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Abstract

It is known that in the Tower of Hanoi graphs there are at most two different shortest paths
between any fixed pair of vertices. A formula is given that counts, for a given vertexv, thenumber
of verticesu such that there are two shortestu, v-paths. The formula is expressed in terms of Stern’s
diatomic sequenceb(n) (n ≥ 0) and implies that only for vertices of degree two this number is
zero. Plane embeddings of the Tower of Hanoi graphs are also presented that provide an explicit
description ofb(n) as the number of elements of the sets of vertices of the Tower of Hanoi graphs
intersected by certain lines in the plane.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

It is fascinating that the Tower of Hanoi (TH) still attracts the interest of mathematicians
120 years after its invention by the French number theoristÉdouard Lucas (1842–1891).
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This stems from the rich inherent mathematical structure of the problem which can be
described as follows. Three vertical pegs hold a certain number of discs of mutually
different diameters in such a way thatno larger disc lies on a smaller one (divine rule).
A stateobeying this divine rule is calledregular. The topmost disc on a peg may be moved
to the top on another peg, provided that the divine rule is obeyed, i.e. if this move leads
from one regular state to another. In the original setting, all discs lie on the same peg (this is
a perfectstateof the puzzle), and the task is to transfer them (in the least possible number
of moves) to a preassigned other peg. In trying to solve this problem, called Problem 0 of
the TH, one finds oneself readily in a situation where one still has the goal in mind, but has
lost the track from the initial configuration. Problem 1 is therefore to get from an arbitrary
regular state to a perfect one. But then one can, of course, also ask for a shortest path from
a regular to another regular state, which is called Problem 2. (This latter problem seems
not to have been posed explicitly before 1976; cf. [33].)

For Problem 1, including Problem 0, it can easily be shown that the largest disc moves
at most once in a shortest path and that therefore, by induction, the shortest path is uniquely
determined (cf. [9, Theorem 3]). Theassumptionthat the largest discmoves only once also
in the case of Problem 2, and therefore the uniqueness of the shortest path, can be found
in literature as late as about ten years ago, cf. [35]. On the other hand, it was pointed out
in the psychological literature by Klahr already in 1978 that uniqueness of the shortest
path doesnot hold in some cases (cf. [15, p. 209]). He shows this by looking at what is
now called theHanoi graphfor three pegs (cf. [15, Fig. 7.3]). The latter was named so
by Lu [24], but introduced much earlier by Scorer et al. [31]. Non-uniqueness of shortest
paths appears already in the TH with 2 discs, so it is quite surprising that this fact had been
overlookedfor such a long time. The two distinct optimal solutions differ by the number of
moves of the largest disc and Stone [36] remarked in 1982 that in some cases the optimal
solutionrequirestwo moves of the largest disc (cf. also [16, p. 139]).A complete theory
of Problem 2 was finally given by Lu [24], Hinz [9, Section 1.3.0] andvan Zanten [38].
However, thedecision problem, if given a pair of states the largest disc moves once or twice
in a shortest path or if both alternatives are optimal, had not been solved in a satisfactory
way. Of course, it can be done by calculating and comparing the lengths of both paths
(cf. [11, Section 2.2]), but a recent result of Romik [30] shows thatone can do much
better: the decision can be made by a finite automaton after looking atthe positions of only
the63/38 largest pairs of discs on the average.

The relations between the TH, the Sierpi´nski triangle and Pascal’s arithmetical triangle
have been investigated in [10, 27, 35] with the astonishing conclusion that the average
distance on the Sierpi´nski gasket is 466/885 [6, 14]. Other recent results on Hanoi graphs
(i.e. graphs in which regular states are vertices and edges correspond to the legal moves)
show that they are Hamiltonian (cf. [17, Proposition 3], [13, Theorem 1]) and deal with
planarity [13, Theorem 2] and error correcting codes [7, 18, 20].

The goal of the present paper is to take a closer look at those pairs of states where the
optimal solution is not unique. InSection 3we present our main results,Theorems 3.5and
3.8. In Theorem 3.5we show that given a vertex of a Hanoi graph, the number of vertices
which can be connected to it by two different shortest paths and involving at least one move
of the largest disc is equal to a particular term of Stern’s diatomic sequence.Theorem 3.5in
particular implies that this number is zero only if the given vertex represents a perfect state.
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The total number of vertices which are linked to a fixed vertex by two shortest paths is given
in Theorem 3.8. We also usethese results to count the overall number of pairs of vertices
that are connected bytwo shortest paths (Proposition 3.9). An alternative way to obtain
this latter number usingRomik’s techniques from [30] is presented as well.

Our approach essentially uses labelings introduced in [17] for a two-parametric
generalization of the Hanoi graphs. It is appealing that our enumerative results are
expressed by means of Stern’s diatomic sequence. A connection between the TH and the
so-called Stern–Brocot array became evident from the work by Parisse [26, Proposition 1 of
Section 2], cf. also [12]. Moreover, for any non-negative integern, we establish an explicit
bijection between the hyperbinary representations ofn, and acertain set of vertices of the
Sierpiński graphs. These results are complemented by a geometrical interpretation of Hanoi
graphs inSection 4. More specifically, we construct plane embeddings of the Hanoi graphs
in which the sets of vertices corresponding to the terms of Stern’s diatomic sequence lie
onparallel lines. This latter result may be viewed as a more precise rephrasing of Carlitz’s
results on Stern’s diatomic sequence and the binary Pascal triangle [4, 5].

2. Preliminaries

In this section we introduce the key concepts needed in our approach—the
abovementioned labelings of Sierpi´nski graphs and Stern’s diatomic sequence.

Graphs S(n, k) were introduced in [17] as a two-parametric generalization of the
Hanoi graphs and namedSierpínski graphsin [18]. Their introduction was motivated by
topological studies of certain generalizations of the Sierpi´nski gasket [22, 23, 25]. For our
purposes we recall that for anyn ∈ N, thegraphSn := S(n, 3) is isomorphic to the Hanoi
graph onn discs (cf. [17, Theorem 2]) and is defined as follows. Its vertices are all strings
of lengthn over the alphabet{1, 2, 3}, verticesu = u1u2 . . . un andv = v1v2 . . . vn being
adjacent if and only if there exists an indexh ∈ {1, 2, . . . , n} suchthat

(i) ut = vt , for t = 1, . . . , h − 1;

(ii) uh �= vh;

(iii) ut = vh andvt = uh, for t = h + 1, . . . , n.

The graphS3, together with the introduced labeling, is drawn inFig. 1.
The vertices ofSn labeledi i . . . i , for i = 1, 2, 3, will be calledextremeverticesof Sn

(for obvious reasons—seeFig. 1). Note that the extreme vertices ofSn are precisely the
vertices of degree 2. Moreover, these vertices correspond to the perfect states of the TH
with n discs.

Let

ρi, j =
{

1; i �= j ,
0; i = j .

(The symbolρ typographically resembles Kronecker’s delta symbol put upside down.) Set
in addition

P i
j1 j2... jm = ρi, j1ρi, j2 . . . ρi, jm,
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Fig. 1. The Sierpi´nski graphS3 and its labeling.

where the right-hand side term is a binary number, rhos representing its digits. The
following result given in [38] (and extended in [17] to all Sierpiński graphsS(n, k)) will
be used in the sequel.

Proposition 2.1. Let u1u2 . . . un be a vertex of Sn. Then

d(u1u2 . . . un, i i . . . i ) = P i
u1u2...un

. �
Stern’s diatomic sequence b(n) is defined recursively byb(0) = 0, b(1) = 1, b(2n) =

b(n) andb(2n + 1) = b(n) + b(n + 1), for n ≥ 1. This sequence isA002487 in Sloane’s
online database of integer sequences [32].

Motivated by an idea of Eisenstein [8, p. 710], Stern [34, p. 194] considered an array,
each row of which is constructed by mediation from the previous one, starting from two
initial values p and q. This so-called Stern–Brocot array(p, q)n, n ∈ N0 (cf. [2]), in
the special casep = 1 = q, was later namedStern’s Diatomic Seriesby Lehmer [19].
De Rham [29] seems to have been the first to extract the one-dimensional sequenceb(n)

from this array (or rather the one with “atoms”p = 0 andq = 1). (Unfortunately, there
is a misprint in the recurrence relation forb in [29, p. 95].) The connection between
the two is that thenth row of Stern’s diatomic series consists of the block of terms
b(2n), b(2n+1), . . . , b(2n+1) of what we call Stern’s diatomic sequence. Among the many
other mathematicians in several different areas of mathematics, who later studied properties
of this sequence, let us just mention Carlitz [4, 5] and Lind [21]. A particularly rich source
of information on the history of the sequence and of new results is [37]. We just add here
that this sequence has beenshown to be 2-regular (cf. [1, Example7]) and represents the
3rd binary partition function (cf. [28, Theorem 5.2]).

A hyperbinary representationof a non-negative integern is a representation ofn
as a sum of powers of 2, each power being used at most twice. We will employ the
notation(a1a2 . . . am)[2] to describe the hyperbinary representation

∑m
i=1 ai 2m−i , ai ∈

{0, 1, 2}. Let H(n) denote the set of all hyperbinary representations ofn, where any
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two representations of the same integer differing only in zeros on the left-hand side are
identified. For instance,(1)[2] is the same representation of 1 as(01)[2]. It is well-known,
cf. [3, 28], thatb(n) counts the number of hyperbinary representations ofn − 1. In fact, it
is not difficult to see that this is indeed the case: the recursive formulas are established by
noting that whenx = (a1a2 . . . am)[2] is odd, thenam must be 1, and ifx is even,am may
be 0 or 2, but not 1. Hence:

Theorem 2.2. For any n∈ N, b(n) = |H(n − 1)|. �

For ann digit binary numberb = b1b2 . . . bn, bi ∈ {0, 1}, we will write b for the
complementary binary number, that is,b = b1b2 . . . bn, wherebi = 1 − bi . For instance,
if b = 0001101, thenb = 1110010. Clearly,b + b = 2n − 1, which we state as a lemma
for further reference.

Lemma 2.3. Let b bean n digit binary number. Then b+ b = 2n − 1.

3. Stern’s diatomic sequence and Hanoi graphs

In [17, Theorem 6] it has been shown that in Sierpi´nski graphsS(n, k) there are at most
two shortest paths between any two vertices ofS(n, k), so in particular thisholds for the
graphsSn (cf. also [9, Theorem 4]). We are going to study those pairs of vertices inSn for
which two different shortest paths indeed exist. Forv ∈ Sn set

X(v) = {v′ ∈ Sn | there exist two shortestv, v′-paths}.
(Here and throughout,v ∈ G stands forv ∈ V(G) for a graphG.)

For i = 1, 2, 3 let Si
n be the subgraph ofSn induced by the vertices of the form

i v2v3 . . . vn. For a vertexv = v1v2v3 . . . vn of Sn andi �= j we also set

di j (v) = P i
v2v3...vn

− P j
v2v3...vn

,

that is, if v ∈ Sk
n (note thatk is uniquely determined byv), then, sinceSk

n is obviously
isomorphic toSn−1,

di j (v) = d(v2v3 . . . vn, i i . . . i ) − d(v2v3 . . . vn, j j . . . j );
cf. Fig. 2. Note thatdi j (v) ≤ 2n−1 − 1; cf. [24, Lemma 2].

We wish to determine, for a given vertexv, the size of X(v) and give an explicit
description of it. For this purpose we prove the following lemma.

Lemma 3.1. Letv ∈ Si
n and{i , j , k} = {1, 2, 3} such that djk(v) ≥ 0. Then

{v′ ∈ X(v) | v′ /∈ Si
n} = {v′ ∈ Sj

n | dik(v′) = 2n−1 − djk(v)}.
Moreover, if djk(v) = 0, then thesesets are empty.
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Fig. 2. The meaning of the functionsdi j .

Proof. Let v′ ∈ Sn with � := v′
1 �= i and such that there are two shortestv, v′-paths.

The length of the shortestv, v′-path that contains the edge(i � . . . �, �i . . . i ) is by
Proposition 2.1,

P�
v2v3...vn

+ 1 + P i
v′

2v
′
3...v

′
n
,

while the shortest path through the edges(im . . .m, mi . . . i ) and(m� . . . �, �m . . . m) with
{i , �, m} = {1, 2, 3} is of length

Pm
v2v3...vn

+ 1 + (2n−1 − 1) + 1 + Pm
v′

2v
′
3...v

′
n
.

Since the above two lengths are equal, we have

P i
v′

2v
′
3...v

′
n
− Pm

v′
2v

′
3...v

′
n

= 2n−1 − (P�
v2v3...vn

− Pm
v2v3...vn

),

in other words,dim(v′) = 2n−1 − d�m(v).
Suppose� = k, so thatm = j . Thendi j (v

′) = 2n−1 − dkj (v) = 2n−1 + djk(v) ≥ 2n−1,

which contradictsdi j (v
′) ≤ 2n−1 − 1. Therefore� = j andm = k, hencev′ ∈ Sj

n and
dik(v′) = 2n−1−djk(v). This proves that the left-hand side set is included in the right-hand
side set. The other inclusion is obtained by reversing the order of the argument from the
first paragraph of the proof.

Suppose thatdjk(v) = 0. Then dik(v′) = 2n−1, which contradicts the fact that
dik(v′) ≤ 2n−1 − 1. Hence the set{v′ ∈ X(v) | v′ /∈ Si

n} is empty. �

In order to write down an explicit description of the setX(v), we introduce the
following notation. Forn ∈ N, k ∈ {0, . . . , n} and v ∈ Sn, let vk = v1 . . . vk (∈Sk)

andvk = vk+1 . . . vn (∈Sn−k). Here we considerv0 to be the empty string. Furthermore,
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we define mappings� andd as follows. For an arbitrary stringx let first(x) be the first
symbol of x, that is, if x = x1x2 . . . xk, then first(x) = x1. Now, for anyn ≥ 1 and any
v ∈ Sn let i and j be such that{i , j , first(v)} = {1, 2, 3}. Then set

d(v) = |di j (v)|. (1)

Since |di j (v)| = |dj i (v)|, the function d is well-defined. For a vertexv ∈ Sn and
vk = vk+1 . . . vn we considerd(vk) as a mapping onV(Sn−k). Note that first(vk) = vk+1.
We alsoset

�(v) =



i ; di j (v) > 0,

j ; dj i (v) > 0,

0; di j (v) = 0.

ApplyingLemma 3.1to successivedepths inSn, we arrive at:

Theorem 3.2. Letv be a vertex of Sn. Then

X(v) =
n−2⋃
k=0

{u ∈ Sn | u = vk�(vk)uk+1, d(uk) + d(vk) = 2n−k−1}. �

Note that whenever�(vk) = 0, the string vk�(vk)uk+1 does not represent a vertex ofSn

and hence it does not belong toX(v) in accordance withLemma 3.1(that is,�(vk) = 0
meansdi j (v

k) = 0, and byLemma 3.1it implies X(vk) = ∅). In addition, as soon as
�(vk) = 0 for somek, we also have�(vs) = 0 for all s ≥ k.

The following lemma will establish the relation between hyperbinary representations
and the vertices of Sierpi´nski graphs.

Lemma 3.3. Let k ∈ Z with |k| < 2n and x, y ∈ {1, 2, 3}, x �= y. Then there is a bijection
between the set

H(2n − 1 − |k|) =
{

(a1a2 . . . an)[2]

∣∣∣∣∣
n∑

i=1

ai 2n−i = 2n − 1 − |k|
}

,

and the set

∆x,y(k) = {v ∈ Sn | Px
v − P y

v = k}.
Proof. Using the symmetries ofSn we may without loss of generality assumex = 1 and
y = 2. Notethat if (a1a2 . . . am)[2] = 2n−1−|k| with a1 �= 0, then 2n−1 ≥ 2n−1−|k| ≥
a12m−1 ≥ 2m−1. From this it follows that 2n ≥ 2m−1 + 1 > 2m−1, hencen > m − 1 and
finally n ≥ m. This remark justifies our use of hyperbinary numbers of fixed lengthn. Of
course, in(a1a2 . . . an)[2] one or more digitsa1, a2, . . . may equal 0.

Again by symmetry, we may assumek ≤ 0. The bijection fromH(2n−1+k) to∆1,2(k)

will be given by(a1a2 . . . an)[2] �→ v = v1v2 . . . vn with

vi =



1; ai = 0,

2; ai = 2,

3; ai = 1.
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Obviously,v ∈ Sn. We claim thatv ∈ ∆1,2(k). For this purpose we compute

P1
v =

n∑
i=1

ρ1,vi 2
n−i =

∑
i :ai �=0

2n−i =
∑

i :ai =1

2n−i +
∑

i :ai =2

2n−i

and

P2
v =

n∑
i=1

ρ2,vi
2n−i =

∑
i :ai =2

2n−i .

Combining these two equalities we get

P1
v + P2

v =
∑

i :ai =1

2n−i + 2
∑

i :ai =2

2n−i =
n∑

i=1

ai 2n−i = 2n − 1 + k.

By Lemma 2.3, we haveP2
v = 2n −1−P2

v , whenceP1
v −P2

v = k and the claim is proved.
To complete the proof we need to establish bijectivity of the mapping. As it is obviously

injective, it remains to show surjectivity. So letv = v1v2 . . . vn ∈ ∆1,2(k), that is,
P1

v − P2
v = k. Then set

ai =



0; vi = 1,

1; vi = 3,

2; vi = 2.

Clearly, (a1a2 . . . an)[2] can be viewed as a hyperbinary representation of some number,
which is obviously mapped tov, and, moreover, usingLemma 2.3again,

n∑
i=1

ai 2
n−i =

( ∑
i :ai =1

2n−i +
∑

i :ai =2

2n−i

)
+
∑

i :ai =2

2n−i

= P1
v + P2

v = 2n − 1 + P1
v − P2

v = 2n − 1 + k,

which completes the argument.�

In Fig. 3, the sets∆1,2(k), k = −15,−14, . . . , 14, 15 are given as the intersections of
V(S4) and the corresponding vertical lines. Since in the definition of these sets only the
intrinsic metric ofSn has been used, it is quite unusual to observe such regularity with
respect to the geometry/metric of the plane in which our copy ofS4 is embedded. We will
show later (inTheorem 4.1) that this behavior is not accidental.

By Theorem 2.2, Lemma 3.3may be rephrased as follows: for|k| < 2n : |∆x,y(k)| =
b(2n − |k|). On theother hand, since the Hanoi graph onn discs is isomorphic toSn, we
have|∆x,y(k)| = zn(k) with the functionszn defined in [9, p. 305] by

zn(k) = |{r ∈ Sn | d(r, 1 . . .1) − d(r, 2 . . .2) = k}|.
So we also have

∀ n ∈ N0 ∀ k ∈ N0, k ≤ 2n : b(k) = zn(2n − k). (2)
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Fig. 3. The sets∆1,2(k) in S4, k = −15, −14, . . . , 0, . . . , 14, 15.

This relationship has an interesting consequence: puttingµ = 2n+1 − k with 2n < k ≤
2n+1 into the three-term recursion relation of [9, Lemma 2.o], namely

zn+1(µ) = zn(2n − µ) + zn(µ) + zn(2n + µ),

we arrive at

Proposition 3.4. ∀ n ∈ N0 ∀ k ∈ {2n+1, . . . , 2n+1} : b(k) = b(2n+1−k)+b(k−2n). �
Together with the two “atoms”b(0) = 0 andb(1) = 1, this can be chosen as an alternative
and more symmetric definition of Stern’s diatomic sequence.

Fig. 3 shows that the number of vertices ofS4 belonging to the first 16 lines from
the left are indeed 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, i.e. b(1), b(2), . . . , b(16). In
connection with the abovementioned relation between the Hanoi graphs and (the odd
entries in) Pascal’s triangle, we refer to [10, Proposition 2].

Here is our main result. For a given vertexv of Sn it counts the number of all vertices
u with u1 �= v1, such that there are two differentu, v-paths. We prove that the number is
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equal to thed(v)-th term of Stern’s diatomic sequence, whered(v) is defined by (1). More
formally:

Theorem 3.5. Letv be any vertex of Sn. Then|{u ∈ X(v) | u1 �= v1}| = b(d(v)).

Proof. By symmetry we may assume thatv1 = 1 andd23(v) ≥ 0. If d23(v) = 0, then by
Lemma 3.1, |{u ∈ X(v) | u1 �= v1}| = |∅| = 0 = b(0).

If d23(v) > 0, applyingLemma 3.1again, one gets

{u ∈ X(v) | u1 �= v1} = {v′ ∈ X(v) | v′ /∈ S1
n}

= {v′ | v′ ∈ S2
n, d13(v

′) = 2n−1 − d23(v)}
= {v′ | v′ ∈ S2

n,P3
v′

2v
′
3...v

′
n
− P1

v′
2v

′
3...v

′
n

= d23(v) − 2n−1}.
Hence byLemma 3.3,

|{u ∈ X(v) | u1 �= v1}| = |H(2n−1 − 1 + (d23(v) − 2n−1))|
= |H(d23(v) − 1)|
= |H(d(v) − 1)|,

which completes the argument byTheorem 2.2. �

Corollary 3.6. If v is any vertex of Sn that is not extreme, then

{u ∈ X(v) | u1 �= v1} �= ∅.

In particular, X(v) �= ∅.

Proof. Let v be a vertex ofSi
n; note thati is uniquely determined. Now, selectj , k,

suchthat {i , j , k} = {1, 2, 3}. Sincev �= i i . . . i , it follows thatdjk(v) �= 0. Namely,
Proposition 2.1implies that ifdjk(v) = 0, thenρ j ,v� = ρk,v� for any � = 1, 2, . . . , n.
Thenv� = i for any� (if v� = j or v� = k, thenone of theseρ’s is 0, and theother 1). By
Theorem 3.5, it follows that|{u ∈ X(v) | u1 �= v1}| = b(d(v)) = b(|djk(v)|) > 0, hence
{u ∈ X(v) | u1 �= v1} �= ∅. �

This has an interesting interpretation in the TH.

Corollary 3.7. The perfect states of the Tower of Hanoi are the only regular statess such
that for any other regular statet there is aunique shortest sequence of moves transforming
s to t.

Proof. One direction follows fromCorollary 3.6 because extreme vertices correspond to
perfect states. The other direction is a consequence of [9, Theorem 3]. �

Applying 3.5 to successive depths inSn, we arrive at:

Theorem 3.8. Letv ∈ Sn. Then

|X(v)| =
n−2∑
k=0

b(d(vk)). �
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As a final remark let us ask for the totalnumberxn of pairs of vertices inSn+1 that
are linked by two shortest paths. To start with those ordered pairs where in the model of
the TH the largest disc (numbern + 1) is moved during the transfer, we have to sum the
right-hand side in the formula ofTheorem 3.5for all six possible ordered pairs(i , j ) with
i , j ∈ {1, 2, 3}, i �= j , and allv as in the assumption of that theorem. The latter amounts
to summingb(µ) over all possible valuesµ of djk , namely from 1 to 2n − 1, multiplied by
the number of vertices withdjk(v) = µ, which is|∆ j k(µ)| = b(2n − µ). So, making use
of (2), we get

6
2n−1∑
µ=1

b(µ)b(2n − µ) = 6
∑
µ∈N

zn(2n − µ)zn(µ), (3)

which has been calculated in [9, Lemma 2iii] to be equal to 6(Θn+ − Θn−)/
√

17 with
Θ± := (5 ± √

17)/2. Finally, if we want to take into account those pairs where the
largest disc is at rest, observing that there are three choiceswhereit can lie, and keeping
on performing these steps, we arrive at (cf. [9, Proposition 6i])

Proposition 3.9. For n ∈ N0,

xn = 6√
17

n−1∑
k=0

3k(Θn−k+ − Θn−k− )

= 3

4
√

17

{
Θn+1+

(√
17+ 1

)
− 2 · 3n+1

√
17+ Θn+1−

(√
17− 1

)}
. �

Note that the first few values (forS1 to S12) are 0, 6, 48, 282, 1476, 7302, 35 016, 164 850,
767 340, 3 546 366, 16 315 248, 74 837 802.

We close this section by including yet another interesting proof ofProposition 3.9,
which waspointed out to us by one of the referees. Using Romik’s approach [30], one
may use the adjacency matrix of the oriented graph of the three non-terminal states of his
finite automaton

A =

2 1 0

2 3 2
0 1 2




(edges are counted with multiplicity of the number of input pairs leading to them). There-
fore the number of pairs of vertices(u, v) with non-unique shortest paths inSn, such that
u1 andv1 are fixed and different, is given by the entry in the first line and second column
of An, sincethis is the number of lengthn paths in the automaton state graph starting at
“START” and ending at “DRAW”. By diagonalizingA this number is easily computed to
be(Θn+ − Θn−)/

√
17. Then one needs only to multiply this by 6 and to proceed as above.

4. Some special embeddings of graphs Sn into R
2

In this section we are going to show that it is not accidental that the sets∆x,y(k) are
related to the lines in the plane in the way observed onFig. 3. Of course, an arbitrary
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Fig. 4.S1 embedded inR2 as f1(S1).

embedding ofSn into the plane will not work, hencewe first define specific embeddings
that will be used. These embeddings will provide an explicit description ofb(i ) as the order
of a set of vertices ofSn intersected by a specific line in the plane.

The embeddingsfn : V(Sn) R
2 of the graphsSn into the planeR

2 will be
defined inductively such thatfn(11. . .1) = (−2n + 1, 0), fn(22. . .2) = (2n − 1, 0),
and fn(33. . .3) = (0, (2n −1)y0) will hold for anyn. We use the fixedpositive numbery0
in this construction in order to avoid writing

√
3, which would appear if we would restrict

ourselves to equilateral triangles. Moreover, the notation also points out that while proving
results about∆1,2(k) only the axial symmetry with respect to they-axis will be needed.

The indices infn will be used only during the inductive construction—later we will use
f for all of these functions.

The function f1 : V(S1) R
2, defined by f1(1) = (−1, 0), f1(2) = (1, 0), and

f1(3) = (0, y0), is obviously an appropriate embedding ofS1 = K3, seeFig. 4.
Suppose that the embeddingfn : V(Sn) R

2, satisfying fn(11. . .1) = (−2n +1, 0),
fn(22. . .2) = (2n − 1, 0), and fn(33. . .3) = (0, (2n − 1)y0), is given, seeFig. 5.

Clearly,V(Sn+1) is the disjoint union ofV(S1
n+1), V(S2

n+1) andV(S3
n+1), where each

of these sets induces a subgraph isomorphic toSn. We shall thusdefine fn+1 as fn followed
by a translation, chosen differently for each of these sets.

Let t(a,b) : R
2

R
2 be the following translation:

t(a,b)(x, y) = (a, b) + (x, y).

Since t(−2n,0)(−2n + 1, 0) = (−2n+1 + 1, 0), t(2n,0)(2n − 1, 0) = (2n+1 − 1, 0), and
t(0,2ny0)(0, (2n − 1)y0) = (0, (2n+1 − 1)y0), we define

fn+1(i , u1, . . . , un) =



t(−2n,0)( fn(u1, . . . , un)); i = 1,

t(2n,0)( fn(u1, . . . , un)); i = 2,

t(0,2ny0)( fn(u1, . . . , un)); i = 3.

By the choice of translations we havefn+1(11. . .1) = (−2n+1 + 1, 0), fn+1(22. . .2) =
(2n+1 − 1, 0), and fn+1(3 . . .3) = (0, (2n+1 − 1)y0). Also, it is easily calculated that
for any i �= j , fn+1(i j . . . j ) is as shown onFig. 6. Note in addition that fn+1(11. . .1),
fn+1(13. . .3), fn+1(31. . .1), and fn+1(33. . .3) are collinear and so arefn+1(22. . .2),
fn+1(23. . .3), fn+1(32. . .2), and fn+1(33. . .3). Finally, fn+1(S1

n+1), fn+1(S2
n+1), and

fn+1(S3
n+1) are pairwise disjoint, and positioned in the plane as shown onFig. 6.
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Fig. 5.Sn embedded inR2 as fn(Sn).

Fig. 6. Sn+1 embedded inR2 as fn+1(Sn+1).
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For the next theorem we introduce the lines�k as�k = {k}×R. Recall that inLemma 3.3
we have introduced the sets∆x,y(k) as those vertices ofSn for whichPx

v −P y
v = k. In the

next result we consider∆1,2(k) as a set inf (Sn).

Theorem 4.1. For any n and any k,

∆1,2(k) = f (Sn) ∩ �k,

where∆1,2(k) = { f (v) | v ∈ Sn,P1
v − P2

v = k}.
Proof. Note that the sets on both sides of the equation may be empty. In fact, from
geometric properties off (Sn) and the lines�k (as well fromLemma 3.3) it follows that
the sets will be simultaneously empty precisely when|k| ≥ 2n.

The assertion is clear forn = 1, cf. Fig. 4. Suppose now that the statement holds for
Sn, n ≥ 1.

In order to distinguish the sets∆1,2(k) defined inSn and those defined inSn+1, we will
denote them by∆n

1,2(k), in theformer, and by∆n+1
1,2 (k), in the latter case. Then, since for

anyu ∈ Sn,

dSn+1(1u, 11. . .1) − dSn+1(1u, 22. . .2) = dSn(u, 1 . . . 1) − dSn(u, 2 . . .2) − 2n,

we infer that 1u ∈ ∆n+1
1,2 (k) if andonly if u ∈ ∆n

1,2(k+2n). Using this fact, the definition of
the embeddingsf , and the waytranslations act on the family of lines�k, wecan compute
as follows:

v ∈ ∆n+1
1,2 (k) ∩ f (S1

n+1) ⇔ t−1
(−2n,0)(v) ∈ ∆n

1,2(k + 2n)

⇔ t−1
(−2n,0)

(v) ∈ f (Sn) ∩ �k+2n

⇔ v ∈ t(−2n,0)( f (Sn) ∩ �k+2n)

⇔ v ∈ t(−2n,0)( f (Sn)) ∩ t(−2n,0)(�k+2n)

⇔ v ∈ f (S1
n+1) ∩ �k.

Hence we have shown that

∆n+1
1,2 (k) ∩ f (S1

n+1) = f (S1
n+1) ∩ �k. (4)

The proof of

∆n+1
1,2 (k) ∩ f (S2

n+1) = f (S2
n+1) ∩ �k (5)

is analogous. To prove that

∆n+1
1,2 (k) ∩ f (S3

n+1) = f (S3
n+1) ∩ �k (6)

holds as well, note first that for anyu ∈ Sn,

dSn+1(3u, 11. . .1) − dSn+1(3u, 22. . .2) = dSn(u, 1 . . . 1) − dSn(u, 2 . . .2).

In other words, 3u ∈ ∆n+1
1,2 (k) if andonly if u ∈ ∆n

1,2(k). Now we have:

v ∈ ∆n+1
1,2 (k) ∩ f (S3

n+1) ⇔ t−1
(0,2ny0)

(v) ∈ ∆n
1,2(k)

⇔ t−1
(0,2ny0)

(v) ∈ f (Sn) ∩ �k
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⇔ v ∈ t(0,2ny0)( f (Sn) ∩ �k)

⇔ v ∈ t(0,2ny0)( f (Sn)) ∩ t(0,2ny0)(�k)

⇔ v ∈ f (S3
n+1) ∩ �k.

Combining (4)–(6), we can conclude the proof as follows:

∆n+1
1,2 (k) = ∆n+1

1,2 (k) ∩ f (Sn+1)

= ∆n+1
1,2 (k) ∩ ( f (S1

n+1) ∪ f (S2
n+1) ∪ f (S3

n+1))

= (∆n+1
1,2 (k) ∩ f (S1

n+1)) ∪ (∆n+1
1,2 (k) ∩ f (S2

n+1)) ∪ (∆n+1
1,2 (k) ∩ f (S3

n+1))

= ( f (S1
n+1) ∩ �k) ∪ ( f (S2

n+1) ∩ �k) ∪ ( f (S3
n+1) ∩ �k)

= ( f (S1
n+1) ∪ f (S2

n+1) ∪ f (S3
n+1)) ∩ �k

= f (Sn+1) ∩ �k. �
We have formulatedTheorem 4.1for ∆1,2(k), but from the symmetry it is clear that an

analogous conclusion holds for any∆x,y(k) with x �= y.

Corollary 4.2. For any n and any i= 1, 2, . . . , 2n,

b(i ) = | f (Sn) ∩ �i−2n |.
Proof. Let i − 2n = k. Thenk is in the range−2n + 1 ≤ k ≤ 0, henceLemma 3.3is
applicable. ByLemma 3.3, b(i ) = |H(i − 1)| = |H(2n − 1 + k)| = |∆1,2(k)|. But then it
follows byTheorem 4.1that|∆1,2(k)| = | f (Sn) ∩ �k| = | f (Sn) ∩ �i−2n |. �

This can be seen onFig. 3, where the intersections of S4 with the lines x = k,
k = −15,−14, . . . , 0 haveb(1), b(2), . . . , b(16) points, respectively. Note that this copy
of S4 is already realized as anf (S4).
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