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Abstract

A signed Roman k-dominating function on a graph G = (V (G), E(G)) is a function
f : V (G) → {−1, 1, 2} such that (i) every vertex u with f(u) = −1 is adjacent to at
least one vertex v with f(v) = 2 and (ii)

∑

x∈N [w] f(x) ≥ k holds for any vertex w. The

weight of f is
∑

u∈V (G) f(u), the minimum weight of a signed Roman k-dominating

function is the signed Roman k-domination number γk

sR
(G) of G. It is proved that

determining the signed Roman k-domination number of a graph is NP-complete for
k ∈ {1, 2}. Using a discharging method, the values γ2

sR
(C3 �Cn) and γ2

sR
(C4 �Cn)

are determined for all n.

Key words: Roman domination; signed Roman 2-domination; computational complexity;
torus graphs; discharging

AMS Subj. Class: 05C69, 05C85

1 Introduction

A motivation for the recently introduced signed Roman k-domination is that it combines
properties of the Roman domination [2, 6, 16] and the signed domination [8, 19].

A Roman dominating function (RDF) on a graph G is a function f : V (G) → {0, 1, 2}
satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least
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one vertex v for which f(v) = 2. The weight ω(f) of an RDF f is the value ω(f) =
∑

u∈V (G) f(u). The minimum weight of a Roman dominating function on a graph G is
called the Roman domination number of G.

The recent concept of signed Roman k-domination is defined as follows. Let G =
(V (G), E(G)) be a graph and k a positive integer. Then a function f : V (G) → {−1, 1, 2} is
a signed Roman k-dominating function (SRkDF) if (i) every vertex u for which f(u) = −1
is adjacent to at least one vertex v for which f(v) = 2 and (ii)

∑

x∈N [w] f(x) ≥ k holds for
any vertex w of G, where N [w] = {x : wx ∈ E(G)}∪{w} denotes the closed neighborhood
of w. The weight of f is the value

∑

u∈V (G) f(u), and the minimum weight of a signed

Roman k-dominating function is the signed Roman k-domination number γksR(G) of G.
Let f be a SR1DF and S ⊆ V (G), we denote f(S) =

∑

v∈S

f(v).

For an RDF or SRkDF f of G, let Vi = {x : f(x) = i}. Then for an RDF f of G,
(V0, V1, V2) is the ordered partition of V (G) induced by f such that Vi = {x : f(x) = i}
for i = 0, 1, 2; and for an SR1DF f of G, (V−1, V1, V2) is the ordered partition of V (G)
induced by f such that Vi = {x : f(x) = i} for i = −1, 1, 2.

The signed Roman k-domination was introduced by Henning and Volkmann in [12],
generalizing the case k = 1 studied earlier in [1]. The paper [12] gives different bounds
and exact results on γksR(G). Among other results, γ2sR(Cn) and γksR(Kp,p) (p ≥ k − 1)
are determined. In the subsequent paper [11] (interestingly, published a year earlier!) the
same authors improved a lower bound from [12] on γksR for trees and characterized the
trees achieving equality. Volkmann [17] further extended the signed Roman k-domination
to digraphs, again generalizing the case k = 1 that was first studied in [15]. Very recently,
signed total Roman domination in digraphs and signed Roman edge k-domination were
introduced and investigated in [18] and [3], respectively.

Clearly, the signed Roman k-domination number is defined only for graphs G with
δ(G) ≥ k/2− 1, where δ(G) is the minimum degree of G. However, as pointed out in [12],
it is reasonable to assume that δ(G) ≥ k− 1. Since in this paper we restrict our attention
to the cases k = 1 and k = 2, this assumption requires only that graphs considered have
no isolated vertices.

The signed Roman k-domination problem is the following:

Signed Roman k-Domination Problem

Input: A graph G, and an integer ℓ.
Question: Is there an SRkDF of G with weight at most ℓ?

Our first main result to be proved in Section 2 is:

Theorem 1.1 Signed Roman 1-Domination Problem is NP-complete even when re-
stricted to bipartite and planar graphs. Signed Roman 2-Domination Problem is
NP-complete even when restricted to planar graphs.

Recall that the Cartesian product G�H of graphsG andH is the graph with the vertex
set V (G) × V (H), where (g, h)(g′ , h′) ∈ E(G�H) if either gg′ ∈ E(G) and h = h′, or
hh′ ∈ E(H) and g = g′. The Cartesian product operation is commutative and associative,

2



we refer to the book [10] for additional properties of this graph operation. Cartesian
products of two cycles are know as torus graphs because of their natural embeddings into
the torus. The following theorems for thin (meaning that one factor is short) torus graphs
will be proved using a discharging method. While discharging is widely applied in graph
coloring, cf. [5], as far as we know it has not been used earlier in domination theory.

Theorem 1.2 If n ≥ 3, then

γ2sR(C3 �Cn) =

{

3n
2 ; n ≡ 0 (mod 4),
⌈

3n
2

⌉

+ 1; n ≡ 1, 2, 3 (mod 4).

Theorem 1.3 If n ≥ 4, then

γ2sR(C4 �Cn) =







10; n = 4,
11; n = 5,
2n; n ≥ 6.

Theorems 1.2 and 1.3 will be proved in Section 3.
Throughout the paper we will use the notation [n] = {1, . . . , n}.

2 Proof of Theorem 1.1

Note first that the Signed Roman k-Domination Problem is clearly in NP.
In the rest of the section we are going to give a reduction of the NP-complete Roman

domination problem, to Signed Roman 1-Domination Problem and to Signed

Roman 2-Domination Problem, where the former problem is defined as follows.

Roman Domination Problem

Input: A graph G, and an integer ℓ.
Question: Is there an RDF of G with weight at most ℓ?

The NP-completeness of the Roman Domination Problem is mentioned in [7]; it
remains NP-complete even when restricted to split graphs, bipartite graphs, and planar
graphs. All these results follow from a more general result [4, Theorem 1]. In the same
paper a review of the NP-hardness of the Roman Domination Problem is also made [4,
Section 4.1] and NP-harness proved when restricted to line graphs. On the other hand, the
Roman domination number can be computed in linear time for several important classes
of graphs including interval graphs, cographs [13], and strongly chordal graphs [14].

The reductions are presented in Subsections 2.1 and 2.2, respectively.

2.1 The case k = 1

In this subsection we reduce the Roman Domination Problem on planar and bipartite
graphs to Signed Roman 1-Domination Problem.
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Figure 1: The tree Tv

Let G be a graph on n vertices. Then for each vertex v ∈ V (G) let Tv be the tree as
depicted in Fig. 1. Then we have V (Tv) = S1

v ∪ S2
v ∪ {v}, where S1

v = {v1, . . . , v22} and

S2
v =

n
⋃

i=1
{vi1, v

i
2, v

i
3, v

i
4}.

Let now G′ be the graph obtained from the disjoint union of the trees Tv, v ∈ V (G),
where an edge is added between v′ ∈ Tv′ and v′′ ∈ Tv′′ if and only if v′v′′ ∈ E(G). Note
that |V (G′)| = 4n2 +23n and |E(G′)| = |E(G)|+4n2 +22n. Note that if G is planar and
bipartite, then G′ is also such. We will show that G has an RDF f with w(f) ≤ ℓ if and
only if G′ has an SR1DF g with w(g) ≤ ℓ+ n(n+ 4).

Suppose that f is an RDF of G with w(f) ≤ ℓ. Then define g : V (G′) → {−1, 1, 2} as
follows. For any v ∈ V (G) set g(vj) = −1 for j ∈ {1, 2, 5, 6, 7, 9, 12, 13, 15, 18, 21, 22}, set
g(vj) = 1 for j ∈ {10, 16, 19}, and g(vj) = 2 for j ∈ {17, 4, 11, 8, 14, 20}. In addition, let
g(vi3) = g(vi4) = −1, g(vi1) = 1, and g(vi2) = 2 for each i ∈ [n]. This pre-labeling of g is
shown in Fig. 2.

For a fixed vertex v, the pre-labeling of g on Tv adds up to n+ 3. For the remaining
two vertices, v and v3, we define g as follows.

• If f(v) ∈ {1, 2}, then we put g(v) = f(v) and g(v3) = 1; and

• if f(v) = 0, then we put g(v) = −1 and g(v3) = 2.

Note that we set g(v) = −1 only in the case when f(v) = 0. Since f is an RDF of G,
there exists a vertex v′ such that vv′ ∈ E(G) and f(v′) = 2. But then vv′ ∈ E(G′) and
g(v′) = 2. We conclude that g is an SR1DF of G′.
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Figure 2: Pre-labeling of g

Let w(f) = ℓ′ ≤ ℓ. If v ∈ V (G), then by the construction of g we have g(v) + g(v3) =
1+ f(v). If follows that w(g) = n(ℓ+3)+n+w(f) = ℓ′ +n(n+4). We have thus proved
that if G has an RDF with weight at most ℓ, then G′ has an SR1DF with weight at most
ℓ+ n(n+ 4).

To prove the converse we first show:

Lemma 2.1 Let g be an SR1DF of G′. Then there exists an SR1DF g′ of G′ with w(g′) ≤
w(g) such that for any v ∈ V (G) the following hold.

(i) g′(vi3) = g′(vi4) = −1, g′(vi1) ≥ 1, and g′(vi2) = 2 for i ∈ [n];

(ii) g′(vi) = −1 for i ∈ {1, 5, 6, 12, 13, 18, 21, 22}, g′(vi) = 2 for i ∈ {4, 11, 17, 20}, and
g′(vi) ≥ 1 for i ∈ {3, 16, 19, 10};

(iii) g′(v15) = g′(v9) = −1, g′(v14) = g′(v8) = 2, and g′(v10) = g′(v16) = g′(v19) = 1.

(iv) g′(v7) = −1.

Proof. (i) We may without loss of generality assume that g(vi3) ≤ g(vi4).
If g(vi3) = 1, then we thus have g(vi4) ≥ 1. Moreover, g(vi2) ≥ 1, for otherwise we

would have g(N [vi3]) ≤ 0. Set g′(vi2) = 2, g′(vi3) = g′(vi4) = −1, and g′(x) = g(x) for
x ∈ V (G′) \ {vi2, v

i
3, v

i
4}. Finally if g(vi1) = −1, then put g′(vi1) = 1. Then g′ is an SR1DF

of G′ and w(g′) ≤ w(g), as desired.
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If g(vi3) = 2, we have g(vi4) = 2. Now let g′(vi2) = 2, g′(vi3) = g′(vi4) = −1 and
g′(x) = g(x) for x ∈ V (G′)\{vi2, v

i
3, v

i
4}. Now if g(vi1) = −1, put g′(vi1) = 1. Then we have

g′ is also an SR1DF of G′ and w(g′) ≤ w(g).
If g(vi3) = −1, we have g(vi2) = 2. If g(vi4) = −1, then g(vi1) ≥ 1, as desired. If

g(vi4) ≥ 1, then put g′(vi4) = −1 and g′(x) = g(x) for x ∈ V (G′) \ {vi2, v
i
3, v

i
4}. Now if

g(vi1) = −1, put g′(vi1) = 1. Again g′ is an SR1DF of G′ with w(g′) ≤ w(g).
(ii) The proof goes along the same lines as the proof of (i).
(iii) By the symmetry it suffices to show that we can extend the above g′ such that

g′(v15) = −1, g′(v14) = 2 and g′(v16) = 1. If g(v15) = 1, then g(v14) ≥ 1, for otherwise
g(N [v15]) ≤ 0. Now let g′(v15) = −1, g′(v14) = 2 and g′(x) = g(x) for x ∈ V (G′) \
{v14, v15}. Then we have g′ is also an SR1DF of G′ and w(g′) ≤ w(g), as desired. If
g(v15) = 2, let g′(v15) = −1, g′(v14) = 2 and g′(x) = g(x) for x ∈ V (G′) \ {v14, v15}.
Then g′ is also an SR1DF of G′ with w(g′) ≤ w(g), as desired. If g(v16) = 2, then put
g′(v16) = 1 and g′(x) = g(x) for x ∈ V (G′) \ {v16}. Then g′ is also an SR1DF of G′ with
w(g′) ≤ w(g).

(iv) Suppose g(v7) ≥ 1. Since g(v3) ≥ 1, then if g(v2) = −1, we can put g′(v7) = −1,
g′(v3) = 2 and g′(x) = g(x) for x ∈ V (G′) \ {v3, v7}. So g′ is an SR1DF of G′ and
w(g′) ≤ w(g). If g(v2) ≥ 1, we can put g′(v7) = −1 and g′(x) = g(x) for x ∈ V (G′) \ {v7}.
So g′ is an SR1DF of G′ and w(g′) ≤ w(g). �

Suppose now that G′ admits an SR1DF of G′ with weight at most ℓ + n(n + 4).
Then Lemma 2.1 implies that G′ admits also an SR1DF g that fulfils all the assertions of
Lemma 2.1 and for which w(g) ≤ ℓ + n(n + 4) holds. Recalling that S1

v = {v1, . . . , v22},

S2
v =

n
⋃

i=1
{vi1, v

i
2, v

i
3, v

i
4}, and V2 is the set of vertices x with g(x) = 2, we state the following

facts.

Claim 2.1 (i) If g(v) ∈ {1, 2}, then g(S1
v ) ≥ 4.

(ii) if g(v) = −1 and g(v2) = −1, then g(S1
v ) ≥ 5;

(iii) if g(v) = −1 and g(v2) 6= −1, then g(S1
v ) ≥ 6;

(iv) if g(v) ≥ 1, then g(S1
v ∪ S2

v ) ≥ n+ 4;

(v) if g(v) = −1 and |V2 ∩N(v) ∩ (S1
v ∪ S2

v)| 6= 0, then g(S1
v ∪ S2

v ) ≥ n+ 6; and

(vi) if g(v) = −1 and |V2 ∩N(v) ∩ (S1
v ∪ S2

v)| = 0, then g(S1
v ∪ S2

v ) ≥ n+ 5.

Proof. Let T1 = {v1, v18, v16, v17, v14, v15}, T2 = N [v4] = {v3, v4, v5, v6}, T3 = N [v20] =
{v19, v20, v21, v22}, T4 = N [v8] = {v7, v8, v9, v10}, and T5 = {v11, v12, v13}. By Lemma 2.1,
we have g(T1) = 2, g(T2) ≥ 1, g(T3) = 1, g(T4) = 1, and g(T5) = 0. Then we argue as
follows.

(i) If g(v) ∈ {1, 2}, then g(v2) ≥ −1 and thus g(S1
v ) = g(v2) +

5
∑

i=1
g(Ti) ≥ 4.
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(ii) If g(v) = g(v2) = −1, then by Lemma 2.1 we have g(v7) = −1, and thus g(v3) = 2

and g(T2) ≥ 2. So g(S1
v ) = g(v2) +

5
∑

i=1
g(Ti) ≥ 5.

(iii) If g(v) = −1 and g(v2) 6= −1, then g(v2) ≥ 1 and thus g(S1
v ) = g(v2)+

5
∑

i=1
g(Ti) ≥ 6.

(iv) This result follows from (i).
(v) Suppose V2 ∩ N(v) ∩ (S1

v ∪ S2
v) 6= ∅ and assume first that g(S2

v ) ≥ n + 1. If
g(v2) = −1, then g(v3) = 2 and hence g(T2) ≥ 2. And if g(v2) ≥ 1, then g(v3) ≥ 1.

Therefore g(S1
v ∪ S2

v) ≥ n+ 1 + g(v2) +
5
∑

i=1
g(Ti) ≥ n+ 6.

Assume next that g(S2
v ) = n. Then g(v2) = 2, hence we also have g(S1

v ∪ S2
v) ≥

n+ g(v2) +
5
∑

i=1
g(Ti) ≥ n+ 6.

(vi) In this case we have g(S1
v ) ≥ n. Then we proceed similarly as in the proof of (v).

�

Now we define a function f : V (G) → {0, 1, 2} as follows. If g(v) ∈ {1, 2}, then
f(v) = g(v). By Claim 2.1, we have g(Tv)− f(v) = g(S1

v ∪ S2
v) ≥ n + 4. Clearly, in G, v

is Roman dominated under f .
If g(v) = −1 and V2 ∩N(v) ∩ (S1

v ∪ S2
v ) = ∅, then put f(v) = 0. By Claim 2.1(vi), we

have g(Tv)− f(v) = g(S1
v ∪ S2

v )− 1 ≥ n+ 4. Since V2 ∩N(v) ∩ (S1
v ∪ S2

v ) = ∅,
there exists a vertex x ∈ V2 that is in G adjacent to v. Therefore, in G, v is Roman

dominated under f .
If g(v) = −1 and V2 ∩N(v) ∩ (S1

v ∪ S2
v ) 6= ∅, then put f(v) = 1. By Claim 2.1(v) we

have g(Tv)− f(v) = g(S1
v ∪ S2

v)− 2 ≥ n + 4. Clearly, in G, v is Roman dominated under
f .

Then we have ℓ + n(n + 4) ≥ w(g) =
∑

v∈V (G)

g(Tv) ≥
∑

v∈V (G)

(n + 4 + f(v)). Therefore

w(f) =
∑

v∈V (G)

f(v) ≤ ℓ which completes the proof of Theorem 1.1.

2.2 The case k = 2

We next reduce the Roman Domination Problem on planar graphs to the Signed Roman
2-Domination Problem.

Let G be a graph on n vertices. For each vertex v ∈ V (G), let Hv be the graph as
depicted in Fig. 3.

Let G′ be the graph obtained from the disjoint union of the graphs Hv, v ∈ V (G),
where an edge is added between v′ ∈ Hv′ and v′′ ∈ Hv′′ if and only if v′v′′ ∈ E(G). Note
that if G is planar, then G′ is planar as well. Observe in addition that |V (G′)| = 6n2+40n
and |E(G′)| = |E(G)| + 8n2 + 51n. We will show that G has an RDF f with w(f) ≤ ℓ if
and only if G′ has an SR2DF g with w(g) ≤ ℓ+ 3n2 + 18n.

Suppose that f is an RDF of G with w(f) ≤ ℓ. Then define g : V (G′) → {−1, 1, 2}
as follows. For any v ∈ V (G) set g(vi) = 2 for any i ∈ {2, 5, 11, 17, 23}, g(vi) = −1 for
i ∈ {1, 3, 6, 7, 12, 13, 18, 19, 24, 25}, g(vi) = 1 for i ∈ {8, 9, 10, 14, 15, 16, 20, 21, 22, 26, 27}
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Figure 3: The graph Hv

and let g(vi1) = g(vi4) = g(vi6) = 1, g(vi3) = g(vi5) = −1, and g(vi2) = 2 for each i ∈ [n + 2].
Now if f(v) = 0, then put g(v) = −1 and g(v4) = 2; if f(v) ∈ {1, 2}, then put g(v) = f(v)
and g(v4) = 1.

It is now straightforward to verify that g is an SR2DF. In particular, suppose that
we have set g(v) = −1. This has happened because f(v) = 0. Since f is an RDF,
v has a neighbor v′ in G with f(v′) = 2. But then v also has a neighbor v′ in G′

with g(v′) = 2. Note next that the contribution of the vertices {v, v4 : v ∈ V (G)} to
w(g) is ℓ + n. The contribution of all the other vertices is n(3(n + 2) + 11), so that
w(g) = (ℓ+ n) + (3n2 + 17n) = ℓ+ 3n2 + 18n.

To prove the converse we show that:

Lemma 2.2 Let g be an SR2DF of G′. Then there exists an SR2DF g′ of G′ with w(g′) ≤
w(g) such that for any v ∈ V (G) the following hold.

(i) g′(vi4) = g′(vi6) = 1, g′(vi3) = g′(vi5) = −1, g′(vi1) ≥ 1, and g′(vi2) = 2 for each
i ∈ [n+ 2].

(ii) g′(vi) = 2 for i ∈ {2, 5, 11, 17, 23}, g′(vi) = −1 for i ∈ {1, 3, 6, 7, 12, 13, 18, 19, 24, 25},
g′(vi) = 1 for i ∈ {8, 9, 14, 15, 20, 21, 26, 27}, and g′(vi) ≥ 1 for i ∈ {4, 10, 16, 22}.

Proof. (i) If for a given i ∈ [n + 2] we have g(vi1) ≥ 1, then we set g′(vi1) = g(vi1),
g′(vi4) = g′(vi6) = 1, g′(vi3) = g′(vi5) = −1, g′(vi2) = 2, and g′(x) = g(x) for every other
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vertex x in G′. Since g(vi6) ≥ 1 and g(N [vi2]) ≥ 2 we infer that g({vi1, v
i
2, . . . , v

i
6}) ≥ 3. It

follows that w(g′) ≤ w(g) and hence g′ is a desired SR2DF.
If g(vi1) = −1, then we set g′(vi1) = 1, g′(vi4) = g′(vi6) = 1, g′(vi3) = g′(vi5) = −1,

g′(vi2) = 2 and g′(x) = g(x) for every other vertex x in G′. Then we see as in the above
paragraph that w(g′) ≤ w(g) and g′ is a desired SR2DF.

(ii) The proof is the same as in (i). �

Suppose now that G′ admits an SR2DF of G′ with weight at most ℓ + 3n2 + 18n.
Then Lemma 2.2 implies that G′ also admits an SR2DF g that fulfills all the assertions of
Lemma 2.2 and for which w(g) ≤ ℓ+ 3n2 + 18n holds. Let Sv = V (Hv) \ {v} and let V2

be the set of vertices x with g(x) = 2. Then we have the following facts.

Claim 2.2 (i) If g(v) ∈ {1, 2}, then g(Sv) ≥ 3n + 18.

(ii) if g(v) = −1 and |V2 ∩N(v) ∩ Sv| 6= 0, then g(Sv) ≥ 3n+ 20;

(iii) if g(v) = −1 and |V2 ∩N(v) ∩ Sv| = 0, then g(Sv) ≥ 3n+ 19.

Proof. For i ∈ [n+ 2] let Ti = {vi1, v
i
2, v

i
3, v

i
4, v

i
5, v

i
6}, and set in addition

• M1 = {v4, v5, v6, v7, v8, v9},

• M2 = {v22, v23, v24, v25, v26, v27},

• Q1 = N [v14] = {v11, v12, v13, v14, v15}, and

• Q2 = N [v20] = {v17, v18, v19, v20, v21}.

By Lemma 2.2 we have g(Ti) ≥ 3, i ∈ [n + 2], g(M1) ≥ 3, g(M2) ≥ 3, g(Q1) ≥ 2 and
g(Q2) ≥ 2.

(i) We have g(Sv) =
n+2
∑

i=1
g(Ti) + g(M1) + g(M2) + g(Q1) + g(Q2) + g(N [v2]) ≥ 3(n +

2) + 3 + 3 + 2 + 2 + 2 = 3n + 18.
(ii) Since g(v1) = −1 (and g(v) = −1) we must have g(v4) = 2, hence g(M1) = 4.

Therefore g(Sv) =
n+2
∑

i=1
g(Ti) + g(M1) + g(M2) + g(Q1) + g(Q2) + g(N [v2]) ≥ 3n+ 20.

(iii) Because g(v1) = −1 we have g(v4) = 2, hence again g(M1) = 4. Therefore

g(Sv) =
n+2
∑

i=1
g(Ti) + g(M1) + g(M2) + g(Q1) + g(Q2) + g(N [v2]) ≥ 3n+ 19. �

We now define a function f on V (G) as follows.

• If g(v) ∈ {1, 2}, then set f(v) = g(v).
By Claim 2.2, we have g(Hv)− f(v) = g(Sv) + g(v) − f(v) ≥ 3n+ 18. Clearly, v is
Roman dominated under f in G.

• If g(v) = −1 and g(u) = 2 for some u ∈ N(v) ∩ Sv, then set f(v) = 1.
By Claim 2.2(ii), we have g(Hv)−f(v) = g(Sv)+g(v)−f(v) ≥ 3n+20+(−1)−1 =
3n+ 18. Clearly, v is Roman dominated under f in G.
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• If g(v) = −1 and g(u) 6= 2 for every u ∈ N(v) ∩ Sv, then set f(v) = 0.
By Claim 2.2(iii), we have g(Hv)−f(v) = g(Sv)+g(v)−f(v) ≥ 3n+19+(−1)−0 =
3n + 18. Since |V2 ∩ N(v) ∩ (Sv)| = 0, we have v′ ∈ V2 in Hv′ for some v′ ∈ V (G).
Thus v is Roman dominated by v′ in G.

The function f is thus an RDF. Since for any vertex v ∈ V (G) we have g(Hv) − f(v) ≥
3n + 18, it follows that

∑

v∈V (G) g(Hv)−
∑

v∈V (G) f(v) ≥ n(3n+ 18). Therefore,

w(f) =
∑

v∈V (G)

f(v)

≤
∑

v∈V (G)

g(Hv)− n(3n + 18)

= w(g) − n(3n+ 18)

≤ (ℓ+ 3n2 + 18n)− n(3n+ 18) = ℓ ,

where for the last inequality we have used the assumption w(g) ≤ ℓ+ 3n2 + 18n. So f is
an RDF of G with weight at most ℓ as required.

3 Signed Roman 2-domination numbers of thin torus graphs

Let us first introduce some notation. For a cycle Cℓ let V (Cℓ) = [ℓ], where kk′ ∈ E(Cℓ) if
|k− k′| = 1 (mod ℓ). Using this convention we have V (Cm�Cn) = [m]× [n], and vertices
(j, i) and (j′, i′) of Cm�Cn are adjacent if |j − j′|+ |i− i′| = 1, where the computations
are modulo m and modulo n, respectively. We will denote the set of vertices of the ith

Cm-layer with C
(i)
m , that is, C

(i)
m = {(j, i) : j ∈ [m]}. Two Cm-layers C

(i)
m and C

(j)
m

of Cm�Cn are adjacent if |i − j| = 1 (mod n). If f is a SR2DF of Cm�Cn, then let

V f
k = {v ∈ V (Cm�Cn) : f(v) = k}. When f will be clear from the context, we may

simplify the notation V f
k to Vk. Clearly, the sets V−1, V1, and V2 partition V (Cm�Cn).

For a given SR2DF f of Cm�Cn, let wf (C
(i)
m ) denote the weight of the ith Cm-layer,

that is, wf (C
(i)
m ) =

∑

u∈V (C
(i)
m )

f(u). When no confusion arises, we will use wi
f to denote

wf (C
(i)
m ) for short. Finally, for a function f and a vertex w of G we will denote with

f(N [w]) the value
∑

x∈N [w] f(x).

3.1 Proof of Theorem 1.2

Lemma 3.1 Let n ≥ 4 and let f be an SR2DF of C3�Cn. Then the following assertions
hold, where all the indices are taken modulo n.

(i) wi
f ≥ −1, i ∈ [n].

(ii) If wi+1
f = 0, then wi

f ≥ 3 and wi+2
f ≥ 3.

(iii) If wi+1
f = −1, then wi

f ≥ 3 and wi+2
f ≥ 3.
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(iv) If wi+1
f = −1 and wi+2

f = 3, then wi
f ≥ 6 and wi+3

f ≥ 1.

(v) If wi+1
f = 0 and wi+2

f = 3, then wi
f ≥ 3 and wi+3

f ≥ 1.

(vi) If wi+1
f = 1 and wi+2

f = 1, then wi
f ≥ 4 and wi+3

f ≥ 4.

(vii) If wi+1
f = 1 and wi+2

f = 2, then wi
f ≥ 2 and wi+3

f ≥ 1.

Proof. (i) Suppose that wi
f ≤ −2. Then necessarily f ≡ −1 on C

(i)
3 , but then f is not an

SR2DF.
(ii) Suppose that wi+1

f = 0. Then we may without loss of generality assume that

f(1, i + 1) = −1, f(2, i + 1) = −1, and f(3, i + 1) = 2. Assume now that wi
f ≤ 2. Then

for some vertex (j, i), j ∈ [3], we must have f(j, i) = −1. But then f(N [(j, i + 1)]) ≤ 1, a
contradiction. Hence wi

f ≥ 3. Using a parallel argument we also infer that wi+2
f ≥ 3.

(iii) Suppose wi+1
f = −1. Then we may without loss of generality assume that f(1, i+

1) = −1, f(2, i+ 1) = −1, and f(3, i+ 1) = 1. The argument now proceeds as in (ii).
(iv) As wi+1

f = −1 we may assume that f(1, i + 1) = −1, f(2, i + 1) = −1, and

f(3, i + 1) = 1. Since wi+2
f = 3, we need to consider two cases. In the first case f(1, i +

2) = f(2, i + 2) = f(3, i + 2) = 1. Then f(1, i + 3) ≥ 1 and f(2, i + 3) ≥ 1, so that

wi+3
f ≥ 1. Moreover, f ≡ 2 must hold on on C

(i)
3 since f is an SR2DF. Therefore wi

f ≥ 6

(actually wi
f = 6). In the second case to be considered the weights on C

(i+2)
3 are 2, 2, −1,

respectively. But this case cannot happen because considering f restricted to C
(i+1)
3 we

see that f is not an SR2DF.
(v) As wi+1

f = 0 we may assume that f(1, i+1) = −1, f(2, i+1) = −1, and f(3, i+1) =

2. Based on the assumption that wi+2
f = 3, we again need to consider two cases. In the

first one, f(1, i + 2) = f(2, i + 2) = f(3, i + 2) = 1. Then for any j ∈ [3] we must have
f(j, i) ≥ 1, hence wi

f ≥ 3. Moreover, f(1, i+ 3) ≥ 1 and f(2, i+ 3) ≥ 1 and consequently

wi+3
f ≥ 1. The second case when the weights on C

(i+2)
3 are 2, 2, −1 is again not possible

because for the neighbor (j, i + 1) of the vertex (j, i + 2) with f(j, i + 2) = −1 we would
have f(N [(j, i + 1)]) ≤ 1.

(vi) Since wi+1
f = 1, the vertices of C

(i+1)
3 have weights 1, 1, −1. The same holds for

the vertices of C
(i+2)
3 . Assume without loss of generality that f(1, i+ 1) = f(2, i+ 1) = 1

and f(3, i + 1) = −1. If f(1, i + 2) = f(2, i + 2) = 1 and f(3, i + 2) = −1, then f(1, i) ≥
1, f(2, i) ≥ 1, and f(3, i) = 2. Consequently, wi

f ≥ 4. In addition, f(3, i + 3) = 2,

f(1, i + 3) ≥ 1, and f(2, i + 3) ≥ 1, so that wi+3
f ≥ 4. In the other case we may assume

that f(1, i+2) = −1 and f(2, i+2) = f(3, i+2) = +1. Using similar arguments as above
the conclusions follow.

(vii) Since wi+1
f = 1, we may assume that f(1, i+1) = f(2, i+1) = 1 and f(3, i+1) =

−1. Since wi+2
f = 2, the vertices of C

(i+2)
3 have weights 2, 1, −1 and we need to consider

several cases. Assume first that f(1, i+2) = 2, f(2, i+2) = 1, and f(3, i+2) = −1. Then
f(3, i) = 2 and f(2, i) ≥ 1 which implies that wi

f ≥ 2. Moreover, if wi+3
f ≤ 0 would hold,
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then at least two the vertices of C
(i+3)
3 would have weight −1. As f is an SR2DF this

is not possible, hence this is not possible wi+3
f ≥ 1. The other cases with respect to the

distribution of the weights 2, 1, and −1 on C
(i+2)
3 are treated similarly. �

We will now apply Lemma 3.1 to prove the lower bound on γ2sR(C3 �Cn) as stated in
Lemma 3.2. For this sake we next describe the following discharging procedure. Let f be

a SR2DF of C3 �Cn. Then to every C3-layer C
(i)
3 , i ∈ [n], set the initial charge s(i) to be

equal wi
f . The final charge s′ is then produced using the following discharging rule.

R1: Every C3-layer C
(i)
3 with s(i) ≥ 2 transmits 2s(i)−3

4 charge to each adjacent C3-layer

C
(j)
3 with s(j) ≤ 1.

Lemma 3.2 If n ≥ 3, then γ2sR(C3�Cn) ≥
3n
2 . Moveover, if the equality holds, then n is

even and there exists an SR2DF f ′ satisfying w2ℓ
f ′ = 1 and w2ℓ−1

f ′ = 2 for all ℓ ∈
[

n
2

]

}.

Proof. Let f be an SR2DF of C3 �Cn. Set the initial charge s(i) = wi
f to every C3-layer

C
(i)
3 , i ∈ [n]. Let s′ be the final charge after applying the discharging rule R1 to s. We

now distinguish the cases based on the value of s(i).

Case 1. s(i) ≥ 2.

Since C
(i)
3 sends out at most two 2s(i)−3

4 charges, s′(i) ≥ s(i)− 2
(

2s(i)−3
4

)

= 3
2 .

Case 2. s(i) = 1.
Note first that s(i+1) ≥ 1 by Lemma 3.1(i), (ii) and (iii). If s(i+1) = 1, then s(i−1) ≥ 4

by Lemma 3.1(vi). Then C
(i)
3 receives at least 5

4 from C
(i−1)
3 and consequently s′(i) ≥ 9

4 .
Next, if s(i+1) = 2, then s(i− 1) ≥ 2 and s(i+2) ≥ 1 by Lemma 3.1(vii). It follows that

C
(i)
3 receives a charge at least 1

4 from each of C
(i−1)
3 and C

(i+1)
3 , hence s′ ≥ 3

2 . Suppose

finally that s(i+1) ≥ 3. Then C
(i)
3 receives from C

(i+1)
3 a charge at least 3

4 , thus s
′(i) ≥ 7

4 .

Case 3. s(i) = 0.

In this case Lemma 3.1(ii) asserts that s(i−1) ≥ 3 and s(i+1) ≥ 3. Hence, C
(i)
3 receives a

charge at least 3
4 from each of C

(i−1)
3 and C

(i+1)
3 , thus s′(i) ≥ 3

2 . Moreover, if s(i+1) = 3,
then s(i+2) ≥ 1 by Lemma 3.1(v). Hence, s′(i+2) ≥ 1+ 3

4 = 7
4 . Otherwise, s(i+1) ≥ 4

implies that s′(i) ≥ 3
4 + 5

4 = 2.

Case 4. s(i) = −1.
If s(i+ 1) = 3, then s(i− 1) ≥ 6 by Lemma 3.1(iv). Then s′(i) ≥ 3

4 + 9
4 = 3. Otherwise,

applying Lemma 3.1(iii), we have s(i + 1) ≥ 3 and s(i − 1) ≥ 4. In this case, s′(i) ≥
3
4 + 3

4 = 3
2 .

In summary, s′(i) ≥ 3
2 holds for any i ∈ [n]. Since the charging procedure preserves

the value of the initial charge, that is,
∑n

i=1 s(i) =
∑n

i=1 s
′(i), we conclude that w(f) =

∑n
i=1 s(i) ≥

3n
2 . Moreover, if w(f) = 3n

2 , then n is even and s′(i) = 3
2 for all i ∈ [n]. The

above analysis also implies that if w(f) = 3n
2 , then s(i) ≥ 1 for all i ∈ [n] and if s(j) = 1

then s(j − 1) = s(j + 1) = 2. That is to say, for any i ∈ [n], {s(i), s(i + 1)} = {1, 2}. By
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the symmetry of C3 �Cn, there exists an SR2DF f ′ satisfying w2ℓ
f ′ = 1 and w2ℓ−1

f ′ = 2 for

all ℓ ∈
[

n
2

]

}. �

Lemma 3.3 If C3 �Cn has an SR2DF f such that w(f) = 3n
2 and f(p, q) = 2 for some

p ∈ [3] and q ∈ [n], then f(p, q + 2) 6= 2 and f(p, q + 4) = 2.

Proof. By Lemma 3.2, we know that wi
f ∈ {1, 2} for any i ∈ [n]. Since f is an SR2DF

and f(p, q) = 2, we have wq
f = 2. Then again by Lemma 3.2, wq+1

f = wq+3
f = 1 and

wq+2
f = wq+4

f = 2. Without loss of generality assume that p = 1, f(1, q) = 2, f(2, q) = −1,
and f(3, q) = 1. Since

2 ≤
∑

x∈N [(2,q+1)]

f(x)

= f(2, q) +

3
∑

i=1

f(i, q + 1) + f(2, q + 2)

= −1 + wq+1
f + f(2, q + 2) = f(2, q + 2) ,

we have f(2, q + 2) = 2. Hence, f(1, q + 2) 6= 2.
Similarly, since

∑

x∈N [(3,q+1)] f(x) ≥ 2, we can obtain that f(3, q + 2) ≥ 1. Note that

since wq+2
f = 2, we have f(3, q+2) = 1 and f(1, q+2) = −1. Since

∑

x∈N [(1,q+3)] f(x) ≥ 2,
we also have f(p, q + 4) = 2. �

Theorem 3.4 If n ≡ 2 (mod 4) and n ≥ 6, then γ2sR(C3�Cn) >
3n
2 .

Proof. Suppose on the contrary that γ2sR(C3 �Cn) = 3n
2 . By Lemma 3.2, there exists

an SR2DF f satisfying w2ℓ
f = 1 and w2ℓ−1

f = 2 for all ℓ ∈
[

n
2

]

}. We may without loss of
generality assume that f(1, 1) = 2. Then f(1, 1 + 4k) = 2 and f(1, 3 + 4k) 6= 2 for all
k ∈ {0, 1, . . . , n−2

4 } by Lemma 3.3. We now construct an auxiliary cycle HC such that
V (HC) = {v0, v1, . . . , vn

2
−1} and vivi+1 ∈ E(HC). We define a 2-coloring g with colors

{1, 2} of HC such that g(vi) = 1 if and only if f(1, 2i+ 1) = 2. Since HC is an odd cycle,
we have HC is not 2-colorable, a contradiction. �

Note that Lemma 3.2 takes care for the lower bound in Theorem 1.2 for the case n ≡ 0
(mod 4) while Theorem 3.4 takes care for the case n ≡ 2 (mod 4). In the following we
proceed with the cases n ≡ 1, 3 (mod 4). If S = s(i)s(i + 1) · · · s(i + k − 1) is a segment
of the initial charge, then set

δ(S) =
k−1
∑

j=0

s′(i+ j)−
3k

2
.

Lemma 3.5 Let n ≡ 1, 3 (mod 4). If f is an SR2DF of C3 �Cn with weight
⌈

3n
2

⌉

and
S0 = s(1)s(2) · · · s(n) is the initial charge given by f , then δ(S0) =

1
2 .
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Proof. Since n is odd, 3n
2 =

⌈

3n
2

⌉

− 1
2 . Recalling that s′(i) ≥ 3

2 for i ∈ [n], we have
δ(s(i)) ≥ 0. Furthermore,

w(f) =
n
∑

i=1

s(i) =
n
∑

i=1

s′(i) =
3n

2
+ δ(S0) =

⌈

3n

2

⌉

−
1

2
+ δ(S0) .

Since f is an SR2DF of C3�Cn with weight
⌈

3n
2

⌉

, we have w(f) = ⌈3n2 ⌉. We conclude
that δ(S0) =

1
2 . �

Lemma 3.6 Let n ≡ 1, 3 (mod 4) with n ≥ 5. If f is an SR2DF of C3�Cn with weight
⌈

3n
2

⌉

and S0 = s(1)s(2) · · · s(n) is the initial charge given by f , then

(i) s(i) 6= −1, i ∈ [n];

(ii) (s(i), s(i + 1)) /∈ {(1, 1), (1, 4)};

(iii) s(i) 6= 0, i ∈ [n];

(iv) s(i) ≤ 2, i ∈ [n].

Proof. (i) Assume on the contrary that s(i) = −1. Then by Lemma 3.1 (iii), s(i±1) ≥ 3.
Moreover, combining Lemma 3.1(iv) with the fact that s(i) cannot be equal to 4, we have
s(i+1)+s(i−1) ≥ 9. Then δ(s(i)) = 1

2 . But we can deduce that δ(s(i+2))+δ(s(i−2)) > 0.
Therefore, δ(S0) >

1
2 , contradicting Lemma 3.5.

(ii) It is clear that δ(s(i)s(i + 1)) > 1
2 if (s(i), s(i + 1)) /∈ {(1, 1), (1, 4)}.

(iii) Assume s(i) = 0. Then s(i± 1) ≥ 3 by Lemma 3.1(ii). On the other hand, since
δ(s(i)) ≤ 1

2 , we have s(i + 1) + s(i − 1) ≥ 7. If s(i + 1) + s(i − 1) = 7, we may without
loss of generality assume that s(i − 1) = 3 and s(i + 1) = 4. Then δ(s(i)) = 1

2 . But
s(i + 2) receives a charge from s(i + 1) and thus δ(s(i + 2)) > 0. Therefore, δ(S0) >

1
2 ,

contradicting Lemma 3.5. If s(i+1)+s(i−1) = 6, then s(i−1) = 3 and s(i+1) = 3. Then
it can be verified that δ(s(i − 2)s(i − 1)s(i)s(i + 1)s(i + 2)) > 1

2 . Therefore, δ(S0) >
1
2 ,

again contradicting Lemma 3.5.
(iv) From the proofs of cases (i), (ii), and (iii) we have 1 ≤ s(i) ≤ 3 for i ∈ [n]. Assume

that s(i) = 3. Then we have s(i−1) = 1 or s(i+1) = 1. Otherwise δ(s(i−1)s(i)s(i+1)) >
1
2 . We may without loss of generality assume that s(i + 1) = 1. Since s(i + 2) ≥ 3 is
impossible, we have s(i+2) = 2. It can be verified that δ(s(i− 1)s(i)s(i+1)s(i+2)) > 1

2 .
Therefore, δ(S0) >

1
2 , again contradicting Lemma 3.5. �

From Lemma 3.6 we deduce:

Lemma 3.7 Let n ≡ 1, 3 (mod 4) with n ≥ 5. If γ2sR(C3 �Cn) =
⌈

3n
2

⌉

, then 1 ≤ s(i) ≤ 2
for any i ∈ [n]. More precisely, there exists an SR2DF f satisfying w1

f = 2, w2ℓ
f = 2 and

w2ℓ+1
f = 1 for all ℓ ∈

[

n−1
2

]

.
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To obtain the lower bound in Theorem 1.2 also for the cases n ≡ 1, 3 (mod 4), one
first checks the case n = 3. The verification is easy and we hence omit the details. Finally,
for n ≥ 5 we obtain the lower bound from Lemma 3.7 together with a similar proof as the
one of Theorem 3.4.

To complete the proof of Theorem 1.2 we need to provide the corresponding upper
bounds. Consider the following matrices to be used as patterns for SR2DFs of C3 �Cn.

Q =





2 1 −1 −1
1 1 1 1

−1 −1 2 1



 , Q1 =





2 2 −1 −1 1
1 −1 1 2 −1

−1 1 1 2 1



 ,

Q2 =





2 1 −1 −1 1 2
1 1 1 2 −1 −1

−1 −1 2 1 1 1



 , Q3 =





2 1 −1
1 −1 2

−1 2 1



 ,

Q4 =





2 2 −1 1 2
1 1 2 −1 −1

−1 −1 1 1 1



 , Q5 =





−1 −1 1 2 2 1
1 2 −1 −1 1 1
2 1 1 1 −1 −1



 .

We will use the concatenation notation, meaning that if P and P ′ are 3× t and 3× s
patterns, then PP ′ is their concatenation, that is, a 3× (t+ s) pattern. By the power P k

we mean the k-tuple concatenation of P .
Now, the pattern Qk defines an SR2DF of C3 �C4k with weight 6k for k ≥ 1. The

pattern QkQ1 defines an SR2DF of C3�C4k+5 with weight 6k+9 for k ≥ 1. The pattern
QkQ2 defines an SR2DF of C3 �C4k+6 with weight 6k + 4 for k ≥ 1. The pattern QkQ3

defines an SR2DF of C3 �C4k+3 with weight 6k + 6 for k ≥ 1. The pattern Q4 defines
an SR2DF of C3�C5 with weight 9. The pattern Q5 defines an SR2DF of C3 �C6 with
weight 10. In this way all the upper bounds are established.

3.2 Proof of Theorem 1.3

We will now prove Theorem 1.3 along the similar lines as Theorem 1.2 was proved. In
particular, the lower bound will be established using the discharging method, for which
the following technical result is essential. Recall that, having in mind that we consider
C4 �Cn, the notation wi

f stands for the weight of the ith C4-layer with respect to an
SR2DF f .

Lemma 3.8 Let f be an SR2DF of C4 �Cn. Then the following assertions hold, where
the indices are modulo n.

(i) wi
f ≥ 0, i ∈ [n].

(ii) If wi+1
f = 0, then wi

f + wi+2
f ≥ 8.

(iii) If wi+1
f = wi+2

f = 1, then wi
f ≥ 4 and wi+3

f ≥ 4.

(iv) If wi+1
f = 1 and wi+2

f = 2, then wi
f ≥ 3 and wi+3

f ≥ 3.
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(v) If wi+1
f = 1 and wi+2

f = 0, then wi
f ≥ 5 and wi+3

f ≥ 7.

Proof. To shorten the presentation, the notation wi
f (·) = (f(1, i), f(2, i), f(3, i), f(4, i))

will be used.

(i) Suppose on the contrary that wi
f < 0 for some i. Then in C

(i)
4 three vertices are

assigned weight −1, hence there exists a vertex v assigned weight −1 which is adjacent to
two vertices assigned weight −1. Therefore w(f(N [v])) ≤ 1, a contradiction.

(ii) Suppose that wi
f = 0. Due to the symmetry it suffices to consider the following

two cases.

Case 1. wi+1
f (·) = (1, 1,−1,−1).

Since the vertex (1, i+1) needs to be signed Roman 2-dominated, we have f(1, i)+f(1, i+
2) ≥ 1. Similarly, f(2, i)+f(2, i+2) ≥ 1, f(3, i)+f(3, i+2) ≥ 3, and f(4, i)+f(4, i+2) ≥ 3.
Therefore, wi

f +wi+2
f ≥ 8.

Case 2. wi+1
f (·) = (1,−1, 1,−1).

The argument in this case is parallel with the argument in Case 1.

(iii) Suppose that wi+1
f = wi+2

f = 1. Then in C
(i+1)
4 the vertices are assigned weights

2, 1, −1, −1. The same holds for the vertices in C
(i+2)
4 . Due to symmetry and the fact

that |V−1 ∩N [v]| ≤ 2 for any vertex v, we only need to consider the following four cases.
Since the arguments are similar in all the cases, we will only prove the first one.

Case 1. wi+1
f (·) = (−1,−1, 1, 2), wi+2

f (·) = (2, 1,−1,−1).
Since the vertex (1, i+1) needs to be signed Roman 2-dominated, we have f(1, i)+f(1, i+
2) ≥ 2 and so f(1, i) ≥ 0. Similarly, f(2, i) ≥ 2, f(3, i) ≥ 1, f(4, i) ≥ 1; f(1, i + 3) ≥ 1,
f(2, i + 3) ≥ 1, f(3, i+ 3) ≥ 2 and f(4, i+ 3) ≥ 0. Therefore, wi

f ≥ 4 and wi+3
f ≥ 4.

Case 2. wi+1
f (·) = (−1,−1, 1, 2), wi+2

f (·) = (1, 2,−1,−1).

Case 3. wi+1
f (·) = (−1, 1,−1, 2), wi+2

f (·) = (−1, 1,−1, 2).

Case 4. wi+1
f (·) = (−1, 1,−1, 2), wi+2

f (·) = (−1, 2,−1, 1).

(iv) Assume that wi+1
f = 1 and wi+2

f = 2. Then in C
(i+2)
4 the vertices are either

assigned weights 2, 2, −1, −1 or weights 1, 1, 1, −1. Again using the fact that |V−1∩N [v]| ≤
2 for any vertex v, we only need to consider the following five cases; we omit the arguments
that are similar to the earlier ones.

Case 1. wi+1
f (·) = (−1,−1, 1, 2), wi+2

f (·) = (2, 2,−1,−1).

Case 2. wi+1
f (·) = (−1, 1,−1, 2), wi+2

f (·) = (−1, 2,−1, 2).

Case 3. wi+1
f (·) = (−1,−1, 1, 2), wi+2

f (·) = (1, 1,−1, 1).

Case 4. wi+1
f (·) = (−1,−1, 1, 2), wi+2

f (·) = (1, 1, 1,−1).

Case 5. wi+1
f (·) = (−1, 1,−1, 2), wi+2

f (·) = (−1, 1, 1, 1).
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(v) The proof is again similar to the above analysis and is omitted. �

Based on Lemma 3.8, we apply a discharging procedure leading to a final charge that
will give us the desired lower bound. Let f be an SR2DF of C4�Cn. We set the initial

charge of the C4-layer C
(i)
4 to be s(i) = wi

f . We use the discharging procedure, leading to
the final charge s′, defined by the following rule:

R1: Every C4-layer C
(i)
4 with s(i) > 2 transmits s(i)−2

2 charge to each adjacent C4-layer

C
(j)
4 with s(j) < 2.

The lower bounds 10 and 11 on γ2sR(C4 �C4) and γ2sR(C4 �C5), respectively, can be
obtained by a tedious analyse hence we omit it.

Let now n ≥ 6, let f be an SR2DF of C4 �Cn, let s(i) = wi
f , i ∈ [n], be the initial

charge, and let s′ be the charge obtained from s by applying the rule R1. Then we have
the following.

• If s(i) > 2, then C
(i)
4 sends out at most two charges s(i)−2

2 , hence s′(i) ≥ 2.

• If s(i) = 1, then we consider the following cases.
(a) s(i + 1) = 0. In this case s(i − 1) ≥ 5 by Lemma 3.8(v). Then s(i) receives 3

2
from s(i− 1) and thus s′(i) ≥ 5

2 .
(b) s(i + 1) = 1. In this case s(i − 1) ≥ 4 by Lemma 3.8(iii). Then s(i) receives 1
from s(i− 1) and thus s′(i) ≥ 2.
(c) s(i+ 1) = 2. In this case s(i− 1) ≥ 3 and s(i+ 2) ≥ 3 by Lemma 3.8(iv). Then
s(i) receives 1

2 from both s(i− 1) and s(i+ 2), thus s′(i) ≥ 2.
(d) s(i ± 1) ≥ 3. Now s(i) receives at least 1

2 from both s(i − 1) and s(i+ 1), thus
s′(i) ≥ 2.

• If s(i) = 0, then we consider the following cases.
(a) s(i + 1) = 0. In this case s(i − 1) ≥ 8 by Lemma 3.8(ii). Then s(i) receives at
least 3 from both s(i− 1) and s(i+ 1), thus s′(i) ≥ 3.
(b) s(i+ 1) = 1. This case has been already considered above.
(c) s(i+ 1) ≥ 2. It is easy to process this case by using Lemma 3.8(ii).

From the above analysis we have s′(i) ≥ 2, i ∈ [n]. Since the charging procedure preserves
the total value of the charge, that is,

∑n
i=1 s(i) =

∑n
i=1 s

′(i), we conclude that w(f) =
∑n

i=1 s(i) ≥ 2n. The lower bounds are thus proved.

Now, we will show the upper bounds. Let

R4 =









−1 1 −1 2
1 2 −1 1

−1 −1 1 1
2 1 2 1









, R5 =









2 −1 1 2 −1
1 1 −1 1 1

−1 2 2 −1 1
1 −1 1 −1 2









,
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R6 =









1 2 −1 −1 1 1
−1 1 1 1 2 −1
2 −1 1 1 −1 1
1 −1 1 2 −1 1









.

The patterns R4 and R5 define SR2DFs of C4 �C4 and C4�C5 with the desired weights,
respectively. The pattern Rk

6 induces an SR2DF of C4 �C6k with weight 12k for every
k ≥ 1. Let

F1 =









1 1 −1 −1 1 1 2
−1 1 2 1 −1 2 −1
2 −1 −1 1 −1 1 1
1 1 1 2 2 −1 −1









,

F2 =









1 2 −1 1 1 −1 2 −1
−1 1 1 −1 2 −1 1 1
2 −1 2 −1 1 1 −1 2
1 −1 1 2 −1 2 1 −1









,

F3 =









1 1 −1 −1 1 1 −1 1 −1
−1 1 2 1 −1 2 −1 1 2
2 −1 −1 1 −1 1 1 −1 1
1 1 1 2 2 −1 2 2 −1









,

F4 =









1 2 −1 −1 1 2 −1 1 1 −1
−1 1 1 1 2 −1 1 1 1 2
2 −1 1 1 −1 1 2 −1 −1 1
1 −1 1 2 −1 1 −1 1 2 −1









,

F5 =









1 2 −1 −1 1 1 2 1 −1 1 −1
−1 1 1 1 2 −1 −1 2 −1 1 2
2 −1 1 1 −1 2 1 1 1 −1 1
1 −1 1 2 −1 1 −1 −1 2 2 −1









,

R7 =









−1 1 −1 1 2 1 −1
1 2 −1 1 −1 −1 2

−1 −1 1 2 1 1 1
2 1 2 −1 −1 1 1









,

R8 =









1 −1 2 1 −1 2 −1 2
2 1 −1 1 −1 1 1 −1

−1 1 −1 2 2 −1 2 1
−1 2 1 −1 1 1 −1 1









,

R9 =









1 −1 2 1 −1 1 1 −1 1
1 1 −1 1 2 −1 1 2 −1
1 2 −1 1 1 −1 1 1 −1
1 −1 1 1 −1 2 1 −1 2









,
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R10 =









−1 2 1 −1 −1 2 1 −1 1 1
−1 1 −1 2 1 −1 1 −1 2 1
2 1 −1 1 1 −1 2 1 −1 −1
1 −1 2 1 1 1 −1 2 1 1









.

R11 =









2 2 −1 2 2 1 2 −1 1 1 −1
−1 1 1 −1 1 −1 −1 1 1 1 1
1 −1 2 −1 1 2 1 2 −1 −1 2
1 −1 1 1 −1 −1 1 −1 1 2 −1









.

Then the pattern Ri, i ∈ {7, 8, 9, 10, 11}, induces an SR2DF of C4�Ci with the weight
2i, and the pattern Rk

6Fi, i ∈ {1, 2, 3, 4, 5}, induces an SR2DF of C4�C6k+6+i with the
weight 12k + 12 + 2i. Therefore, all the upper bounds are established.
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[10] R. Hammack, W. Imrich, S. Klavžar, Handbook of Product Graphs, Second Edition,
CRC Press, Boca Raton, 2011.

[11] M.A. Henning, L. Volkmann, Signed Roman k-domination in trees, Discrete Appl.
Math. 186 (2015) 98–105.

[12] M.A. Henning, L. Volkmann, Signed Roman k-domination in graphs, Graphs Combin.
32 (2016) 175–190.

[13] M. Liedloff, T. Kloks, J. Liu, S.-L. Peng, Efficient algorithms for Roman domination
on some classes of graphs, Discrete Appl. Math. 156 (2008) 3400–3415.

[14] C.H. Liu, G.J. Chang, Roman domination on strongly chordal graphs, J. Comb.
Optim. 26 (2013) 608–619.

[15] S.M. Sheikholeslami, L. Volkmann, Signed Roman domination in digraphs, J. Comb.
Optim. 30 (2015) 456–467.

[16] I. Stewart, Defend the Roman empire!, Sci. Amer. 281 (1999) 136–139.

[17] L. Volkmann, Signed Roman k-domination in digraphs, Graphs Combin. 32 (2016)
1217–1227.

[18] L. Volkmann, Signed total Roman domination in digraphs, Discuss. Math. Graph
Theory 37 (2017) 261–272.

[19] Y. Zhao, E. Shan, L. Miao, Signed domination in Kronecker product of two complete
graphs, Util. Math. 91 (2013) 319–326.

20


