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Abstract

A connected graph is said to be a cactus if each of its blocks is either a cycle or an edge.
Let Cn be the set of all n-vertex cacti with circumference at least 4, and let Cn,k be the set
of all n-vertex cacti containing exactly k > 1 cycles where n > 3k + 1. In this paper, lower
bounds on the difference between the (revised) Szeged index and Wiener index of graphs in
Cn (resp. Cn,k) are proved. The minimum and the second minimum values on the difference
between the Szeged index and Wiener index of graphs among Cn are determined. The bound
on the minimum value is strengthened in the bipartite case. A lower bound on the difference
between the revised Szeged index and Wiener index of graphs among Cn,k is also established.
Along the way the corresponding extremal graphs are identified.
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1 Introduction

All graphs considered in this paper are finite, undirected and simple. If G is a graph, then its
vertex set and edge set will be denoted VG and EG, respectively. The distance, dG(u, v), between
vertices u and v of G is the length of a shortest u, v-path in G. The celebrated Wiener index

(or transmission) W (G) of G is the sum of distances between all pairs of vertices of G, that is,

W (G) =
∑

{u,v}⊆VG

dG(u, v) . (1)

This distance-based graph invariant was in chemistry introduced back in 1947 [36] and in math-
ematics about 30 years later [9]. Nowadays, the Wiener index is a well-established and much
studied graph invariant; see the reviews [6, 7], a collection of papers dedicated to a half century
of investigations of the Wiener index [12], and recent papers [25, 27, 35, 38].

Given an edge e = uv of a graph G, set

Nu(e) = {w ∈ VG : dG(u,w) < dG(v,w)}, Nv(e) = {w ∈ VG : dG(v,w) < dG(u,w)},

N0(e) = {w ∈ VG : dG(u,w) = dG(v,w)}.

Clearly, Nu(e) ∪ Nv(e) ∪ N0(e) is a partition of VG with respect to e, where N0(e) = ∅ if G is
bipartite. For convenience, denote by nu(e), nv(e) and n0(e) the number of vertices of Nu(e),
Nv(e) and N0(e), respectively. Thus, one has nu(e) + nv(e) + n0(e) = |VG|.

From [13, 36] we know that for a tree T ,

W (T ) =
∑

e=uv∈ET

nu(e)nv(e) .

Inspired by this fact, Gutman [10] introduced the Szeged index Sz(G) of a graph G as

Sz(G) =
∑

e=uv∈EG

nu(e)nv(e) .

Furthermore, in order to involve also those vertices that are at equal distance from the endpoints
of an edge, Randić [33] proposed the revised Szeged index Sz∗(G) of a graph G as follows:

Sz∗(G) =
∑

e=uv∈EG

(

nu(e) +
n0(e)

2

)(

nv(e) +
n0(e)

2

)

.

Since Sz(T ) = W (T ) holds for any tree T , a lot of research has been done on the difference
between the Szeged index and the Wiener index on general graphs. If G is a graph, then
Sz(G) − W (G) > 0 holds, a result conjectured in [10] and proved in [24]. Moreover, Sz(G) =
W (G) holds if and only if every block of G is a complete graph [8], see [17] for an alternative
proof. Nadjafi-Arani et al. [30] investigated the structure of graphs G with Sz(G)−W (G) = k,
where k is a positive integer. In particular, in [31] they characterized the graphs for which the
difference is 4 and 5. The difference between Sz(G) and W (G) in networks was investigated
in [20].

Based on the computer program AutoGraphiX, Hansen [14] presented nine conjectures on
relations between the (revised) Szeged index and the Wiener index. Chen, Li and Liu [3, 4]
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proved three of these conjectures, while Li and Zhang [28] confirmed three additional above
conjectures; these results deal with quotients between the (revised) Szeged index and the Wiener
index of unicyclic graphs. Motivated by these conjectures, further relationship between the
Wiener index and the (revised) Szeged index was established in [39]. For additional results
on relations between the (revised) Szeged index and Wiener index see [2, 21, 22], and for more
information about the (revised) Szeged index in general we refer to [1, 3, 15, 16, 26, 29, 32, 34, 37].

In this paper we continue the above direction of research by considering the difference between
the Szeged index and the Wiener index on cacti. Since this difference is 0 if the circumference
of a cactus is 3, we may and will restrict our attention to cacti with circumference at least 4.
In the next section we give necessary definitions and state the main results of the paper. The
first of them determines the minimum value on the difference between the Szeged index and the
Wiener index of cacti, the second result strengthens this result in the bipartite case, while the
third result determines the second minimum value on the difference between the Szeged index
and the Wiener index of cacti. These three theorems are then proved in Section 4. The last
main theorem that establishes a sharp lower bound on the difference between the revised Szeged
index and the Wiener index is proved in Section 5. In Section 3 we recall some known results
and prove new results that are needed for the proofs of the main results, while in the concluding
section a couple of consequences are listed and a couple of problems are posed.

2 Main results

A cactus is a (connected) graph in which any two cycles have at most one common vertex, that
is, a graph whose every block is either an edge or a cycle. A cycle in a cactus is called an end-

block cycle if all but one vertex of this cycle have degree 2. The circumference of a graph is the
length of its longest cycle. As already mentioned, since Sz(G)−W (G) = 0 if the circumference
of G is 3, hence we set:

Cn = {G : G is a cactus of order n and circumference at least 4} .

In addition, for integers 3 6 r 6 n, let C r
n be the subset of n-vertex cacti defined as follows.

If r = n, then set C n
n = {Cn}. Otherwise, C r

n consists of the n-vertex cacti each of which is
obtained from the cycle Cr, and either a cactus G′ rooted at a vertex of the Cr or cacti G′′ and
G′′′ rooted at two adjacent vertices of the Cr, where G′, G′′, and G′′′ are cacti whose blocks are
only K2 or C3. Using this notation our first main result reads as follows.

Theorem 2.1. If G ∈ Cn, then

Sz(G) −W (G) > 2n − 5

with equality if and only if G ∈ C 5
n .

In the bipartite case this result can be strengthened as follows. For a graph G let ℓ(G) denote
the sum of the lengths of the cycles of G. Then:

Theorem 2.2. If G ∈ Cn is bipartite, then

Sz(G) −W (G) > ℓ(G)(n − 2)

with equality if and only if each block of G is either a K2 or an end-block C4.
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We note that a result closely related to Theorem 2.2 has been proved in [3, 4]. Namely, if G
is a connected bipartite graph of order at least 4, then Sz(G)−W (G) > 4n− 8. Moreover, the
bound is best possible when the graph is composed of C4 and a tree on n− 3 vertices sharing a
single vertex. In the case of cacti this result coincides with Theorem 2.2 for ℓ(G) = 4.

In our next result we establish a sharp lower bound on the difference between the Szeged
index and the Wiener index of graphs from the family Cn\C

5
n . In other words, the next theorem

gives the second minimum value on the difference between Sz and W in the class of cacti. For
the equality case we define H to be the set of graphs isomorphic to some graph from the two
families of graphs that are schematically presented in Fig. 1.

Theorem 2.3. If G ∈ Cn\C
5
n , then

Sz(G) −W (G) > 4n− 10

with equality if and only if G ∈ H.

H1

H2

H3 H4 H5 H6

Figure 1: Two families of graphs that constitute H; here each Hi, 1 6 i 6 6, is either a trivial
graph or each block of Hi is K2 or C3.

To formulate our last main result that deals with the difference between the revised Szeged
index and the Wiener index in cacti, we define

Cn,k = {G : G is a cactus of order n containing exactly k cycles} .

Then our result reads as follows:

Theorem 2.4. Let G ∈ Cn,k, where k > 1 and n > 3k + 1.

(i) If 4 6 n 6 9, then

Sz∗(G)−W (G) >
k(n2 + 4n− 6)

4

with equality if and only if each block of G is either a K2 or an end-block C3.

(ii) If n > 10, then
Sz∗(G) −W (G) > k(4n − 8)

with equality if and only if each block of G is either a K2 or an end-block C4.

It is interesting to observe that the extremal graphs of Theorem 2.2 and of Theorem 2.4 (ii)
are the same.
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3 Preliminary results

In this section, we give some preliminary results which will be used in the subsequent sections.
Simić et al. [34] rewrote the Szeged index as:

Sz(G) =
∑

e=uv∈EG

∑

{x,y}⊆VG

µx,y(e), (2)

where µx,y(e) is the contribution of the vertex pair x and y to nu(e)nv(e), that is,

µx,y(e) =















1, if







x ∈ Nu(e) and y ∈ Nv(e),
or
x ∈ Nv(e) and y ∈ Nu(e),

0, otherwise.

Setting

π(x, y) =
∑

e∈EG

µx,y(e)− dG(x, y) ,

it then follows from Equalities (1) and (2) that

Sz(G) −W (G) =
∑

{x,y}⊆VG

π(x, y) . (3)

Recall that a subgraph H of a graph G is called isometric if the distance between any two
vertices of H is independent of whether it is computed in the subgraph H or in G.

Lemma 3.1 ([39]). Let Cr be an isometric cycle of a connected graph G, and let x, y ∈ VCr .

(i) If r is even, then π(x, y) >
∑

e∈ECr
µx,y(e)− dCr(x, y) = dCr (x, y).

(ii) If r is odd, then π(x, y) >
∑

e∈ECr
µx,y(e)− dCr (x, y) = dCr(x, y)− 1.

Lemma 3.2. Let G1, G2 be vertex-disjoint, connected graphs of order at least 2. Let G be the

graph obtained from G1, G2 by identifying one vertex of G1 with one vertex of G2, denote the new

vertex by u0. Then for all x ∈ VG1
\{u0} and y ∈ VG2

\{u0}, one has π(x, y) = π(x, u0)+π(u0, y).

Proof. Consider a vertex pair {x, y} with x ∈ VG1
\{u0}, y ∈ VG2

\{u0}. Note that u0 is a
cut vertex of G, we have dG(x, y) = dG(x, u0) + dG(u0, y). Next, we show that for any edge
e = uv ∈ EG1

,

µx,y(e) = 1 if and only if µx,u0
(e) = 1. (4)

First, suppose that µx,y(e) = 1. Then we may assume without loss of generality that x ∈ Nu(e)
and y ∈ Nv(e). Let Pk be a shortest path connecting y and u, and Pl be a shortest path joining
y and v. As y ∈ Nv(e), one has l < k. Since u0 is a cut vertex of G, we have u0 ∈ VPk

∩ VPl
.

Thus, Pk and Pl can be written as Pk = yPau0Pbu and Pl = yPau0Pcv, where Pa (resp. Pb, Pc)
is a shortest path joining y and u0 (resp. u0 and u, u0 and v). Therefore, k = a + b, l = a+ c.
As l < k, we have c < b, i.e., dG(u0, v) < dG(u0, u). This implies that u0 ∈ Nv(e). Note that
x ∈ Nu(e), hence µx,u0

(e) = 1. Similarly one shows that if µx,u0
(e) = 1, then µx,y(e) = 1.
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In view of (4) and the definition of µx,y(e), it is clear that
∑

e∈EG1

µx,y(e) =
∑

e∈EG1

µx,u0
(e).

By a similar discussion as above,
∑

e∈EG2

µx,y(e) =
∑

e∈EG2

µu0,y(e) holds. Thus, one has

π(x, y) =
∑

e∈EG

µx,y(e)− dG(x, y)

=
∑

e∈EG1

µx,y(e) +
∑

e∈EG2

µx,y(e)− dG(x, u0)− dG(u0, y)

=





∑

e∈EG1

µx,u0
(e)− dG(x, u0)



+





∑

e∈EG2

µu0,y(e)− dG(u0, y)





= π(x, u0) + π(u0, y),

as desired.

Lemma 3.3. Let G be an n-vertex cactus containing an even cycle Cr. Then

Sz(G)−W (G) >
2nr2 − r3

8

with equality if and only if G = Cr or G is composed from Cr and a graph G′ on n − r + 1
vertices sharing a single vertex, where each block of G′ is a K2 or a C3.

Proof. For convenience, let Cr = v1v2 . . . vrv1. Clearly, Cr is an isometric cycle. Let Gi be the
component of G−ECr containing the vertex vi, 1 6 i 6 r. Thus, |VGi

| > 1 for all 1 6 i 6 r. For
each edge e = uv ∈ EGi

, 1 6 i 6 r, and every vertex pair {x, y} ⊆ VCr , it is straightforward to
check that

x, y ∈







Nu(e), if vi ∈ Nu(e);
Nv(e), if vi ∈ Nv(e);
N0(e), if vi ∈ N0(e).

This implies that µx,y(e) = 0. Therefore, for every vertex pair {x, y} ⊆ VCr , we have

π(x, y) =
∑

e∈EG

µx,y(e) − dG(x, y) =
∑

e∈ECr

µx,y(e)− dCr (x, y) = dCr(x, y). (5)

This gives

∑

x,y∈VCr

π(x, y) =
∑

x,y∈VCr

dCr (x, y) =
r3

8
. (6)

If |VGi
| > 2, then, for every vertex pair {x, y} with x ∈ VCr , y ∈ VGi

\VCr , one has dG(y, vi) =
minz∈VCr

dG(y, z). Note that vi is a cut vertex of G. By Lemma 3.2, π(x, y) = π(x, vi)+π(vi, y).
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Thus,

∑

x∈VCr

∑

y∈VG\VCr

π(x, y) =

r
∑

i=1

∑

x∈VCr

∑

y∈VGi
\VCr

(π(x, vi) + π(vi, y))

>

r
∑

i=1

∑

x∈VCr

∑

y∈VGi
\VCr

π(x, vi) (since π(vi, y) > 0) (7)

= (n− r)
∑

x∈VCr

dCr (x, vi) (by (5))

=
(n − r)r2

4
, (8)

where the equality in (7) holds if and only if π(vi, y) = 0 for all y ∈ VGi
\VCr , 1 6 i 6 r.

Note that π(x, y) > 0 for every vertex pair {x, y} ⊆ VG\VCr . Together with (3), (6) and (8),
we obtain that

Sz(G)−W (G) =
∑

x,y∈VCr

π(x, y) +
∑

x∈VCr ,y∈VG\VCr

π(x, y) +
∑

x,y∈VG\VCr

π(x, y)

>
r3

8
+

(n− r)r2

4
+ 0 (9)

=
2nr2 − r3

8
,

where the equality in (9) holds if and only if π(vi, y) = 0 for all y ∈ VGi
\VCr , 1 6 i 6 r, and

π(x, y) = 0 for every vertex pair {x, y} ⊆ VG\VCr .

Now, we show that if Sz(G)−W (G) = 2nr2−r3

8 , then G has exactly one cycle whose length is
at least 4. Suppose on the contrary that G contains a cycle Ck, k > 4, different from Cr. Because
G is a cactus, |VCr ∩ VCk

| 6 1. This implies that |VCk
\VCr | > 3. Thus, there exist two vertices

u, v ∈ VCk
\VCr such that dCk

(u, v) = 2. By Lemma 3.1, we have π(u, v) > dCk
(u, v)−1 = 1, which

contracts the assumption that π(x, y) = 0 for every vertex pair {x, y} ⊆ VG\VCr . Therefore, G
contains only one cycle whose length is at least 4.

If there are two components, say Ga, Gb, of G−ECr such that |VGa |, |VGb
| > 2, then consider

x ∈ VGa\{va} and y ∈ VGb
\{vb}. Note that va and vb are cut vertices of G. By Lemma 3.2, we

have π(x, y) = π(x, va) + π(va, vb) + π(vb, y) > π(va, vb) > 1, which is also a contradiction to
the fact that π(x, y) = 0 for every vertex pair {x, y} ⊆ VG\VCr . Therefore, there is at most one

nontrivial component Gi. In this case, by direct calculation, we have Sz(G)−W (G) = 2nr2−r3

8 .

Hence,
∑

x,y∈VG
π(x, y) = 2nr2−r3

8 if and only if G is composed of a cycle Cr on r vertices
and a graph G′ on n− r + 1 vertices sharing a single vertex, where each block of G′ is either a
K2 or a C3.

Lemma 3.4. Let G be an n-vertex cactus containing an odd cycle Cr = v1v2 . . . vrv1 of length

at least 5. Then

Sz(G)−W (G) >
(r − 1)(r − 3)(2n − r)

8

with equality if and only if G ∈ C r
n .

7



Proof. Clearly, Cr is an isometric cycle. Let Gi be the component of G − ECr containing the
vertex vi, 1 6 i 6 r. Then |VGi

| > 1 for any 1 6 i 6 r. For any edge e = uv ∈ EGi
, 1 6 i 6 r,

and every vertex pair {x, y} ⊆ VCr , by a discussion similar to the one from the beginning of the
proof of Lemma 3.3, we obtain µx,y(e) = 0. Thus, for every vertex pair {x, y} ⊆ VCr , we have

π(x, y) =
∑

e∈EG

µx,y(e)− dG(x, y) =
∑

e∈ECr

µx,y(e)− dCr(x, y) = dCr (x, y)− 1. (10)

So,

∑

x,y∈VCr

π(x, y) =
∑

x,y∈VCr

(dCr (x, y)− 1) =
r(r − 1)(r − 3)

8
. (11)

For every vertex pair {x, y} with x ∈ VCr , y ∈ VGi
\VCr , 1 6 i 6 r, we have dG(y, vi) =

minz∈VCr
dG(y, z). Since vi is a cut vertex of G, Lemma 3.2 implies that π(x, y) = π(x, vi) +

π(vi, y). Then

∑

x∈VCr

∑

y∈VGi
\VCr

π(x, y) =

r
∑

i=1

∑

x∈VCr

∑

y∈VGi
\VCr

(π(x, vi) + π(vi, y))

>

r
∑

i=1

∑

x∈VCr

∑

y∈VG\VCr

π(x, vi) (since π(vi, y) > 0) (12)

= (n− r)
∑

x∈VCr

(dCr (x, vi)− 1) (by (10))

=
(n− r)(r − 1)(r − 3)

4
, (13)

where the equality in (12) holds if and only if π(vi, y) = 0 for all y ∈ VGi
\VCr , 1 6 i 6 r.

Note that π(x, y) > 0 for every vertex pair {x, y} ⊆ VG\VCr . Combining this fact with (3),
(11) and (13), it follows that

Sz(G)−W (G) =
∑

x,y∈VCr

π(x, y) +
∑

x∈VCr ,y∈VG\VCr

π(x, y) +
∑

x,y∈VG\VCr

π(x, y)

>
r(r − 1)(r − 3)

8
+

(n− r)(r − 1)(r − 3)

4
(14)

=
(r − 1)(r − 3)(2n − r)

8
,

where the equality in (14) holds if and only if π(vi, y) = 0 for all y ∈ VGi
, 1 6 i 6 r and

π(x, y) = 0 for every vertex pair {x, y} ⊆ VG\VCr .

We next show that if Sz(G) − W (G) = (r−1)(r−3)(2n−r)
8 , then Cr is the only cycle of G

with length at least 4. Otherwise, there exists another cycle Ck of length k > 4. Since G is a
cactus, |VCr ∩ VCk

| 6 1, which in turn implies that |VCk
\VCr | > 3. Thus, there are two vertices

u, v ∈ VCk
\VCr such that dCk

(u, v) = 2. By Lemma 3.1, we have π(u, v) > dCk
(u, v) − 1 = 1,

this is a contradiction to π(x, y) = 0 for every vertex pair {x, y} ⊆ VG\VCr . Therefore, Cr is the
only cycle of G with length at least 4.
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Suppose that there exist two nontrivial components Gi, Gj of G − ECr such that |i − j| 6=
1, r − 1. Then, take two vertices x, y with x ∈ VGi

\{vi}, y ∈ VGj
\{vj}. By (10), we have

π(vi, vj) > 1. Note that vi, vj are cut vertices of G. By Lemma 3.2, we have

π(x, y) = π(x, vi) + π(vi, vj) + π(vj , y) > π(vi, vj) > 1,

a contradiction to the fact π(x, y) = 0 for every vertex pair {x, y} ⊆ VG\VCr . Therefore, there
are just two nontrivial Gi, Gi+1 or there is only one nontrivial Gi. For each of the above cases,

by direct calculation, we have Sz(G) −W (G) = (r−1)(r−3)(2n−r)
8 .

Hence, Sz(G) −W (G) = (r−1)(r−3)(2n−r)
8 holds if and only if G ∈ C r

n , as desired.

4 Proofs of Theorems 2.1–2.3

4.1 Proof of Theorem 2.1

Recall the statement of the theorem to be proved in this subsection: If G ∈ Cn, then Sz(G) −
W (G) > 2n− 5 with equality if and only if G ∈ C 5

n .
Let Cr be a longest cycle of G. Then r > 4 since the circumference of G is at least 4. If r is

even, then by Lemma 3.3,

Sz(G)−W (G) >
2nr2 − r3

8
> 2n − 5

because n > r > 4. If r is odd, then by Lemma 3.4,

Sz(G) −W (G) >
(r − 1)(r − 3)(2n − r)

8
(15)

> 2n− 5. (since r > 5) (16)

Based on Lemma 3.4, the equality in (15) holds if and only if G ∈ C r
n ; whereas the equality in

(16) holds if and only if r = 5.
Hence, Sz(G) −W (G) = 2n− 5 holds if and only if G ∈ C 5

n , as claimed.

4.2 Proof of Theorem 2.2

Recall the statement of Theorem 2.2: If G ∈ Cn is bipartite, then Sz(G)−W (G) > ℓ(G)(n− 2)
with equality if and only if each block of G is either a K2 or an end-block C4, where ℓ(G) is the
sum of the lengths of the cycles of G.

We first note that a bipartite cactus is a partial cube, that is, isometrically embeddable into a
hypercube. One way to see it is by applying Djoković’s characterization of partial cubes from [5]
asserting that G is a partial cube if and only if G is bipartite and for any edge e = uv the
subgraphs of G induced by Nu(e) and by Nv(e) are convex.

Let F be the partition of EG that consists of the singletons corresponding to the K2-blocks
of G, while each cycle C2k contributes k pairs of opposite edges to F . The partition F thus
contains ℓ(G)/2 sets of cardinality 2, the other sets are singletons. Then, applying the main
theorem of [18],

W (G) =
∑

F∈F

nu(e)nv(e) ,

9



where, for a given F ∈ F , the edge e = uv is an arbitrary, fixed edge from F . Similarly, applying
the main theorem from [11],

Sz(G) =
∑

F∈F

|F |nu(e)nv(e) ,

where again the edge e = uv is an arbitrary but fixed edge from F . (These two results are
instances of the so called standard cut method, see the recent survey [23] for more information
on the method.) Therefore,

Sz(G)−W (G) =
∑

F∈F

(|F | − 1)nu(e)nv(e) =
∑

F∈F ,|F |=2

(|F | − 1)nu(e)nv(e)

=
∑

F∈F ,|F |=2

nu(e)nv(e) >
∑

F∈F ,|F |=2

2(n − 2)

=
ℓ(G)

2
2(n− 2) = ℓ(G)(n − 2) .

The above inequality turns into equality if and only if every cycle C of G is a 4-cycle and
{nu(e), nv(e)} = {2, n − 2} holds for any edge e of C. That is, the equality holds if and only if
every cycle of G is an end-block C4.

4.3 Proof of Theorem 2.3

We next prove Theorem 2.3 which asserts the following: If G ∈ Cn\C
5
n , then Sz(G) −W (G) >

4n− 10 with equality if and only if G ∈ H.
If G contains an even cycle Cr, then by Lemma 3.3, we have Sz(G) − W (G) > 2nr2−r3

8 >
4n− 10, the last inequality follows since r > 4. Hence, we may assume in what follows that the
lengths of all the cycles in G are odd.

Let Cr be one of the longest odd cycles of G. Then clearly r > 5. If r > 7, then by Lemma
3.4, we have Sz(G)−W (G) > (r−1)(r−3)(2n−r)

8 > 4n−10, as desired. Thus, it suffices to consider
the remaining case r = 5. Note that G 6∈ C 5

n . Hence, there exist at least two cycles of length 5,
say C, and C ′ in G. For convenience, let C = v1v2 . . . v5v1 and C ′ = u1u2 . . . u5u1. Since G is
a cactus, we have |VC ∩ VC′ | 6 1. Thus, we proceed by considering the following two possible
cases.

Case 1. |VC ∩ VC′ | = 0.
In view of (11), we have

∑

x,y∈VC

π(x, y) =
∑

x,y∈VC′

π(x, y) = 5. (17)

As G is a cactus, we may without loss of generality assume that u1, v1 are the vertices in G
such that dG(vi, u1) = minx∈VC′ dG(vi, x) and dG(uj , v1) = minx∈VC

dG(uj , x) for all 1 6 i, j 6 5.
Based on (10), we have

∑

x∈VC
π(x, v1) = 2 and

∑

y∈VC′
π(y, u1) = 2. Since u1 and v1 are cut

vertices of G, using Lemma 3.2 we infer that
∑

x∈VC ,y∈VC′

π(x, y) =
∑

x∈VC ,y∈VC′

(π(x, v1) + π(v1, u1) + π(u1, y))

> 5
∑

x∈VC

π(x, v1) + 5
∑

y∈VC′

π(u1, y) (since π(v1, u1) > 0 ) (18)

= 20, (19)
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where the equality in (18) holds if and only if π(v1, u1) = 0.
Consider every vertex pair {x, y} with x ∈ VC , y ∈ VG\(VC ∪ VC′). Assume that vi0

is the vertex of C such that dG(y, vi0) = minz∈VC
dG(y, z). In view of Lemma 3.2, we have

∑

x∈VC
π(x, y) =

∑

x∈VC
(π(x, vi0) + π(vi0 , y)) >

∑

x∈VC
π(x, vi0) = 2. Thus,

∑

x∈VC

∑

y∈VG\(VC∪VC′ )

π(x, y) >
∑

y∈VG\(VC∪VC′ )

2 = 2(n− 10). (20)

The equality in (20) holds if and only if
∑

x∈VC
π(x, y) = 2 for all y ∈ VG\(VC ∪ VC′). Similarly,

we can also obtain that
∑

x∈VC′

∑

y∈VG\(VC∪VC′ ) π(x, y) > 2(n − 10) with equality if and only if
∑

x∈VC′
π(x, y) = 2 for all y ∈ VG\(VC ∪ VC′).

Note that π(x, y) > 0 for every vertex pair {x, y} ⊆ VG\(VC ∪ VC′). Combined with (17),
(19) and (20), it follows that

Sz(G)−W (G) =
∑

x,y∈VC

π(x, y) +
∑

x,y∈VC′

π(x, y) +
∑

x∈VC,y∈VC′

π(x, y) +
∑

x∈VC

∑

y∈VG\(VC∪VC′ )

π(x, y)

+
∑

x∈VC′

∑

y∈VG\(VC∪VC′ )

π(x, y) +
∑

x,y∈VG\(VC∪VC′)

π(x, y)

> 5 + 5 + 20 + 2(n− 10) + 2(n− 10) (21)

= 4n− 10,

where the equality in (21) holds if and only if π(v1, u1) = 0,
∑

x∈VC
π(x, y) = 2, and

∑

x∈VC′
π(x, y) = 2

for all y ∈ VG\(VC ∪ VC′), as well as π(x, y) = 0 for every vertex pair {x, y} ⊆ VG\(VC ∪ VC′).
Next, we show that if Sz(G)−W (G) = 4n−10, then G contains just two cycles of length 5. Otherwise,

G contains a third cycle C′′ of length 5. Note that |VC′′ ∩ VC | 6 1 and |VC′′ ∩ VC′ | 6 1. Then there
exist two vertices x, y ∈ VC′′\(VC ∪ VC′) such that dC′′(x, y) = 2. Since C′′ is an isometric cycle, by
Lemma 3.1(ii) we have π(x, y) > dC′′(x, y) − 1 = 1. This is a contradiction to the fact π(x, y) = 0 for
every vertex pair {x, y} ⊆ VG\(VC ∪ VC′).

Let Gi (resp. G
′
i) be the component of G−EC (resp. G−EC′) that contains the vertex vi (resp. ui),

1 6 i 6 r. Then |VG1
| > 2 and |VGi

| > 1 for 2 6 i 6 5. Suppose that there exist components Gi and Gj

with |VGi
| > 2 and |VGj

| > 2, where vi and vj are not adjacent. Select arbitrary vertices x ∈ VGi
\{vi}

and y ∈ VGj
\{vj}. Because vi and vj are cut vertices of G, applying Lemma 3.2 we get

π(x, y) = π(x, vi) + π(vi, vj) + π(vj , y) > π(vi, vj) > 1,

which is a contradiction to the fact π(x, y) = 0 for every vertex pair {x, y} ⊆ VG\(VC ∪ VC′). Combined
with |VG1

| > 2, we obtain |VG2
| = |VG3

| = |VG4
| = 1 or |VG3

| = |VG4
| = |VG5

| = 1. Similarly, we can also
show that |VG′

2
| = |VG′

3
| = |VG′

4
| = 1 or |VG′

3
| = |VG′

4
| = |VG′

5
| = 1. In each of the above subcases, by

direct calculation we have Sz(G)−W (G) = 4n− 10.
Hence, Sz(G)−W (G) = 4n− 10 if and only if G ∈ H, where H is depicted in Fig. 1.

Case 2. |VC ∩ VC′ | = 1.
By a similar discussion as in the proof of Case 1, we can show that Sz(G)−W (G) > 4n−10 with equality
if and only if G ∈ H; see Fig. 1 again.

This completes the proof of Theorem 2.3.

5 Proof of Theorem 2.4

In this section we prove Theorem 2.4. Since nu(e) + nv(e) + n0(e) = n for e = uv ∈ EG, it is a routine
to check that

Sz∗(G) −W (G) = Sz(G)−W (G) +
∑

e∈EG

(

n0(e)

2
n−

n2
0(e)

4

)

. (22)
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In order to prove the theorem, we first demonstrate a couple of claims.

Claim 1. If G ∈ Cn,k is such that Sz∗(G) − W (G) is as small as possible, then each cycle of G is an

end-block.

Proof. Suppose on the contrary that G contains a cycle Cr = v1v2 . . . vrv1 which is not an end-block. Let
Gi be the component of G−ECr

containing the vertex vi, 1 6 i 6 r. As Cr is not an end-block, G−ECr

contains two nontrivial components, say Ga and Gb. We construct a new graph G′ as follows:

G′ = G−
r
⋃

i=2

{vix : x ∈ NGi
(vi)}+

r
⋃

i=2

{v1x : x ∈ NGi
(vi)} .

Then G′ is in Cn,k. By direct calculation (based on (3) and Lemma 3.2), one has

Sz(G)−W (G) =

r
∑

i=1

∑

x,y∈VGi

π(x, y) +

r
∑

j=1

∑

y∈VGj
\{vj}

∑

i6=j

π(vi, y) +
∑

x,y∈VCr

π(x, y)

+
∑

16i<j6r

∑

x∈VGi
\{vi},

y∈VGj
\{vj}

π(x, y)

=

r
∑

i=1

∑

x,y∈VGi

π(x, y) +

r
∑

j=1

∑

y∈VGj
\{vj}

∑

i6=j

π(vi, y) +
∑

x,y∈VCr

π(x, y)

+
∑

16i<j6r

∑

x∈VGi
\{vi},

y∈VGj
\{vj}

(π(x, vi) + π(vi, vj) + π(vj , y)). (23)

Similarly, we have

Sz(G′)−W (G′) =

r
∑

i=1

∑

x,y∈VGi

π(x, y) +

r
∑

j=1

∑

y∈VGj
\{vj}

r
∑

i=2

π(vi, y) +
∑

x,y∈VCr

π(x, y)

+
∑

16i<j6r

∑

x∈VGi
\{vi},

y∈VGj
\{vj}

(π(x, v1) + π(v1, y)). (24)

For convenience, set
∆1 := (Sz(G)−W (G)) − (Sz(G′)−W (G′))

and

∆2 :=
∑

e∈EG

(

n0(e)

2
n−

n2
0(e)

4

)

−
∑

e∈EG′

(

n0(e)

2
n−

n2
0(e)

4

)

.

As |VGa
|, |VGb

| > 2, we have |VGa
\{va}| > 1, |VGb

\{vb}| > 1. In view of (23) and (24), we have

∆1 =
∑

16i<j6r

∑

x∈VGi
\{vi},

y∈VGj
\{vj}

π(vi, vj)

>
∑

x∈VGa\{va},
y∈VGb

\{vb}

π(va, vb)

> π(va, vb). (25)

In what follows, we consider two possible cases according to the parity of r.
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Case 1. r is even.
In this case, on the one hand, it is routine to check that ∆2 = 0. On the other hand, by Lemma 3.1(i),
we have π(va, vb) > dCr

(va, vb) > 1. In view of (25), we have ∆1 > π(va, vb) > 1. Combined with (22),
we have (Sz∗(G)−W (G)) − (Sz∗(G′)−W (G′)) = ∆1 +∆2 > 0, a contradiction to the choice of G.

Case 2. r is odd.
Since Cr is an isometric cycle, by Lemma 3.1(ii) we have π(va, vb) > dG(va, vb)− 1 > 0. In view of (25),
we have ∆1 > 0. Next, we show that ∆2 > 0.

For the graph G, it is straightforward to check that

∑

e∈EG

(

n0(e)

2
n−

n2
0(e)

4

)

=
r
∑

i=1

∑

e∈EGi

(

n0(e)

2
n−

n2
0(e)

4

)

+
∑

e∈ECr

(

n0(e)

2
n−

n2
0(e)

4

)

=

r
∑

i=1

∑

e∈EGi

(

n0(e)

2
n−

n2
0(e)

4

)

+
n2

2
−

∑r

i=1 |VGi
|2

4
. (26)

Similarly, for the graph G′, we have

∑

e∈EG′

(

n0(e)

2
n−

n2
0(e)

4

)

=
r
∑

i=1

∑

e∈EGi

(

n0(e)

2
n−

n2
0(e)

4

)

+
n2

2
−

r − 1 + (n− r + 1)2

4
. (27)

Then, together with (26) and (27), it follows that

∆2 =
r − 1 + (n− r + 1)2

4
−

∑r

i=1 |VGi
|2

4
.

Suppose that there exist two components Gp, Gq satisfying |VGp
|, |VGq

| > 2 for 1 6 p, q 6 r. Let ∆′
2 =

r−1+(n−r+1)2

4 −
∑

i6=p,q |VGi
|2

4 − (|VGp
|+ |VGq

| − 1)2 − 1. Then,

∆2 −∆′
2 = (|VGp

|+ |VGq
| − 1)2 + 1− |VGp

|2 − |VGq
|2 = 2(|VGp

| − 1)(|VGq
| − 1) > 0.

The last inequality follows because |VGp
|, |VGq

| > 2. Thus, ∆2 attains its minimum 0 if and only if
|VG1

| = n− r + 1, |VGi
| = 1 for 2 6 i 6 r up to isomorphism. Bearing in mind that |VGa

|, |VGb
| > 2, one

can easily obtain that ∆2 > 0.
In view of (22), we have (Sz∗(G)−W (G))−(Sz∗(G′)−W (G′)) = ∆1+∆2 > 0, i.e., Sz∗(G′)−W (G′) <

Sz∗(G)−W (G), which is a contradiction to the choice of G.
This completes the proof of Claim 1.

Let each cycle of a graph G1 ∈ Cn,k be an end-block cycle. Let Cp, Cq be two disjoint cycles of G1

containing cut vertices u0, v0, respectively. Construct a new graph G2 as follows:

G2 = G1 − {v0x : x ∈ NCq
(v0)} + {u0x : x ∈ NCq

(v0)}.

In other words, if v′0 and v′′0 are the neighbors of v0 on Cq, then G2 is obtained from G1 by removing
the edges v0v

′
0 and v0v

′′
0 and adding the edges u0v

′
0 and u0v

′′
0 . Then G2 is in Cn,k and each cycle of G2

is also an end-block. Here, we show that this graph transformation keeps the value of Sz∗(G) −W (G)
unchanged.

Claim 2. Let G1 and G2 be the graphs as defined above. Then Sz∗(G1)−W (G1) = Sz∗(G2)−W (G2).

Proof. First, we show that π(x, y) = 0 for every pair of cut vertices x, y ∈ VG1
. For such cut vertices

x, y ∈ VG1
, there is a shortest path Pt connecting x and y. It is routine to check that for any edge e ∈ EPt

,
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µx,y(e) = 1. Recall that each cycle of G1 is an end-block. Assume that x0 is a cut vertex of the cycle Cr

in G1. Then, for an edge e = uv ∈ ECr
, we have

x, y ∈







Nu(e), if x0 ∈ Nu(e);
Nv(e), if x0 ∈ Nv(e);
N0(e), if x0 ∈ N0(e).

This implies that µx,y(e) = 0. For the remaining cut edge e = uv ∈ EG1
\EPt

, it is routine to check that
x, y ∈ Nu(e) or x, y ∈ Nv(e), which implies that µx,y(e) = 0. Thus, π(x, y) =

∑

e∈EG1

µx,y(e)−dG1
(x, y) =

∑

e∈EPt
µx,y(e)− t+ 1 = 0.

Bearing in mind that u0, v0 are cut vertices, we have π(u0, v0) = 0. For convenience, denote by
V1 = VG1

\(VCp
∪ VCq

). In view of (3), one can obtain that

Sz(G1)−W (G1) =
∑

x,y∈VCp

π(x, y) +
∑

x,y∈VCq

π(x, y) +
∑

x,y∈V1

π(x, y) +
∑

x∈VCp ,y∈V1

π(x, y)

+
∑

x∈VCp ,y∈VCq

π(x, y) +
∑

x∈VCq ,y∈V1

π(x, y)

=
∑

x,y∈VCp

π(x, y) +
∑

x,y∈VCq

π(x, y) +
∑

x,y∈V1

π(x, y) +
∑

x∈VCp ,y∈V1

π(x, y)

+
∑

x∈VCp ,y∈VCq

(π(x, u0) + π(v0, y)) +
∑

x∈VCq ,y∈V1

(π(x, v0) + π(v0, y))

and

Sz(G2)−W (G2) =
∑

x,y∈VCp

π(x, y) +
∑

x,y∈VCq

π(x, y) +
∑

x,y∈V1

π(x, y) +
∑

x∈VCp ,y∈V1

π(x, y)

+
∑

x∈VCp ,y∈VCq

(π(x, u0) + π(u0, y)) +
∑

x∈VCq ,y∈V1

(π(x, u0) + π(u0, y)).

Thus, based on (5) or (10), we have

(Sz(G1)−W (G1))− (Sz(G2)−W (G2)) = q
∑

y∈V1

(π(v0, y)− π(u0, y)). (28)

Now, we prove that π(v0, y) = π(u0, y) for all y ∈ V1. If y ∈ VCl
for some cycle Cl in G1 except Cp, Cq, and

denote the unique cut vertex of Cl by w. By Lemma 3.2, we have π(v0, y) = π(v0, w) + π(w, y) = π(w, y)
and π(u0, y) = π(u0, w) + π(w, y) = π(w, y). Thus, π(v0, y) = π(u0, y). Otherwise, y isn’t contained in
any cycle. Then y is either a cut vertex of G1 or dG1

(y) = 1. In this case, we have π(v0, y) = π(u0, y) = 0.
Therefore, by (28), we know that Sz(G1)−W (G1) = Sz(G2)−W (G2). Note that

∑

e∈EG1

(

n0(e)

2
n−

n2
0(e)

4

)

=
∑

e∈EG2

(

n0(e)

2
n−

n2
0(e)

4

)

.

In view of (22), we have Sz∗(G1)−W (G1) = Sz∗(G2)−W (G2), as desired.

Now all is ready for the proof of Theorem 2.4.
Choose a graph G in Cn,k such that Sz∗(G)−W (G) is as small as possible. By Claim 1, each cycle

of G is an end-block cycle. By a repeated application of the construction of Claim 2, we may assume
that all the cycles of G have a common vertex. Denote the common vertex by u0. For convenience, let
Cr1 , Cr2 , . . . , Crp be the even cycles and Ct1 , Ct2 , . . . , Ctq the odd cycles of G. Then p + q = k. In what
follows, we first determine the lower bound on Sz(G)−W (G).
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For every vertex pair {x, y} ⊆ VCri
, 1 6 i 6 p, by (6) we have

∑

x,y∈VCri

π(x, y) =
∑

x,y∈VCri

dCri
(x, y) =

r3i
8
. (29)

Consider every vertex pair {x, y} with x ∈ VCri
\{u0}, y ∈ VCrj

\{u0}, i 6= j. Since u0 is a cut vertex of

G, by (5) and Lemma 3.2 we have π(x, y) = π(x, u0) + π(u0, y) = dCri
(x, u0) + dCrj

(u0, y). Then

∑

x∈VCri
\{u0}

∑

y∈VCrj
\{u0}

π(x, y) =
∑

x∈VCri
\{u0}

∑

y∈VCrj
\{u0}

(dCri
(x, u0) + dCrj

(u0, y))

=
r2i (rj − 1)

4
+

r2j (ri − 1)

4
. (30)

For convenience, denote by n0 := r1 + r2 + · · ·+ rp. Then, in view of (30), we have

∑

16i<j6p

∑

x∈VCri
\{u0}

∑

y∈VCrj
\{u0}

π(x, y) =
∑

16i<j6p

(

r2i (rj − 1)

4
+

r2j (ri − 1)

4

)

=
∑

16i6p

r2i (n0 − ri − p+ 1)

4
. (31)

Consider the remaining vertex pairs {x, y} with x ∈
⋃p

i=1 VCri
and y ∈ VG\(

⋃p

i=1 VCri
). Then from (5)

and Lemma 3.2 we get π(x, y) = π(x, u0) + π(u0, y) > π(x, u0) = dG(x, u0). Consequently,

∑

x∈
⋃p

i=1
VCri

∑

y∈VG\(
⋃p

i=1
VCri

)

π(x, y) >
∑

x∈
⋃p

i=1
VCri

∑

y∈VG\(
⋃p

i=1
VCri

)

dG(x, u0) (since π(u0, y) > 0)

= (n− n0 + p− 1)
∑

x∈
⋃p

i=1
VCri

dG(x, u0)

=
(n− n0 + p− 1)

∑p

i=1 r
2
i

4
. (32)

Note that π(x, y) > 0 for every vertex pair {x, y} ⊆ VG\(
⋃p

i=1 VCri
). Together with (29), (31) and (32),

it follows that

Sz(G)−W (G) =

p
∑

i=1

∑

x,y∈VCri

π(x, y) +
∑

16i<j6p

∑

x∈VCri
\{u0}

∑

y∈VCrj
\{u0}

π(x, y)

+
∑

x∈
⋃p

i=1
VCri

∑

y∈VG\(
⋃p

i=1
VCri

)

π(x, y) +
∑

x,y∈VG\(
⋃p

i=1
VCri

)

π(x, y)

>

p
∑

i=1

r3i
8

+

p
∑

i=1

r2i (n0 − ri − p+ 1)

4
+

p
∑

i=1

(n− n0 + p− 1)r2i
4

(33)

=

p
∑

i=1

−r3i + 2nr2i
8

> p(4n− 8), (since ri > 4) (34)

where the equality in (33) holds if and only if π(u0, y) = 0 for any vertex y ∈ VG\(
⋃p

i=1 VCri
) and

π(x, y) = 0 for every vertex pair {x, y} ⊆ VG\(
⋃p

i=1 VCri
); whereas the equality in (34) holds if and only

if r1 = r2 = · · · = rp = 4.
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Next, we consider the value of
∑

e∈EG

(

n0(e)
2 n−

n2

0
(e)
4

)

. Bearing in mind that, for an edge e, if it is

not contained in any odd cycle, then n0(e) = 0. So we consider that it is in some odd cycle, say Cti . One
has n0(e) = n− ti + 1 if u0 ∈ N0(e) and n0(e) = 1 otherwise. Thus, we have

∑

e∈EG

(

n0(e)

2
n−

n2
0(e)

4

)

=

q
∑

i=1

∑

e∈ECti

(

n0(e)

2
n−

n2
0(e)

4

)

=

q
∑

i=1

(

n2

2
−

ti − 1 + (n− ti + 1)2

4

)

>
q(n2 + 4n− 6)

4
, (since ti > 3) (35)

where the equality in (35) holds if and only if t1 = t2 = · · · = tq = 3.
Together with (22), (34) and (35), it follows that

Sz∗(G)−W (G) = Sz(G)−W (G) +
∑

e∈EG

(

n0(e)

2
n−

n2
0(e)

4

)

> p(4n− 8) +
q(n2 + 4n− 6)

4
. (36)

Based on (34) and (35) we obtain that the equality in (36) holds if and only if r1 = r2 = · · · = rp = 4
and t1 = t2 = · · · = tq = 3.

Now, we give the proofs of (i) and (ii), respectively.

(i) If 4 6 n 6 9, then by direct calculation, we have 4n − 8 > n2+4n−6
4 . In view of (36), one has

Sz∗(G) −W (G) > k(n2+4n−6)
4 with equality if and only if t1 = t2 = · · · = tq = 3 and q = k, i.e., G is a

graph satisfying each block of G being a K2 or a C3 and each cycle of G being an end-block. Thus, (i)
holds.

(ii) If n > 10, then it is routine to check that 4n− 8 < n2+4n−6
4 . In view of (36), one has Sz∗(G) −

W (G) > k(4n − 8) with equality if and only if r1 = r2 = · · · = rp = 4 and p = k, i.e., G is a graph
satisfying each block of G being a K2 or an end-block C4. Hence, (ii) holds.

6 Concluding remarks

In this paper we have established lower bounds on the difference between the (revised) Szeged index
and Wiener index of graphs in Cn (resp. Cn,k). To conclude the paper we state two corollaries and two
problems.

The following result follows from Theorem 2.1 and can also be deduced from [4, Theorems 3.1 and
3.2].

Corollary 6.1. Let G be an n-vertex unicyclic graph with circumference at least 4. Then

Sz(G)−W (G) > 2n− 5

with equality if and only if G is a graph which is composed from C5 and either a tree on n − 4 vertices

rooted at a vertex of C5, or two trees rooted at two adjacent vertices of C5.

Similarly, the following result follows from Theorem 2.4 and can alternatively be obtained from [4,
Theorems 3.2 and 4.3].

Corollary 6.2. Let G be a unicyclic graph on n > 4 vertices.
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(i) If 4 6 n 6 9, then

Sz∗(G)−W (G) >
n2 + 4n− 6

4

with equality if and only if G is composed from C3 and a tree T on n− 2 vertices sharing a single

vertex.

(ii) If n > 10, then
Sz∗(G) −W (G) > 4n− 8

with equality if and only if G is composed from C4 and a tree T on n− 3 vertices sharing a single

vertex.

In Subsection 4.2 we have demonstrated that the cut method provides an efficient method to bound
the difference between Sz(G) and W (G) when G is a bipartite cactus. Extensions of the cut method to
general graphs are known, see [19, 23], hence the following problem appears natural in this context.

Problem 6.3. Can the standard cut method for the Szeged index be extended to general graphs or to

arbitrary cacti?

We have identified the graphs G from Cn,k such that Sz∗(G) − W (G) attains its minimum value.
Hence we pose:

Problem 6.4. Determine the second minimum value on the difference between the revised Szeged index

and the Wiener index among the graphs from Cn,k.

Acknowledgments

The authors would like to express their sincere gratitude to all of the referees for their insightful comments
and suggestions, which led to a number of improvements to this paper.

References

[1] M. Aouchiche, P. Hansen, On a conjecture about the Szeged index, European J. Combin. 31 (2010)
1662–1666.
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