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Abstract

It is known that in the Tower of Hai graphs there are at most two different shortest paths
between any fixed pair of vertices. A formula is given that counts, for a given vertée number
of verticesu such that there are two shortest-paths. The formwal is expressed in terms of Stern’s
diatomic sequencb(n) (n > 0) and implies that only for vertices of degree two this number is
zero. Plane embeddings of the Tower of Hanoi graphs are also presented that provide an explicit
description ofb(n) as the number of elements of the sets of vertices of the Tower of Hanoi graphs
intersected by certain lines in the plane.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Itis fascinating that the Tower of Hanoi (TH) still attracts the interest of mathematicians
120 years after its invention by the French number the&ustuard Lucas (1842-1891).
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This stems from the rich inherent mathematical structure of the problem which can be
described as follows. Three vertical pegs hold a certain number of discs of mutually
different diameters in such a way thao larger dsc lies on a smaller ondai{vine rule.

A state obeying this divine rule is calleggular. The bpmost disc on a peg may be moved

to the top on mother peg, provided that the divine rule is obeyed, i.e. if this move leads
from one regular state to another. In the original setting, all discs lie on the same peg (this is
a perfectstateof the puzzle), and the task is to transfer them (in the least possible number
of moves) to a preassigned other peg. In trying to solve this problem, called Problem O of
the TH, one finds oneself readily in a situation where one still has the goal in mind, but has
lost the track from the initial configuration. Problem 1 is therefore to get from an arbitrary
regular state to a perfect one. But then one can, of course, also ask for a shortest path from
a reggular to another regular state, which is called Problem 2. (This latter problem seems
not to have been posed explicitly before 1976; 8§]])

For Poblem 1, including Problem 0, it can easily be shown that the largest disc moves
at most once in a shortest path and that tfeegee by induction, the shortest path is uniquely
determined (cf.9, Theorem 3]). Theassumptiorthat the largest dismoves only once also
in the case of Problem 2, and therefore the uniqueness of the shortest path, can be found
in literature as late as about ten years ago,35}.[On the other hand, it was pointed out
in the psychological literature by Klahr aledy in 1978 that uniqueness of the shortest
path doesiot hold in some cases (cf1§, p. 209]). He shows this by looking at what is
now called theHanoi graphfor three pegs (cf.15, Fig. 7.3). The latter was named so
by Lu [24], but introduced much earlier by Scorer et &1]. Non-uniqueness of shortest
paths appears already in the THtlw2 discs, so it is quite surprising that this fact had been
overlookedor such a long time. The two distinct optimal solutions differ by the number of
moves of the largest disc and Stor¥é]|[remarked in 1982 that in some cases the optimal
solutionrequirestwo moves of the largest disc (cf. alsbg] p. 139]).A complete theory
of Problem 2 was finally given by LW2H], Hinz [9, Sed¢ion 1.3.0] andvan Zaren [38].
However, thedecision problemif given a mir of states the largest disc moves once or twice
in a shortest path or if both alternatives are optimal, had not been solved in a satisfactory
way. Of course, it can be done by calculating and comparing the lengths of both paths
(cf. [11, Section 2.2]), but a recent result of RomiB({] shows thatone can do much
better: the decision can be made by a finite exdton after looking athe positions of only
the 63/38 largest pairs of discs on the average.

The relations between the TH, the Siergki triangle and Pascalaithmetical triangle
have been investigated il(, 27, 35 with the astonishing conclusion that the average
distance on the Siemsgki gasket is 466/88%[ 14]. Other recent results on Hanoi graphs
(i.e. graphs in which regular states are vertices and edges correspond to the legal moves)
show that they are &miltonian (cf. L7, Proposition 3], L3, Theorem 1]) and deal with
planarity [L3, Theorem 2] and error correcting codes L8, 20].

The goal of the present paper is to take a closer look at those pairs of states where the
optimal solution is not unique. I8ection 3we presehour main reults,Theorems 3.5nd
3.8 In Theorem 3.5ve show that give a vertex of a Haoi graph, the number of vertices
which can be connected to it by two different shortest paths and involving at least one move
of the largest disc is equal to a particular term of Stern’s diatomic sequBEneerem 3.5n
particular implies that this number is zero only if the given vertex represents a perfect state.
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The total number of vertices which are linked to a fixed vertex by two shortest paths is given
in Theorem 3.8We dso usethese results to count the overall number of pairs of vertices
that are connected biyvo shortest pathsPfoposition 3.9 An alternative way to obtain

this latter number usinBomik’s tedniques from 8Q] is presengd as well.

Our approach essentially uses labelings introducedlifj for a two-parametric
generalization of the Hanoi graphs. It is appealing that our enumerative results are
expressed by means of Stern’s diatomic semee A connection between the TH and the
so-called Stern—Brocot array became evident from the work by Pa@i§sBrpposition 1 of
Section 2], cf. alsoJ2]. Moreover, for any non-negative integerwe estabish an explicit
bijection between the hyperbinary representations, @nd acertain set of vertices of the
Sierpiiski graphs. These results are complemented by a geometrical interpretation of Hanoi
graphs inSection 4 More gecifically, we construct plane embeddings of the Hanoi graphs
in which the sets of vertices corresponding to the terms of Stern’s diatomic sequence lie
onpaallel lines. This latter result may be viewed as a more precise rephrasing of Carlitz's
results on Sters'didomic sequence and the binary Pascal triangl&]

2. Preliminaries

In this section we introduce the key concepts needed in our approach—the
abovementioned labelings of SiempKi graphs and Stern’s diatomic sequence.

Graphs S(n, k) were introduced in J7] as a twoparametric gemalization of the
Hanoi graphs and nameSierpihski graphsin [18]. Their introduction was motivated by
topological studies of certain generalizations of the Sreskiigasket22, 23, 25]. For our
purposes we recall that for amye N, thegraph$, := S(n, 3) is isomophic to the Hanoi
graph omn discs (cf. L7, Theorem 2]) and is defined as follows. Its vertices are all strings
of lengthn over the gbhabet{1, 2, 3}, vetticesu = ujuz...un andv = vyv2. .. v, being
adjacent if and only if there exists an index {1, 2, ..., n} suchthat

(i) uy=v,fort=1,...,h—1;

(ii) un # vn;
(i) ut =wvnandv =up, fort=h+1,...,n.

The graphSs, together with the introduced labeling, is drawrFig. L

The vertices ofS, labeledii ...i, fori = 1, 2, 3, will be calledextremeverticesof S,
(for obvious reasons—sdsg. 1). Note that the extreme vertices &, are precisely the
vertices of degree 2. Moreover, these vertices correspond to the perfect states of the TH
with n discs.

Let

1, i i,
o z{o; 7]

(The symbolp typographically resembles Kronecker’s delta symbol put upside down.) Set
in addition

Pitizeim = PiitPijz - - Pi.jm:
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111 112 121 122 211 212 221 222

Fig. 1. The Sierpiski graphSs and its labeling.

where the right-hand side taris a bnary number, rhos representing its digits. The
following resut given in [38] (and exended in 17] to all Sierpiiski graphsS(n, k)) will
be used in the sequel.

Proposition 2.1. Let ypus...up be a vertex of  Then
d(Uilz. .. Un,ii ...i) =Py, - O

Stern’s diatomic sequencér) is defined recursively bi(0) = 0, b(1) = 1, b(2n) =
b(n) andb(2n + 1) = b(n) + b(n + 1), forn > 1. This sequence 002487 in Sloane’s
online database of integer sequen@3.[

Motivated by an idea of EisensteiB, [p. 710], Stern 84, p. 194] considered an array,
each row of which is constructed by mediation from the previous one, starting from two
initial values p andq. This -cdled Stern—Brocot array(p, g)n, N € Ng (cf. [2]), in
the special cas@ = 1 = @, was lder namedStern’s Diatanic Seriedby Lehmer [L9].

De Rham P9] seems to have been the first to extract the one-dimensional segbi@gnce

from this array (or rather the one with “atomp”= 0 andq = 1). (Unfortunately, there

is a misprint in the recurrence relation forin [29, p. 95].) The connection between

the two is that thenth row of Stern’s diatomic series consists of the block of terms
b(2"), b(2"+1), ..., b(2"+1) of what we call Stern’s diatomic sequence. Among the many
other mathematicians in several different areas of mathematics, who later studied properties
of this sequence, let us just mention Carld4z5] and Lind [21]. A particularly rich source

of information on the history of the sequence and of new resul®7s Ve just add here

that this sequence has besmown to e 2-regular (cf. [, Example7]) and represents the

3rd binary partition function (cf.28, Theorem 5.2]).

A hyperbinary representationf a non-negative integem is a representation af
as a sum of powers of 2, each power being used at most twice. We will employ the
notation (ayay . . . am)[2; to describe the hyperbinary representat@jriﬁ“:laqzm‘i ,a €
{0, 1, 2}. Let H(n) denote the set of all hyperbinary representations,oivhere any
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two representatins of the same integer differing only in zeros on the left-hand side are
identified. For instance&1)o; is the same representation of 1(@4)2;. It is well-known,

cf. [3, 28], thatb(n) counts the number of hyperbinary representations-efl. In fact, it

is not difficult to see that this is indeed the case: the recursive formulas are established by
noting that wherx = (ajaz . . . am)(2) is odd, thenam must be 1, and ik is evenayn may

be 0 or 2, but not 1. Hence:

Theorem 2.2. Foranyne N, b(n) = [H(n—-1)|. O

For ann digit binary numbe = bib,...bn, b € {0, 1}, we will write b for the
complementary binary number, thats= b1b, . ..bn, wherebj = 1 — byj. For instarce,
if b = 0001101, them = 1110010. Clearlyb + b = 2" — 1, which we stde as a lemma
for further reference.

Lemma 2.3. Let b bean n digit binary number. Thenb b = 2" — 1.

3. Stern’sdiatomic sequence and Hanoi graphs

In[17, Theorem 6] it has been shown that in Siergki graphsS(n, k) there are at most
two shortest paths between any two vertice$g@f, k), so in paticular thisholds for the
graphs$, (cf. also P, Theorem 4]). We are going to study those pairs of verticeS;ifor
which two different shortest paths indeed exist. Far S, set

X () = {v' € S | there exist two shortest v'-paths.

(Here and throughout, € G stands forv € V (G) for a graphG.)

Fori = 1,2,3 let 31 be the subgraph 08§, induced by the vertices of the form
ivovs...vn. FOravertex = vivovz... vy Of § andi # j we also set

dij (v) =P —P)

V2V3...Un V2V3...Un°

that is, ifv € Sﬁ (note thatk is uniquely determined by), then since$ is olviously
isomorphic to S,_1,

dij (v) =d(vavz...vn,di ...0) —d(v2v3...vn, jj ... )

cf. Fig. 2 Note hatd;j (v) < 2" — 1; cf. [24, Lemma 2].

We wish to déermine, for a given vertex, the ske of X(v) and give an explicit
description of it. For this purpose we prove the following lemma.

Lemma3.l. Letv € 31 and{i, j, k} = {1, 2, 3} such hat djk(v) > 0. Then

WeXw vV ¢Si=0 eS| dk®)=2"1—djw)}

Moreover, if dk(v) = 0, then hesesets are empty.
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33.3

Fig. 2. The meaning of the functioml .

Proof. Let v’ € S, with £ := v} # i and such that there are two shortest’-paths.
The length of the shortest, v'-path that contains the edg@f...¢,¢4i...i) is by
Proposition 2.1

pt

V2V3...Un

+1+P,,

/9
1A

while the shortest path through the edgésr...m, mi...i)and(meé. .. ¢, ¢m...m) with
{i, £, m} = {1, 2, 3} is of length

m n-1 m
Pugvg.vny 1+ @77 =1D+ 1+ Pu’zvg...v;;
Since he above two lengths are equal, we have
i m __»on-1 14 m
Pv’zué...u(1 - /Pv’zvé...v{, =2 - (Pvzvs---vn - Pvzvg...vn)’

in other wordsdim (v') = 2" — dym(v).

Suppose = k, so thatm = j. Thend;j (v/) = 2"~1 —dyj (v) = 2" 1+ djk(v) > 2"1,
which contradictsdij (v') < 2"-1 _ 1. Therefore = j andm = k, hercev’ e S and
dik (V) = 2”*1—djk(v). This pioves thathe left-hand side set is included in the right-hand
side set. The other inclusios dbtained by reversing the order of the argument from the
first paragraph of the proof.

Suppose thadjk(v) = 0. Thendikx(v') = 2”*_1, which contradicts the fact that
dik (') < 2"1 — 1. Hence the set’ € X(v) | v' ¢ S} is empty. O

In order to write down an explicit description of the s¥{v), we introduce the
following notation. Forn € N,k € {0,...,n} andv € &, let K = v1. ok (€0)
andvk = Vk+1 - - - Un (ESH—k). Here we consider? to be the empty stnig. Furthermore,
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we define mppings¢ andd as follows. For an arbitrary string let first(x) be the first
symbol of x, that is, ifx = x1X2...Xk, then firstx) = x;1. Now, for anyn > 1 and any
v € S leti andj be such thati, j, first(v)} = {1, 2, 3}. Then set

d(v) = Idij (V)] )

Since |dij (v)| = [dji (v)], the functiond is well-defined. For a vertex € & and
T = vk41 . . . vn We considerd (T%) as a mapping o (S,—x). Note hat first(TX) = vyy1.
We alsoset

i;  dij(v) >0,
L) =11j; dji(w) >0,
0; dj(=0.

ApplyingLemma 3.1to successiveepths inS,, we arive at:

Theorem 3.2. Letv be a vertex of @ Then

n—-2
X() = | J{ue S u=ve@Hmtt d@) +d@*) = 2"} O
k:0

Note that whenevet(T¥) = 0, the sring vKe (@)U does not represent a vertex®f
and hence it does not belong ¥o(v) in accordance with.emma 3.1(that is,¢(7) = 0
meansd;; @) = 0, and byLemma 3.1it implies X (@) = @). In addition, as soon as
2(v%) = 0 for somek, we also have(vS) = 0 for all s > k.

The following lemma will establish the relation between hyperbinary representations
and the vertices of Sienpski graphs.

Lemma3.3. Letke Zwith |k] < 2"and x y € {1, 2, 3}, x # y. Then tlere is a bijection
between the set

HE"—1— k) = {(8.18.2. ..an)2]

n

doa2t=2"—1- |k|},
i=1

and the set

Ay y(K) ={ve S|Pl —P) =k}

Proof. Using the symmetries d&, we may without loss of generality assume= 1 and
y = 2. Notethat if (ayaz.. . . am);z; = 2" —1—|k| witha; # 0,then2—-1> 2"—1—|k| >
a;2M-1 > 2M-1 From this it bllows that 2' > 2™1 4+ 1 =~ 2™1 hercen > m— 1 and
finally n > m. This remark justifies our use of hyperbinary numbers of fixed lengtf
course, in(aay . . . an)p2; one or more digitsy, a, . . . may equal 0.

Again by symmetry, we may assurke< 0. The bijetion fromH (2" —1+k) to A1 2(k)
will be given by(ayaz . . . an)[2] = v = v1v2. .. vp With

1, & =0,
vi=12  a=2
3 a=1
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Obviously,v € §,. We clam thatv € A1 2(k). For tHs purpose we compute

Pvl= Xn:,ol,vi 2n—i — Z 2n—i — Z 2n—i + Z 2n—i
i=1

i:a#0 i:gj=1 i:gj=2
and

3= D2, on—i _ Z on—i
i=1 i:gj=2

Combining these two equalities we get

fpv1_|_’pv2= Z AL ) Z on—l :Zajznf' =2"_1+k
i:a;:l i:a:2 i=1

By Lemma 2.3we haveP2 = 2" — 1 — P2, whenceP? — P? = k and the claim is proved.

To complee the proof we need to establish bijectivity of the mapping. As it is obviously
injective, it remains to show surjectivity. So let = viv2...vn € A12(K), that is,
Pl — P2 = k. Then set

0, v =1,
a=1L wu=3
2, vi=2

Clearly, (ayaz . . . an)[2; can be viewed as a hyperbinary representation of some number,
which is obvbusly mapped t@, and, moreover, usingjemma 2.3gain,

Z:;a‘zni = (Z 27+ ) 2”i)+ S o

i:gj=1 i:aj=2 i:gj=2
=Pl4P2=2"—14PL_P2=2"_1+k,

which conpletes the argument.[

In Fig. 3, the setsA1 2(k), k = —15, —14, ..., 14, 15 are given as the intersections of
V(&) and the corresponding vertical lines. &nin the definition of these sets only the
intrinsic metric of S, has been used, it is quite unusual to observe such regularity with
respect to the genetry/metic of the plane in which our copy d is embelded. We will
show later (inTheorem 4.} that this behavior is not accidental.

By Theorem 2.2Lemma 3.3may be rephrased as follows: fii < 2" : |Ay y(k)| =
b(2" — |k|). On theother hand, since the Hanoi graph muliscs is isomorphic t&,, we
have| Ay y(K)| = zn(k) with the functionsz, defined in P, p. 305] by

Zn(k)=1|{r e S, |d(r,1...1) —d(r,2...2) =k}|.
So we also have

VneNgVkeNok<2": bk = 2z,(2" — k). )
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3333

3112 3121 3122 3211 3212 3221

1131 1232 2131 ‘ 2232
1113 . J J 2223

e 112 11210 1122 121001212 1221 1222 2111 2112 2121 2122 2211 2212 2221 2222

k -15-14-13-12-11-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 1011 1213 14 15
2"k 1 2345678 910I1112131415161514131211109 8 7 6 5 4 3 2 1

Fig. 3. The sets\1 »(K) in Sy, k = —15,—14,...,0,...,14, 15.

This relationship has an interesting consequence: putting 2"+ — k with 2" < k <
2"+ into the three-term recursion relation & Lemma 2.0], namely

Zni1(n) = Zn(2" — ) + zn(w) + 20 (2" + ),
we arrive at
Proposition 3.4. Vn e NoVk € {2"+1, ..., 2"} : bk) = b2"1—k)+bk—2". O

Together vith the two “atoms™(0) = 0 andb(1) = 1, this can be chosen as an alternative
and more symmetric definition of Stern’s diatomic sequence.

Fig. 3 shows thathe number of vertices 0§ belonging to the first 16 lines from
the left are indeed 11,2, 1,3,2,3,1,4,3,5,2,5,3,4,1, i.e. b(1), b(2), ..., b(16). In
connection with the abovementioned relation between the Hanoi graphs and (the odd
entries in) Pascal’s triangle, we refer [ Proposition 2].

Here is our main result. For a given vertexf S, it counts the number of all vertices
u with u1 # v1, such hat there are two different, v-paths. We prove that the number is
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equal to thed(v)-th term of Stern’s diatomic sequence, whdte) is defired by (). More
formally:

Theorem 3.5. Letv be any vertex of S Then|{u € X(v) | u1 # v1}| = b(d(v)).

Proof. By symmetry we may assume that= 1 anddo3(v) > 0. If d23(v) = 0, then by
Lemma3.1|{u € X(v) | uy # v1}| = |4| = 0= b(0).
If d23(v) > 0, applyingLemma 3.1again, one gets
Ue X [ur# v} = € X [V ¢ S)
= {v' [V € §, diz(v)) = 2"! — da3(v))
2 13 1 -1
= {U/ | U/ (S SV /Pv’zvé...v{, - Pvlzvé---vﬁ = d23(U) - 2n }

Hence byLemma 3.3

{u € X() [u1 #vi}] = [HE" — 14 (da3(v) — 2" h)]
= [H(d23(v) — 1)
= [H(d(v) — DI,

which conpletes the argument Byheorem 2.2 [

Corollary 3.6. If v is any vertex of Sthat is not extreme, then

{ue X(v) | ug # v1} #0.

In particular, X(v) # @.

Proof. Let v be a vertex ofS,; note thati is uniquely determined. Now, selegt k,
suchthat {i, j, k} = {1,2,3}. Sincev # ii...i, it follows thatdjk(v) # 0. Namely,
Proposition 2.limplies that ifdjk(v) = 0, thenpj,, = pk., foranyl = 1,2,...,n.
Thenv, =i forany? (if v, = j orvy = Kk, thenone of these’s is 0, ard theother 1). By
Theorem 3.5it follows that|{u € X(v) | uy # v1}| = b(d(v)) = b(|djk(v)|) > 0, hence
{ue X lur# v} #0. O

This has an interesting interpretation in the TH.

Corollary 3.7. The perfect states of the Tower of Hanoi are the only regular stat@sch
that for any other regular statethere is aunique shortest sequence of moves transforming
stot.

Proof. One direction follows fronCorollary 3.6 because extreme vertices correspond to
perfect states. The other direction is a consequenc® dhjeorem 3]. O

Applying 3.5 to successive depthsSp, we arive at:

Theorem 3.8. Letv € §,. Then

n—-2
X =Y b@d@). O
k=0
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As a final remark let us &sfor the totalnumberx, of pairs of \ertices inS,11 that
are linked by two shortest paths. To start with those ordered pairs where in the model of
the TH the largesdisc (humbem + 1) is moved during the transfer, we have to sum the
right-hand side in the formula datheorem 3.5or all six possible ordered paifs, j) with
i,j €{1,23},i # j,and allv as in the assumption of that theorem. The latter amounts
to sunmingb(u) over all posdile valuesu of djk, nanely from 1 to 2' — 1, multiplied by
the number of vertices wittljx (v) = u, which is|Ajk(n)| = b(2" — ). So, m&ing use
of (2), we get
2n—1
6> b(b@"— 1) =6 z:(2" — W)zn(n), 3)
n=1 neN
which has been calculated i9,[Lemma 2iii] to be equal to @} — 6O")/4/17 with
O+ = (5= +/17)/2. Finally, if we want to take into account those pairs where the
largest disc is at rest, observing that there are three chwikereit can lie, and keeping
on performing these steps, we arrive at (6f.Froposition 6i])

Proposition 3.9. For n € Ny,

6 n-1 K
Xn= ——= Y 361K gnk
" «/1—7;(:, (G4 )

3
417

Note that the first few values (f&; to ;) are 0, 6, 48, 282, 1476, 7302, 35016, 164 850,
767340, 3546 366, 16 315248, 74837 802.

We close his section by including yet another interesting proofRybposition 3.9
which waspointed out to us by one of the referees. Using Romik’s approadh ¢ne
may use the adjacency matrix of the orientedpi of the three non-terminal states of his
finite automaton

[or (Vit+1) - 2.8 Vi7+ om (VIT-1)}. O

210
A=]|2 3 2
01 2

(edges are counted with multiplicity of the number of input pairs leading to them). There-
fore the number of pairs of vertic&g, v) with non-unique shortest paths &, such hat

u; andv are fixed and different, is given by the entry in the first line and second column
of A", sincethis is the number of length paths in the autmaton sate graph starting at
“START” and ending at “DRAW”. By diagonalizingj this number is easily computed to
be(o — ©")/+/17. Then one eeds only to multiply this by 6 and to proceed as above.

4. Some special enbeddings of graphs S,, into R2

In this section we are going to show that it is not accidental that thegeigk) are
relaed to the lines in the plane in the way observedrogy 3. Of course, an arbitrary
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>
s f@
L0y (L)

Fig. 4.5, embedded iR? as f1(S)).

embedding of5, into the plane will not work, hencee first define secific embeddings
that will be used. iese embeddings will provide an explicit descriptiob©f as the order
of a set of vertices 0§, intersected by a specific line in the plane.

The embeddings, : V(S)) — R? of the graphsS, into the planeR? will be
defined inductively such that,(11...1) = (-2" + 1,0), f,(22...2) = (2" - 1,0),
and f,(33...3) = (0, (2" — 1) yop) will hold for anyn. We use the fixegositive numbeyg
in this construction in order to avoid writing'3, which would appear if we would restrict
ourselves to equilateral triangles. Moreover, the notation also points out that while proving
results abouti; 2(k) only the axial symmeyrwith respect to the-axis will be needed.

The indices inf, will be used only during the inductive construction—later we will use
f for all of these functions.

The functionf; : V(S) — R?, defined byfi(1) = (-1,0), f1(2) = (1,0), and
f1(3) = (0, yo), is obviously an appropriate embedding®f = K3, seeFig. 4

Suppose that the embeddirfg : V() —> R?, saisfying fo(11...1) = (—=2"+1, 0),
fn(22...2) = (2" - 1,0), and f(33...3) = (0, (2" — 1)yp), is given, sedFig. 5.

Clearly,V (Sy41) is the disjoint union oV (St ;). V(S%,,) andV (S3, ), where each
of these sets induces a subgraph isomorph&; t&Ve shdl thusdefinef,,1 as f, followed
by a translation, chosen differently for each of these sets.

Lettp) : R2— R? be the fdlowing translation:

tab(X, y) =@ b) + (X, y).

Sincet_on g (—2" + 1,00 = (=21 4+ 1,0), ten (2" — 1,00 = (21 -~ 1,0), and
t0.21y0) (0, (2" — 1)yo) = (0, (2" — 1)yp), we define

] t(72”,0)( fn(ulv e Un)); I = 15
fn-‘rl(l yug, ..., un) = t(2",0)( fn(uls ey Un)); I = 21
to, 2y (fn(uz, ..., up)); i =3

By the dhoice of translations we havi1(11...1) = (=2"*1 +1,0), f41(22...2) =
(21 —1,0), and fry1(3...3) = (0, (2" — 1)yp). Also, it is easily calculated that
foranyi # j, fnyra(ij ... ) is as shown oifrig. 6. Note in addition that f,1(11...1),
fr+1(13...3), frt1(31...1), and fr4+1(33...3) are collinear and so arg,+1(22...2),
fa11(23...3), fn11(32...2), and fny1(33...3). Findly, foa(Sh,), faya(SE, ), and
fn+1(Sg+1) are pairwise disjoint, and positioned in the plane as showrigrb.
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Fig. 5., embedded iR? as fn(Sh).

1(3..3)
(0’(2;” 1_ 1 ),)'()]

f(S,?n)
732..2)

(2"*[,2”_\‘”)
f(23..3)
2",(2"-1)yy)

G311
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f(13..3)
(=272 1)yg)

£55) 185
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f(1..1)
(72u+]+]‘0)
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(-1.0) (1,0)

Fig. 6. S,41 embedded ifR? as fr,11(Shy1).
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For the next theorem we introduce the limgsaséy = {k} xR. Recall thatinLemma 3.3
we have introduced the setf y(k) as those vertices &, for which P — Py = k. Inthe
next result we considef\1 »(k) as a setinf ().

Theorem 4.1. For any n and any kK,
A1 2(k) = f(S) N L,

whereA; 2(k) = {f (v) | v e S, PL — P? =K.
Proof. Note that the sets on both sides of the equation may be empty. In fact, from
geometric properties of (S;) and the linegk (as well fromLemma 3.3 it follows that
the sets will be simultaneously empty precisely whigrn> 2".

The assertion is clear for = 1, cf. Fig. 4 Suppose now that the statement holds for
S.n>1.

In order to distinguish the set8; »(k) defined inS, and those defined i1, we will
denote them b)Aiz(k), in theformer, and b A”+1(k) in the later case. Then, since for
anyu € §,,

ds,,;(1u,11...1) —ds,,,(1u,22...2) =ds,(u,1...1) —ds,(u, 2...2) —
we inferthat Ll € A”Bl(k) ifandonlyif u e A" 2(k—|—2'“) Using this fact, the definition of

the emteddingsf, and the wayranslations act on the family of linég, we can compute
as follows:

e ATE K N f(Sh) © t b 0@ € AT, (k+2"
& t(‘_zn,o)(v) e 1(&) Nlkyon
< v et oo (f(S) N Lkon)
< v €t o) (F(S)) Nt2n 0)(Lkt2n)
sve (SN
Hence we ha® shown that

AT RN f(Syp) = TS Ntk (@)
The proof of

ATS RN f(Sh) = F(S0) Nt (5)
is analogous. To prove that

ATS R0 N F(S ) = F(S0) Nk (6)

holds as well, note first that for anye S,
ds,,;(3u,11...1) —ds,,,(3u,22...2) =ds,(u,1...1) —dg,(u,2...2).
In other words, 8 € Agl(k) ifandonly if u € A” (k). Now we have:
€ ATEH0 N F (S0 & tghny, @) € A7,
<~ t(?),Z"yo) (v) € f(S]) N Lk
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S v ety (F(S) NLk)
& v €ty (F(S)) Nt 2nyg) (k)
sve f(§ )Nk
Combining #)—(6), we can conclude the proof as follows:
ATEHO = A0 N (Shpa)
= ATE 0 N (F(S ) U TS ) U F(SS,0)
= (AT5 k) N F(S10) U AT N F(S 1) U ATE 00 N (S )
= (f(Sh,0) N U (f (SH.]_) N4 U (f (S?H) N k)

(F(S DU FS ) U (S Nk
= (SN O

We have fomulatedTheorem 4.Xor A 2(k), butfrom the symmetry it is clear that an
analogous conclusion holds for ay y(k) with x # y.

Corollary 4.2. Foranynandanyi=1,2,...,2",
b(i) = [f(S) N&-2n]|.

Proof. Leti — 2" = k. Thenk is in the range-2" + 1 < k < 0, henceLemma 3.3is
applicable. BLemma 3.3b(i) = |H(i — 1)| = |H(2" — 1+ k)| = |A1.2(k)|. But then it
follows by Theorem 4.%hat| A1 2(k)| = | f(SH) N = | T(S) NLi—an|. O

This can be seen oFRig. 3 where tle intergctions of §; with the linesx = Kk,
k = —15,-14,...,0 haveb(1), b(2), ..., b(16) points, respectively. Note that this copy
of & is already realized as afl(Sy).
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