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Partial cubes and their τ -graphs
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Abstract

The τ -graph Gτ of a partial cube G has the equivalence classes of the Djoković–Winkler relation as
vertices, two classes E and F being adjacent if some edges e ∈ E and f ∈ F induce a convex P3. It is
shown that for every graph G there exists a median graph M such that G = Mτ , that Gτ is connected if
and only if G is a Cartesian prime graph, and that for a median graph G its τ -graph is Kn-free if and only
if G contains no convex K1,n.
c© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The celebrated Djoković–Winkler relation Θ [8,17] is defined on the edge set of a graph G in
the following way. Edges xy and uv of G are in relation Θ if

d(x, u) + d(y, v) �= d(x, v) + d(y, u).

In general Θ is not an equivalence relation. Winkler [17] proved that among bipartite graphs
Θ is transitive precisely for graphs isometrically embeddable into hypercubes. These graphs are
known as partial cubes; see [6,7,9,11,14].

Let e and f be two edges of a graph G; then e and f are in relation τ (see [10,13] or [12,
pp. 121]) if e = f or if they form a convex path on three vertices. (That is, e = uv, f = vw,
with uw �∈ E(G) and v the only common neighbor of u and w.) For a partial cube G its τ -graph
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Gτ is defined as follows. V (Gτ ) consists of the Θ -equivalence classes of G, where Θ -classes E
and F are adjacent whenever E �= F and there exist edges e ∈ E and f ∈ F with eτ f .

This concept found a very appealing application in mathematical chemistry. A hexagonal
graph G is a 2-connected subgraph of the hexagonal lattice so that every bounded face is
a hexagon. A hexagonal graph is catacondensed if all its vertices lie on its perimeter. The
resonance graph of G has 1-factors of G as vertices, two 1-factors being adjacent whenever
their symmetric difference is the edge set of a hexagon of G. Then Vesel [16] characterized the
resonance graphs of catacondensed hexagonal graphs as those median graphs for which Gτ is
a tree T with largest degree at most 3 such that the vertices of T of degree 3 correspond to the
peripheral Θ -classes of G.

Further motivation for this note comes from the fact that two similar concepts have been
studied previously — crossing graphs [2,14] and Θ -graphs [5]. In both cases the derived graphs
have Θ -classes as vertices while the adjacencies are defined according to the respective interplays
of the classes.

We proceed as follows. In the rest of this section we define concepts needed throughout the
note. Then, in Section 2, we show that every graph is a τ -graph of some median graph. In the
subsequent section we prove that Gτ is connected if and only if G is a prime graph with respect to
the Cartesian product and that the τ -graph of a median graph is Kn-free if and only if it contains
no convex K1,n . We conclude with two open problems.

For u, v ∈ V (G), let dG(u, v), or d(u, v) for short, denote the length of a shortest path in G
from u to v. The interval I (u, v) between two vertices u and v in G is the set of all vertices on
shortest paths between u and v. A subgraph H of a graph G is isometric if dH (u, v) = dG(u, v)

for all u, v ∈ V (H ) and convex if I (u, v) ⊆ V (H ) for any u, v ∈ V (H ). For a connected graph
G = (V , E) and an edge ab of G set

Wab = {w ∈ V | d(a, w) < d(b, w)} and

Uab = {w ∈ Wab | w has a neighbor in Wba}.
Note that if G is bipartite then V = Wab ∪ Wba .

A graph G is a median graph if G is a connected graph such that, for every triple u, v,w of its
vertices, |I (u, v) ∩ I (u, w) ∩ I (v,w)| = 1. A subgraph of a median graph G induced by Wab

is called peripheral if Uab = Wab. Among important subclasses of median graphs we mention
trees, hypercubes, complete grid graphs, and graphs of acyclic cubical complexes [2]. It is well
known that median graphs are partial cubes [15]; see also [12, Proposition 2.22].

2. Representing graphs as τ -graphs

For the representation of graphs as τ -graphs we first recall the following result from [11]. For
a subgraph X of a graph G let ∂ X be the set of edges with one endvertex in X and the other in
G \ X . Then:

Lemma 2.1 (Convexity Lemma). An induced connected subgraph H of a bipartite graph G is
convex if and only if no edge of ∂ H is in relation Θ to an edge in H .

Before stating the representation theorem we prove:

Lemma 2.2. Let G be a median graph. Then Θ -classes E and F are adjacent in Gτ if and only
if there exist adjacent edges e ∈ E and f ∈ F and there exist no two edges e′ ∈ E and f ′ ∈ F
that lie in a common C4.
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Fig. 1. The house as the τ -graph of the simplex graph of P5.

Proof. Suppose that E and F are adjacent in Gτ . Let a, b, c denote vertices that induce a convex
P3, where ab ∈ E and bc ∈ F . Then c ∈ Wba \ Uba for otherwise ab and bc would lie in a
4-cycle. In other words, bc ∈ ∂Uba . Since G is median, Uba is convex; cf. [12, pp. 67]. Then by
Lemma 2.1, bc is not in relation Θ with any edge of Uba . Therefore, any edge of F lies either in
∂Uba or in Wba \ Uba . We conclude that no two edges, one from E and the other from F , lie in
a common C4.

The converse is clear. �

Consider the vertex deleted 3-cube to see that Lemma 2.2 cannot be extended to all partial
cubes.

For a graph G, the simplex graph S(G) of G is the graph whose vertices are the complete
subgraphs of G (including the empty graph), two vertices being adjacent if, as complete
subgraphs of G, they differ in exactly one vertex. The simplex graph has been introduced in [4]
and later studied elsewhere; see for instance [3]. In particular, simplex graphs are median graphs.
Let Gc denote the complement of G, then we have:

Theorem 2.3. Every graph is a τ -graph of a median graph. More precisely, G = S(Gc)τ holds
for any graph G.

Proof. Let V (G) = {1, 2, . . . , n}. From the proof of [14, Theorem 3.1] we infer that the simplex
graph of Gc has n Θ -classes. More precisely, S(Gc) has Θ -classes Ei with representatives
ei = {∅, {i}}, 1 ≤ i ≤ n. Note that ei is adjacent to e j for i �= j .

By Lemma 2.2, Ei and E j are adjacent in S(Gc)τ if and only if ei and e j do not belong to a
common 4-cycle of S(Gc). This holds if and only if i j �∈ E(Gc) which is in turn so if and only
i j ∈ E(G). �

The construction of Theorem 2.3 is illustrated in Fig. 1.
Let H c be the subgraph of S(Gc) induced by the complete subgraphs of Gc of order at most

two. Then H c is an isometric subgraph of S(Gc) and hence a partial cube. Moreover, it follows
from the above proof that G = (H c)τ . This gives another construction, simpler than that of
Theorem 2.3; however, H c is in general not median—cf. [14].
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3. Connectedness and triangle-free τ -graphs

The Cartesian product G � H of graphs G and H is the graph with vertex set V (G) × V (H )

and (a, x)(b, y) ∈ E(G � H ) whenever either ab ∈ E(G) and x = y, or a = b and xy ∈ E(H ).
Every connected graph has a unique prime factor decomposition with respect to the Cartesian
product; see [12, Theorem 4.9]. G is called prime if its unique prime factor decomposition has
only one factor, that is, G itself. Let R∗ denote the transitive closure of a given relation R; then
Feder [10] (see also [12, Theorem 4.8]) proved:

Theorem 3.1. Let G be a connected graph. Then (Θ ∪ τ )∗ is a product relation. In particular,
G is prime if and only if (Θ ∪ τ )∗ has one equivalence class.

The proof of the following lemma is straightforward.

Lemma 3.2. Let G and H be partial cubes. Then (G � H )τ = Gτ ∪ H τ .

Theorem 3.3. Let G be a partial cube with at least two edges and let G = G1 � G2 � · · · � Gk

be its unique prime factor decomposition. Then the connected components of Gτ are Gτ
i ,

1 ≤ i ≤ k. In particular, Gτ is connected if and only if G is prime.

Proof. Suppose first that G is a prime graph. Let E and F be arbitrary different Θ -classes of G.
We need to show that there exists an E, F-path in Gτ . As G is prime, Theorem 3.1 implies that
the relation σ = (Θ ∪ τ )∗ has a single equivalence class. Therefore, for an edge e of E and an
edge f of F there exists a sequence of edges of G such that

e = e1σe2σ . . . σek−1σek = f,

where for each 1 ≤ i ≤ k − 1 either eiΘei+1 or eiτei+1. Then at least one σ must be τ , for
otherwise E = F . This implies that there exists an E, F-path in Gτ and consequently Gτ is
connected.

Suppose now that G is not prime and let G = G1 � G2 � · · · � Gk , k ≥ 2, be the unique
prime factor decomposition of G. By the above, Gτ

i is connected for 1 ≤ i ≤ k. An inductive
use of Lemma 3.2 completes the argument. �

In [1] it is proved that median graphs with no convex K2,3 − e and no convex K1,3 can be
characterized as the Cartesian products of paths. Moreover, if only convex K2,3−e are forbidden,
Cartesian products of trees are characterized. Hence we can ask for the remaining case: which
are the median graphs with forbidden convex K1,3? An answer is included as a particular case of
the following result.

Theorem 3.4. Let n ≥ 2. Then a median graph G contains no convex K1,n if and only if Gτ is
Kn-free.

Proof. The result is clear for n = 2: G contains no convex path on three vertices if and only if
no two edges of G are in relation τ . Assume in the remainder that n ≥ 3.

Since a convex K1,n of G induces Kn in Gτ it follows that a Kn-free Gτ cannot contain a
convex K1,n .

Conversely, suppose that Gτ contains K = Kn . We claim that for any triangle K3 from K
there exists a convex K1,3 in G. Let E1, E2, E3 be the Θ -classes of G that induce such a triangle
in Gτ . Let ab be an edge of E1 such that there exists a vertex c with ac ∈ E2. Then we may
assume that c ∈ Wab. Moreover, c ∈ Wab \ Uab, for otherwise ab and ac would lie in a 4-cycle.
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Similarly we note that all the edges of E2 lie in Wab. Let a′b′ be an edge of E1 that is in relation
τ with an edge e′ of E3, where a′ ∈ Uab. Then e′ lies in Wab, for otherwise E2 and E3 would
not be adjacent in Gτ . Hence e′ = a′c′ for some vertex c′ of Wab. As above, E3 is contained in
Wab. As E2 and E3 are adjacent in Gτ there is a vertex u that is an endvertex of an edge from E2
and an edge from E3. Note that u ∈ Wab. Let x be the median of a, a′, u. Then, as G is median
and hence Uab is convex, we have x ∈ Uab. It follows that x is incident with an edge e1 of E1.
By reversing the roles of a, a′, u we similarly get that x is also incident with an edge e2 from E2
and an edge e3 from E3. But then e1, e2, and e3 induce a convex K1,3 and the claim is proved.

Hence for any triangle of K from Gτ there exists a convex K1,3 in G. If n = 3 we are done.
For n > 3 we proceed by induction. Let E1, . . . , En be the Θ -classes of G that induce K in
Gτ . Then, by the induction hypothesis, for E1, . . . , En−1 there exists a star A = K1,n−1 in G,
for E1, . . . , En−2, En there exists a star B = K1,n−1 in G, and for E2, . . . , En there is a star
C = K1,n−1 in G. Let a, b, c be the central vertices of the stars A, B , and C , respectively. Then
by the same arguments as in the previous paragraph, the median x of a, b, c is adjacent to edges
from each of the classes E1, . . . , En . Lemma 2.2 implies that these edges induce a convex K1,n

which completes the proof. �

To see that Theorem 3.4 does not extend to partial cubes note that Cτ
6 = K3 but C6 is K1,3-

free.

4. Two problems

Among median graphs only stars K1,n have complete τ -graphs. The smallest non-median
partial cubes with complete τ -graphs are C6 and the vertex deleted 3-cube. Note that the vertex
deleted 3-cube is obtained by an expansion from C4, so the property of having a complete τ -
graph is not preserved by the expansion. In addition, it is not difficult to see that the τ -graph of
the vertex deleted Qn is Kn .

Problem 4.1. Characterize partial cubes with complete τ -graphs.

Our starting motivation was a characterization of the resonance graphs of catacondensed
hexagonal graphs using τ -graphs. We close this note with:

Problem 4.2. Can the resonance graphs of hexagonal graphs be characterized using τ -graphs?
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