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Abstract

The Θ-graph Θ(G) of a partial cube G is the intersection graph
of the equivalence classes of the Djoković-Winkler relation. Θ-graphs
that are 2-connected, trees, or complete graphs are characterized. In
particular, Θ(G) is complete if and only if G can be obtained from K1

by a sequence of (newly introduced) dense expansions. Θ-graphs are
also compared with familiar concepts of crossing graphs and τ -graphs.
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1. Introduction

Motivated by the conjecture from [8] that the strong chromatic index s′(G)
of a bipartite graph G is at most ∆2(G), Brešar [1] introduced the Θ-graph
Θ(G) of a partial cube G as the intersection graph of the equivalence classes
of the relation Θ. More precisely, the vertex set of Θ(G) consists of the
Θ-classes of G, two Θ-classes E and F being adjacent whenever there exist
adjacent edges e ∈ E and f ∈ F . Note that the Θ-graph of a tree T is the
line graph L(T ) of T .

Median graphs are among most important examples of partial cubes.
In [1] a problem was posed whether χ(Θ(G)) = ∆(G) holds for any median
graph G. An example is given in [4] demonstrating that this is not true in
general. Nevertheless, the concept of the Θ-graph showed to be useful to
obtain good upper bounds for the strong chromatic index of special families
of partial cubes. For instance, s′(G) ≤ 2χ(Θ(G)) holds for all tree-like
partial cubes G. See [2] for definition and results on tree-like partial cubes.

Two concepts similar to the Θ-graph have been previously studied. The
first one is the crossing graph of a partial cube [12, 3] and the second the
τ -graph of a partial cube [17, 11]. The purpose of this note is to study Θ-
graphs and compare them with the crossing graphs and the τ -graphs. The
latter two concepts are defined in the last section.

In the rest of this section we define necessary concepts. In Section 2
we characterize partial cubes for which Θ-graphs are 2-connected and follow
with characterizations of two extreme cases with respect to connectivity:
partial cubes whose Θ-graphs are trees and partial cubes with complete
graphs as Θ-graphs. In the last section we compare Θ-graphs with crossing
graphs and τ -graphs. We characterize median graphs G for which Θ(G)
equals the τ -graph of G, and median graphs G for which Θ(G) equals the
crossing graph of G. We also give several examples showing that the equality
problem is more difficult in the general case and observe that one can build
new examples with desired property using the Cartesian product of graphs.

For u, v ∈ V (G), let dG(u, v), or d(u, v) for short, denote the length
of a shortest path in G from u to v. The interval I(u, v) between two
vertices u and v in G is the set of all vertices on shortest paths between
u and v. A subgraph H of a graph G is isometric if dH(u, v) = dG(u, v)
for all u, v ∈ V (H) and convex if I(u, v) ⊆ V (H) for any u, v ∈ V (H). A
connected graph G is a median graph if for every triple u, v, w of its vertices
|I(u, v) ∩ I(u,w) ∩ I(v, w)| = 1.
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The vertex set of the n-cube Qn consists of all n-tuples b1b2 . . . bn with
bi ∈ {0, 1}, two vertices being adjacent if the corresponding tuples differ
in precisely one place. A graph G is a partial cube if G is an isomet-
ric subgraph of some Qn. Partial cubes, being subgraphs of hypercubes,
are of course bipartite. It is well known that median graphs are partial
cubes [15].

Edges xy and uv of a graph G are in the Djoković-Winkler relation Θ
if d(x, u) + d(y, v) 6= d(x, v) + d(y, u). For bipartite graphs G, the defini-
tion of Θ can be simplified as follows: e = xy and f = uv are in relation
Θ if d(x, u) = d(y, v) and d(x, v) = d(y, u), cf [6, 10]. Relation Θ is re-
flexive and symmetric. In general Θ is not an equivalence relation. Win-
kler [18] proved that among bipartite graphs Θ is transitive precisely for
partial cubes.

For a connected graph G = (V, E) and an edge ab of G set

Wab = {w ∈ V | d(a,w) < d(b, w)},
Uab = {w ∈ Wab | w has a neighbor in Wba} and

Fab = {e ∈ E | e is an edge between Wab and Wba}.

We will also use Wab and Uab to denote the graphs induced by Wab and
Uab, respectively. Note that if G is bipartite then V = Wab ∪Wba. By the
Djoković theorem from [7], a connected graph G is a partial cube if and
only if G is bipartite and has convex Wab’s. Moreover, Fab’s coincide with
the Θ-classes of G. In addition, the set Fab forms a matching between Uab

and Uba that induces an isomorphism between the subgraphs induced by
Uab and Uba.

2. Θ-Graphs that are 2-Connected, Trees, or Complete
Graphs

Let G be a partial cube with at least two edges. Since G is connected
so is Θ(G). In this section we first characterize partial cubes G for which
Θ(G) is 2-connected. Then we consider two extreme cases with respect to
connectivity: partial cubes whose Θ-graphs are trees and partial cubes with
complete graphs as Θ-graphs.

For our first result we recall the following facts about Θ, see [10] for
proofs.
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Lemma 2.1. Let G be a partial cube.

(i) Let P be a shortest path in G. Then no two different edges of P are in
relation Θ.

(ii) Suppose P is a walk connecting the endvertices of an edge e. Then P
contains an edge f with eΘf .

(iii) If e = uv is a bridge then no edge from Wuv is in relation Θ with an
edge from Wvu.

Theorem 2.2. Let G be a partial cube with at least five edges. Then Θ(G)
is 2-connected if and only if any bridge of G has an endvertex of degree 1.

Proof. Suppose that ab is a bridge of G such that both a and b are of degree
at least 2. Since ab is a bridge, edges e and f from different components of
G \ ab are not in relation Θ by Lemma 2.1 (iii). Then for any neighbor c of
a, c 6= b, and any neighbor d of b, d 6= a, any Fac, Fbd-path in Θ(G) contains
Fab. It follows that Fab is a cut vertex of Θ(G).

Conversely, suppose that for every Θ-class E with only one edge, at
least one of the endvertices of this edge is of degree 1. We need to show that
Θ(G) has no cut vertices.

Let Fab be an arbitrary Θ-class of G and assume first that |Fab| > 1.
Let a′b′ be another edge of Fab. Let Fuv and Fxy be two Θ-classes such that
uv and xy both belong to the subgraph induced by Wab. We may without
loss of generality assume that d(u, x) < d(u, y). As Wab is convex, there
exists a shortest u, x-path in Wab. Therefore there exists an Fuv, Fxy-path
in Θ(G) that does not contain Fab. Suppose next Fuv lies completely in
Wab and Fxy completely in Wba. Let Pa be a shortest a, a′-path and Pb a
shortest b, b′-path. By the Djoković theorem, Pa lies in Wab and Pb in Wba.
Moreover, Lemma 2.1 (i) and (ii) implies that for every e ∈ Pa there exists
e′ ∈ Pb such that eΘe′. It is now straightforward to find an Fuv, Fxy-path in
Θ(G) that does not contain Fab. We conclude that Fab is not a cut vertex
of Θ(G) if |Fab| > 1.

Suppose now that |Fab| = 1, that is, ab is a bridge. Then we may
assume that a is of degree 1 while b is of degree at least 2. Then the (open)
neighborhood of Fab in Θ(G) induces a complete graph. Hence also in this
case Fab is not a cut vertex, and we conclude that Θ(G) is 2-connected.

Crossing graphs and τ -graphs are universal in the sense that every graph is
a crossing graph of some partial cube [12] and that every graph is a τ -graph
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of some partial cube [11]. This property is not shared with Θ-graphs. For
instance, among trees, only paths can be represented as Θ-graphs as the
next result asserts.

Proposition 2.3. Let G be partial cube. Then Θ(G) is a tree if and only if
G = C4 or G = Pn, n ≥ 2. In these cases, Θ(G) is a path.

Proof. Suppose first that a partial cube G is not a tree and let C = C2k

be a shortest cycle of G. Then C is isometric. If k ≥ 3, then Θ(G) contains
Ck. Let k = 2 and assume that G 6= C4. Then considering an arbitrary
edge adjacent to a 4-cycle of G we infer that Θ(G) contains a triangle. So
if G contains a cycle and if Θ(G) is a tree, G is the 4-cycle. Suppose next
that G is a tree. Then, if G contains a vertex of degree at least three, Θ(G)
contains a triangle again. If follows that G must be a path Pn, and in that
case Θ(Pn) = Pn−1.

In the last result of this section we characterize partial cubes whose Θ-graphs
are complete graph. For this sake some preparation is needed.

Let H be a connected graph. An isometric cover H0,H1 consists of
two isometric subgraphs H0 and H1 of H such that H = H0 ∪ H1 and
H0 ∩H1 6= ∅. For i = 0, 1 let H0i be an isomorphic copy of Hi and for any
vertex u ∈ Hi, let ui be the corresponding vertex in H0i. The expansion of
H with respect to H0,H1 is the graph G obtained from the disjoint union
H00 ∪H01, where for each u ∈ H0 ∩H1 the vertices u0 and u1 are joined by
an edge. A contraction is the reverse operation to the expansion.

Chepoi [5] proved that a graph is a partial cube if and only if it can be
obtained from K1 by a sequence of expansions. He followed the approach
of Mulder [14, 15] who previously proved an analogous result for median
graphs.

Let us call the expansion of a partial cube H a dense expansion if any Θ-
class E contains an edge with an endvertex in H0 ∩H1 and for any different
Θ-classes E and F there exist adjacent edges e ∈ E and f ∈ F such that e
and f both lie in H0 or both belong to H1. Then we have:

Theorem 2.4. Let G be a partial cube. Then Θ(G) is a complete graph if
and only if G can be obtained from K1 by a sequence of dense expansions.

Proof. Suppose G is a partial cube obtained from K1 by a sequence of
dense expansions. Then, by the definition of the dense expansion, the new
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Θ-class of G obtained by the expansion is adjacent in Θ(G) to any other
Θ-class of G. Moreover, any two other different Θ-classes remain adjacent
in Θ(G).

Conversely, suppose Θ(G) = Kn. Let EG be an arbitrary fixed Θ-class
of G and let H be the contraction of G with respect to E. Let H0,H1 be
the corresponding isometric cover of H. Note first that Θ(H) = Kn−1. Let
FH be a Θ-class of H. Then FH contains an edge with an endvertex in
H0 ∩H1, for otherwise the corresponding Θ-class FG would not be adjacent
to E in Θ(G). Let next FH and F ′

H be two different Θ-classes of H. Then
we infer that there must exist adjacent edges f ∈ FH and f ′ ∈ F ′

H such that
f and f ′ both lie in H0 or both in H1, for otherwise FG and F ′

G would not
be adjacent in Θ(G). We conclude that G is obtained from H by a dense
expansion. Induction completes the proof.

The above theorem is of similar nature as [12, Proposition 4.4], where partial
cubes with complete crossing graphs are characterized using the so called
all-color expansion. We close the section with the following:

Problem 2.5. Characterize graphs that can be represented as Θ-graphs.
More precisely, for which graphs X there exists a partial cube G such that
X = Θ(G)?

3. Θ-Graphs Versus Crossing Graphs and τ -Graphs

In this section we compare Θ-graphs of partial cubes with their crossing
graphs and τ -graphs. We first define the latter two concepts. Let G be a
partial cube. Then both, its crossing graph G#, and its τ -graph Gτ , have
Θ-classes of G as vertices. In G# two Θ-classes are adjacent if edges from
both classes appear on a common isometric cycle, while in Gτ two Θ-classes
E and F are adjacent whenever there exist edges e ∈ E and f ∈ F which
induce a convex path on three vertices.

For a subgraph X of a graph G let ∂X be the set of edges with one
endvertex in X and the other in G\X. For the proof of the next proposition
we need to recall two lemmata.

Lemma 3.1 (Convexity Lemma). An induced connected subgraph H of a
bipartite graph G is convex if and only if no edge of ∂H is in relation Θ to
an edge in H.
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Lemma 3.2. Let G be a median graph. Then Θ-classes E and F are ad-
jacent in Gτ if and only if there exist adjacent edges e ∈ E and f ∈ F and
there exist no two edges e′ ∈ E and f ′ ∈ F that lie in a common C4.

Lemmata 3.1 and 3.2 are from [9] and [11], respectively. Using them we
arrive at the main theorem of this section.

Proposition 3.3. Let G be a median graph. Then

(i) Gτ ⊆ Θ(G), where the equality holds if and only if G is a tree.
(ii) G# ⊆ Θ(G), where the equality holds if and only if G is a hypercube.

Proof. (i) Clearly, if G is a tree then Gτ = Θ(G) = L(T ). Suppose that G
is not a tree. Then G contains a cycle and since G is median, it contains a
4-cycle uvwz. Then FuvFvw ∈ E(Θ(G)) but FuvFvw /∈ E(Gτ ) by Lemma 3.2.

(ii) Suppose that FabFuv ∈ E(G#). Then Θ-classes Fab and Fuv appear
on a common 4-cycle. This implies that FabFuv ∈ E(Θ(G)), hence G# ⊆
Θ(G).

Let G = Qn. Then G# = Θ(G) = Kn. Suppose next that G contains
n Θ-classes but G# 6= Kn. Since the crossing graph of a median graph G is
Kn if and only if G = Qn, see [13, Theorem 11] (or [12, Proposition 4.1]),
we infer that G 6= Qn. In addition, using [10, Lemma 2.41], there exists an
edge uv of G, such that Wuv \ Uuv 6= ∅. So there exists an edge ab ∈ Wuv

such that a ∈ Wuv \ Uuv and b ∈ Uuv. Then FabFuv ∈ E(Θ(G)). On the
other hand, Lemma 3.1 implies that FabFuv /∈ E(G#). So G# 6= Θ(G) if G
is not a hypercube.

We note that Proposition 3.3 (ii) is of similar nature as a characterization of
hypercubes among median graphs as the graphs for which the union of two
non-empty disjoint half-spaces equals G, see [16, Further Topics 6.35.3].

In the class of all partial cubes the problem of when the Θ-graph is
equal to the crossing graph or to the τ -graph seems to be rather difficult.
We first compare Θ-graphs with τ -graphs. It is easily seen that also in this
case Gτ ⊆ Θ(G) holds. But now we have more graphs than trees for which
equality holds. Clearly, Gτ = Θ(G) holds for any partial cube with no 4-
cycles. However, the same is also true for Q−

3 , the vertex deleted 3-cube, as
well as the graph obtained from Q−

3 by expanding its isometric 6-cycle (in
this case the derived graphs are K4).

Comparing G# with Θ(G) we find that none of possible inclusions hold.
For instance, C#

8 = K4 and Θ(C8) = C4, so Θ(C8) ⊂ C#
8 . Recall that for
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any tree T on at least three vertices we have T# ⊂ Θ(T ). The graphs C6,
Q−

3 and Q−
3 expanded as above are graphs for which the equality holds.

To obtain more graphs G with G# = Θ(G) from known graphs with
this property we first observe the following lemma. The Cartesian product
G¤H of graphs G and H is the graph with vertex set V (G) × V (H) and
(a, x)(b, y) ∈ E(G ¤H) whenever either ab ∈ E(G) and x = y, or a = b and
xy ∈ E(H). Let G⊕H denote the join of graphs G and H. Then:

Lemma 3.4. Let G and H be partial cubes. Then Θ(G¤H) = Θ(G) ⊕
Θ(H).

Proof. The Θ-classes of G¤H are in one-to-one correspondence with the
union of the Θ-classes of G and the Θ-classes of H, cf. [10, Lemma 4.3]. In
other words, V (Θ(G ¤H)) = V (Θ(G))∪V (Θ(H)). By the definition of the
Cartesian product, the Θ-class of G ¤H corresponding to a Θ-class of G
and the Θ-class of G¤H corresponding to a Θ-classes of H both appear on
a common 4-cycle, hence the proposition follows.

Proposition 3.5. Let G and H be partial cubes with G# = Θ(G) and H# =
Θ(H). Then (G ¤H)# = Θ(G¤H).

Proof. Apply Lemma 3.4 and the fact that (G¤H)# = G#⊕H#, see [12,
Proposition 6.1].

To conclude the paper we note that for trees T1 and T2 Lemma 3.4 implies
that L(T1 ¤T2) = L(T1)⊕ L(T2).
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