13 than to
23. Since c(000) = 2, this implies that 4 /∈ c(10S1).

Now, suppose that there is a vertex colored 4 in the extreme triangle 11S1.
Since vertices colored by 5 and by 6 cannot lie in the triangle 12S1 (because
there must be vertices colored by 5 and 6 also in 2S2), we infer that the triangle
10S1 contains both colors 5 and 6. From this we derive that either c(121) = 3
or c(122) = 3 (note that c(120) = 2 is fixed because seven vertices are colored
2). In either case this implies that the triangle 21S1 must not have a vertex
colored 3, but also not 5 nor 6. Since beside colors 1 and 2 we must have
another color in this triangle, we readily infer that c(212) = 4. This in turn
implies c(111) = 4, c(211) = 1, and in turn we find that c(112) = 1. But now
each of the remaining possibilities, namely c(121) = 1 and c(122) = 1 leads to
a contradiction. This implies that 4 /∈ c(11S1).

The only remaining possibility is that c(121) = 4. This implies c(122) = 1,
c(212) = 1, and c({220, 222}) = {1, 2}. We then also find that one of the
vertices 200 or 202 must be colored 4, but because of either 001 or 010 colored
4, we conclude that c(202) = 4. Now, it is clear that the only place for color 6
is in the vertex 200, which only leaves space in the vertex 221 for color 5.

Note that the choice of a vertex colored 4 in 0S2 being closer to the vertex
222 than to 111 yields c(100) = 6 and c(112) = 5. ut

Claim 8 If c : V (S4) → [7] is a 7-coloring of S4 such that the restriction of
c to 0S3 is of type C6,2 and the restriction of c to 1S3 and to 2S3 is of type
C6,5, then c is not a 7-packing coloring of S4.

Proof Suppose on the contrary that c is a 7-packing coloring. Since the coloring
c restricted to 0S3 is of type C6,2, each of the respective extreme triangles of
the subgraph 0S3 contains a vertex colored 5, which implies that the subgraphs
10S2 and 20S2 do not have a vertex colored 5. Since there are two vertices
colored 6 in the subgraph 0S3, at least one of the subgraphs 01S2, 02S2 must
contain a vertex colored 6. We assume without loss of generality that there
is a vertex colored 6 in 01S2, and distinguish three cases with respect to the
position of the vertex in 01S2, which is colored 6.

Case 1. c(0100) = 6.
In this case the extreme triangle 022S1 of 0S3 contains color 6. This in

turn implies that colors 5 and 6 are not allowed in 20S2 and so the restriction
of c to 2S3, which is of type C6,5, fulfills the conditions of Lemma 5. Hence
either c(2200) = 6 or c(2100) = 6. This is in contradiction with c(022j) = 6,
where j ∈ {0, 2}, since the distance between 2i00 and 022j is at most 6.

Case 2. c(0122) = 6.
Since the restriction of c to 0S3 is of type C6,2, we can use Lemma 4, which

(by symmetry) implies that the triangle 011S1 contains a vertex colored 2 (thus
the triangle contains colors 1, 2, and 5). Then the subgraph 10S2 contains only
two vertices colored 2, and we know from above that it contains no vertex
colored 5. Thus 10S2 has to contain a vertex colored 6, and there remain only
two vertices, which can be colored 6 in 10S2, that is 1011 and 1022. Indeed,
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if 1012 or 1021 were colored 6, then only one vertex from 1S3 would receive
color 6.

Case 2.1. c(1011) = 6. This implies that c(122S1) = {1, 2, 6}. For color
2 this follows from the fact that either 11S2 or 12S2 contains three vertices
colored 2. Hence the subgraph 21S2 contains no vertex colored 6, which implies
that a vertex colored 6 must lie in 20S2 and a vertex colored 6 must lie in
22S2. Moreover, since c(0122) = 6, we infer that it must be c(2010) = 6. Next,
since there is no vertex with color 6 in the subgraph 02S2 and there are at
most two vertices in this subgraph colored 2, there must be a vertex with
color 7 in 02S2. Thus 20S2 has no vertex colored 7 (and no vertex colored 5),
which readily implies that c(20S2) = {1, 1, 1, 2, 2, 2, 3, 4, 6}, and the position
of vertices colored by 2 in 20S2 is fixed. Moreover, we derive that c(2012) = 1,
and so c(2020) = c(2001) = 1. From the remaining positions for the vertex
with color 4 in 20S2 (notably, 2002 and 2021) and having in mind that three
vertices from 2S3 receive color 4, we derive that a vertex colored 4 in 22S2 can
only be one of 2220, 2212, 2221, 2222. In addition, since c(2010) = 6, we know
that color 6 must be in one of the vertices 2212, 2221, 2222. Since color 2 is
either in 2220 or 2222 and color 1 must be present in 222S1, we conclude that
c({2220, 2222, 2221, 2212}) = {1, 2, 4, 6}. Hence c(2212) 6= 1. Since c(2210) =
c(2120) = 2, it follows that c(2211) = 1 and in turn also c(2121) = c(2111) = 1.
But then c(1222) /∈ {1, 2, 6}, which is a contradiction.

Case 2.2. c(1022) = 6. Since there is no vertex colored 5 and there are only
two vertices colored 2 in the subgraph 10S2, there must be a vertex colored
7 in 10S2. On the other hand, position of color 6 in 1022 implies that there
is no vertex colored 6 in the subgraph 12S2 (and again there are only two
vertices colored 2 in 12S2, because of the edge between 1222 and 2111). This
implies that there must be a vertex colored 7 in the subgraph 12S2, which is
in contradiction with color 7 in the subgraph 10S2.

Case 3. The vertex colored 6 in 01S2 is at most 2 apart from the vertex
0111.

This implies that no vertex is colored 6 in 10S2. Since there is also no
vertex colored 5 in 10S2, we derive that there must be three vertices colored 2
in 10S2, in particular c(1000) = 2. Hence 2 /∈ c(011S1), which also implies that
each of the subgraphs 00S2, 01S2, and 02S2 must have exactly two vertices
colored 2.

Moreover, c restricted to 1S3 is of type C6,5, and by Lemma 5 either
c(1100) = 6 or c(1200) = 6. Suppose that c(1200) = 6. Then by Lemma 5
we have c(1221) = 5, and so there is no vertex colored 5 in 21S2, which
is a contradiction, because there is no vertex colored 5 also in 20S2. Hence
c(1100) = 6, which implies that either c(0101) = 6 or c(0121) = 6. We deal
with each of these two possibilities separately.

Case 3.1. c(0121) = 6. Note that the only remaining possibility to put
two colors 2 in 01S2 is if c(0122) = 2. Since c(1100) = 6, a vertex in the
triangle 122S1 is colored 6, which implies that there must be a vertex colored
6 in 20S2 and 22S2. Thus c(22S2) = {1, 1, 1, 2, 2, 3, 4, 5, 6}. It is also clear that
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c(2111) 6= 2, which implies c(2000) = 2. But then there is a place for only one
vertex to be colored 2 in the subgraph 02S2, a contradiction.

Case 3.2. c(0101) = 6. This implies that a vertex colored 6 lies in 02S2,
and it is at most 2 apart from 0222. Hence 6 /∈ c(20S2). As there is also no
color 5 in the subgraph 20S2, we infer by Lemma 5 (because 2S3 is of type
C6,5) that either c(2100) = 6 or c(2200) = 6. Now, c(2100) = 6 is not possible
since there is a vertex x colored 6 in the triangle 122S1. But c(2200) = 6
implies that there is a vertex y colored 6 in the triangle 211S1. Since y is at
most 3 apart from x this is the final contradiction. ut

We can now finish the argument that χρ(S
5) ≥ 8. By Claims 6, 7, and 8,

the only possibility for a 7-coloring c : V (S4)→ [7] to be a 7-packing coloring
of S4 is that the restrictions of c to iS3 for all i ∈ [3]0 are 7-packing colorings
of type C6,5. This readily implies that in any 7-packing coloring c of S4, we
have c(i4) = 2 for all i ∈ [3]0.

Now, suppose that there exists a 7-packing coloring of S5. Then, for each
j ∈ [3]0 the coloring c restricted to jS4 is a packing coloring of the correspond-
ing subgraph, isomorphic to S4. By the above, c(ji4) = 2 for all i, j ∈ [3]0, and
we derive a contradiction with c being a packing coloring. Hence χρ(S

5) > 7.

4 Concluding remarks

In this paper we determined the exact values of the packing chromatic number
of the graphs Sn3 , n ≤ 4, and established that χρ(S

n
3 ) ∈ {8, 9} when n ≥ 5. It

would certainly be of interest to decide, which of χρ(S
n) equal 8 and which

equal 9, for n ≥ 5.
There are other possible directions to continue the investigation of this

paper. Firstly, it would be worth exploring the packing chromatic number of
Sierpiński graphs Snp , for base p greater than 3. A generalization in a differ-
ent direction is that of studying the S-packing coloring number of Sierpiński
graphs. The concept of S-packing coloring is a generalization of packing col-
oring. It was introduced in [14] and further investigated in [8,12,15].
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covering codes in Sierpiński graphs, Des. Codes Cryptogr. 69 (2013) 181–188.

17. A.M. Hinz, C. Holz auf der Heide, An efficient algorithm to determine all shortest paths
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Birkhäuser/Springer, Basel, 2013.

19. A.M. Hinz, D. Parisse, The average eccentricity of Sierpiski graphs, Graphs Combin. 28
(2012) 671–686.

20. Y. Jacobs, E. Jonck, E.J. Joubert, A lower bound for the packing chromatic number of
the Cartesian product of cycles, Cent. Eur. J. Math. 11 (2013) 1344–1357.
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