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Abstract

Partial cubes are graphs that allow isometric embeddings into hypercubes. �-graceful labelings of partial cubes are introduced as
a natural extension of graceful labelings of trees. It is shown that several classes of partial cubes are �-graceful, for instance even
cycles, Fibonacci cubes, and (newly introduced) lexicographic subcubes. The Cartesian product of �-graceful partial cubes is again
such and we wonder whether in fact any partial cube is �-graceful. A connection between �-graceful labelings and representations
of integers in certain number systems is established. Some directions for further investigation are also proposed.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Different graph labelings have been introduced so far, the origin of most of them is the seminal paper [22] by
Rosa. For an overview of extensive developments in the area see the dynamic survey of graph labelings [11] as well as
references therein.

Let T be a tree on n vertices. A bijection f : V (T ) → {0, 1, . . . , n − 1} is called a graceful labeling of T if the
resulting edge labels, obtained by |f (x) − f (y)| on every edge xy, are all distinct. Note that in a graceful labeling of T
labels form a sequence 1, 2, . . . , n−1. More generally, a graph G with m edges is called graceful if there is an injection
f : V (G) → {0, 1, . . . , m} such that the labels of edges are pairwise distinct. The Ringel–Kotzig conjecture asserting
that all trees are graceful remains one of the central problems (if not the central problem) in the area.

As already observed by Rosa [22], the cycles C4k+2 are not graceful. Cartesian products of two paths, a path by a
cycle, and two cycles, have been investigated in many papers for their gracefulness, see [11, Section 2.3] for a survey
on these results and, for instance, the papers [10,17]. In addition, the so-called book graphs—the Cartesian product of
a star by an edge—have also been studied [6,20], as well as have been cyclic snakes [1].

As soon as the above mentioned graphs are bipartite, which is in most of the cases, they admit isometric embeddings
into hypercubes. This fact, together with several difficulties in the above investigations, lead us to a doubt whether the
concept of a graceful labeling is natural on such graphs. Instead, in this paper we propose a new kind of labeling, called
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�-graceful labeling, that is defined on isometric subgraphs of hypercubes, in particular on trees. In fact, �-graceful
labelings and graceful labelings coincide on trees. Our results support the feeling that �-graceful labelings form a more
natural concept on partial cubes than graceful labelings.

In the next section we recall the notion of partial cubes and introduce �-graceful labelings. In these terms we extend
the Ringel–Kotzig conjecture and observe that hypercubes are �-graceful. In Section 3 we show that even cycles and
Fibonacci cubes are �-graceful and that the Cartesian product of �-graceful factors is again �-graceful. We also
introduce the concept of down-closed partial cubes and show that so-called lexicographic subcubes are �-graceful as
well. Then we introduce consistent �-graceful labelings and show that they give rise to representations of integers in
related number systems. We conclude with a question whether all partial cubes are �-graceful and propose a study of
strongly �-graceful labelings and of partial cubes with unique �-graceful labelings.

2. Partial cubes and �-graceful labelings

The hypercube or n-cube Qn, n�1, is the graph with the vertex set {0, 1}n, two vertices being adjacent if the
corresponding tuples differ in precisely one place. The set of edges of Qn whose endvertices differ in the ith place
(1� i�n), is called the ith parallel class of Qn.

Let us label the vertices of Qn by numbers 0, 1, . . . , 2n − 1, that are obtained by considering the label of each vertex
as a binary number and transforming it into the decimal number. For instance, the vertex 00 . . . 0 gets the label 0, while
11 . . . 1 receives the label 2n − 1. In addition, assign labels to the edges of Qn in the usual way, that is, as the absolute
difference between the labels of its endvertices. Then any edge of the ith parallel class receives the label 2n−i . We will
extend this idea to all isometric subgraphs of hypercubes. For this sake some preparation is needed.

A subgraph H of a graph G is called isometric if for every two vertices u, v of H there exists a shortest u, v-path that
lies in H. Isometric subgraphs of hypercubes are called partial cubes, [16] and have been extensively studied in recent
years [2–5,7,8,19]. Probably the most important characterization of partial cubes is due to Winkler [23], and involves
the following edge-parallelism property. We say that two edges e = xy and f = uv of G are in the Djoković–Winkler
[9,23] relation � if

dG(x, u) + dG(y, v) �= dG(x, v) + dG(y, u) ,

where dG(w, w′) (or d(w, w′) for short) denote the usual shortest path distance in G between w and w′. All graphs
considered in this paper are bipartite. In this case xy�uv implies that the notation can be chosen such that d(x, u) =
d(y, v) = d(y, u) − 1 = d(x, v) − 1. Relation � is reflexive and symmetric. Winkler [23] proved that a connected
bipartite graph is a partial cube if and only if � = �∗, where �∗ denotes the transitive closure of �. Hence � is an
equivalence relation on a partial cube G and so partitions E(G) into the so-called �-classes.

Let G be a partial cube on n vertices. We say that a bijection f : V (G) → {0, 1, . . . , n−1}, is a �-graceful labeling
of G if all edges in each �-class of G receive the same label, and distinct �-classes get distinct labels (where the
labeling of the edges is defined in the usual way). If such a labeling exists, then G is called a �-graceful partial cube.
For instance, Fig. 1 shows two �-graceful partial cubes.
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Fig. 1. Partial cubes with �-graceful labelings.
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Note that the above defined labeling of Qn is �-graceful. Since trees are partial cubes and every �-class of a tree
consists of a single edge, �-graceful labelings of trees are just their graceful labelings. Hence we have the following
connection between �-graceful labelings of partial cubes and graceful labelings of trees.

Proposition 2.1. Suppose that there exists a class C of partial cubes such that (i) C contains all trees and (ii) all
graphs of C admit a �-graceful labeling. Then all trees are graceful.

3. Classes of �-graceful partial cubes

In the previous section we have observed that hypercubes admit �-graceful labelings. Another class of �-graceful
partial cubes are graceful trees. In this section we present some particular classes of partial cubes that are �-graceful,
but first we present a result on partial cubes that might be of independent interest.

Let G be a partial cube. It follows from definitions that vertices of G can be represented by binary k-tuples such that
the distance between two vertices equals the number of coordinates in which the corresponding k-tuples differ (the
latter number is known as the Hamming distance).

For a k-tuple x = x1 . . . xk and 1� i�k, let x∗i be the k-tuple obtained from x1 . . . xk by setting xi to 0. Observe that
x∗i = x whenever xi = 0. We say that a partial cube G is down-closed, if for every vertex x of G and for every i, x∗i is
also a vertex of G. In addition, if G is a partial cube and m < |V (G)| we denote by G−m the graph obtained from G by
deleting the m largest vertices of G with respect to the lexicographic order of their k-tuples.

Theorem 3.1. Let G be a down-closed partial cube and 0 < m < |V (G)|. Then G−m is a partial cube.

Proof. Let that x and y be two vertices of G−m. We need to show that there is a shortest x, y-path of G that lies entirely
in G−m. Let z be the k-tuple defined with

zi =
{

1 if xi = yi = 1,

0 otherwise,

for i = 1, . . . , k. Since G is down-closed, z is in G−m, moreover, every k-tuple between x and z (that is, a k-tuple w with
wi = 1 if zi = 1, and wi = 0 if xi = 0) is also in G−m. Hence there is a shortest path in G−m between x and z. Likewise,
there is a shortest path in G−m between z and y. Clearly the join of these two paths is a shortest path from x to y. �

3.1. Lexicographic subcubes

For any hypercube Qn and m < 2n the graph Q−m
n is defined as above: its vertices are binary n-tuples from 00 . . . 0

up to the (m + 1)st largest n-tuple with respect to the lexicographic order. We will call all such graphs lexicographic
subcubes. By Theorem 3.1 and the fact that hypercubes are down-closed, every lexicographic subcube is a partial cube.

Let G be a lexicographic subcube. Without loss of generality we may assume that m < 2n−1, since Q
−(2n−1)
n is

isomorphic to Qn−1. Let us label the vertices of G by numbers 0, 1, . . . , 2n − 1 − m, that are obtained by considering
the label of each vertex as a binary number and transforming it into the decimal number. The labeling is a bijection,
and the obtained edge-labels depend on particular �-class, which receive labels 1, 2, 4, . . . , 2n−1. We thus infer:

Proposition 3.2. Lexicographic subcubes are �-graceful.

3.2. Fibonacci cubes

We continue with Fibonacci cubes, an interesting class of partial cubes that was introduced as a model for intercon-
nection networks in [14,15] and studied in several papers afterwards, see [18,21] and references therein.

A Fibonacci string of length n is a binary string b1b2 . . . bn with bibi+1 = 0 for 1� i < n, that is, a binary string
without two consecutive ones. The Fibonacci cube �n (n�1) is the subgraph of Qn induced by all Fibonacci strings
of length n, see Fig. 2 where �4 is shown.
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Fig. 2. �4 and its �-graceful labeling.

We now verify that Fibonacci cubes are partial cubes. Let x and y be arbitrary vertices of �n. We need to show that
d�n

(x, y)=dQn(x, y). Clearly, d�n
(x, y)�dQn(x, y). For the other inequality first change one by one those coordinates

in x that are equal to 1 but the corresponding coordinates in y are 0. After that, change one by one those coordinates in
x that are equal to 0 where the corresponding coordinates in y are 1. It is straightforward to verify that in this way we
obtain an x, y-path in �n of length dQn(x, y).

Recall that the Fibonacci numbers Fn are defined with F1 = F2 = 1 and Fn = Fn−1 + Fn−2, n > 2.

Proposition 3.3. �n is �-graceful for any n�1. Moreover, its �-classes can be labeled with F2, F3, . . . , Fn+1.

Proof. Assign the following label to a vertex x = x1x2 . . . xn of �n (cf. Fig. 2).

�(x) =
n∑

i=1

xiFn−i+2.

The well-known Zeckendorf theorem (cf. [12, p. 295]) implies that the labels of V (�n) are 0, 1, . . . , Fn+2 − 1,
cf. Fig. 2. Since |V (�n)| = Fn+2, it follows that the labeling � is bijective.

Since �n is a partial cube, a �-class of �n consists of precisely those edges that differ in a fixed coordinate. Therefore,
the labeling � is �-graceful and moreover, the �-classes are labeled with F2, F3, . . . , Fn+1. �

Since Fibonacci cubes are obviously down-closed, Theorem 3.1 and Proposition 3.3 imply

Corollary 3.4. For every n�1 and m < Fn+2, �−m
n is a �-graceful partial cube.

3.3. Even cycles

Proposition 3.5. Even cycles are �-graceful.

Proof. Denote vertices of Cn by v0, v1, . . . , vn−1, and define adjacencies in the natural way.
Consider first the cycles C4k+2, k ∈ N, and set

f (v2i ) = i for i = 0, . . . , 2k,

f (v2i−1) = 3k + 1 − i for i = 1, . . . , k

and

f (v2i+1) = 5k + 1 − i for i = k, . . . , 2k.

(A more intuitive way to describe this labeling is as follows. Starting at v0, label every second vertex by an increasing
sequence of labels from 0 to 2k. Then continue in v2k+1 and label every second vertex (going in the same direction as
before) by decreasing sequence of labels from 4k + 1 to 2k + 1, cf. the labeling of C10 in Fig. 3.) It is straightforward
to check that this labeling is �-graceful with �-classes labeled by all natural numbers between k + 1 and 3k + 1.
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Fig. 3. �-graceful labelings of C10 and C12.

In the second case we consider the cycles C4k , k ∈ N, and define the corresponding labelings as follows:

f (v2i ) = i for i = 0, . . . , k − 1,

f (v2i−1) = 3k − 1 − i for i = 1, . . . , k − 1,

f (v2i−1) = i for i = k, . . . , 2k − 1,

f (v2(k+i)) = 4k − 1 − i for i = 0, . . . , k − 1

and

f (v4k−1) = 3k − 1.

(See the labeling of C12 in Fig. 3.) Again a straightforward check shows that this labeling is �-graceful, with �-classes
labeled by 1 and all numbers between k + 1 and 3k − 1. �

3.4. Cartesian products of partial cubes

The last result of this section asserts that the Cartesian product of �-graceful partial cubes is again �-graceful. (It is
well-known that the Cartesian product of partial cubes is a partial cube.) Since Qn can be represented as the Cartesian
product of n factors isomorphic to K2, this result in particular implies that hypercubes are �-graceful.

Theorem 3.6. Let G and H be �-graceful partial cubes. Then G�H is �-graceful.

Proof. Let G and H be partial cubes on m and k vertices, respectively. We may without loss of generality assume m�k.
Let f : V (G) → {0, 1, . . . , m − 1}, and g : V (H) → {0, 1, . . . , k − 1} be �-graceful labelings of G and H. For an
arbitrary vertex w = (u, v) of G�H (where u ∈ V (G), v ∈ V (H)) set h(w) = h((u, v)) = kf (u) + g(v). We claim
that h is a �-graceful labeling of G�H . Let h((u, v)) = h((u′, v′)). Then for some i, i′j, j ′ we have ki + j = ki′ + j ′
and hence k(i − i′) = j − j ′. This is only possible if i = i′ and j = j ′, and so (u, v) = (u′, v′). Hence, h is injective.
Moreover, h((x, y))=0, where f (x)=g(y)=0, and h((a, b))=km−1, where f (a)=m−1, g(b)=k −1. It follows
that h : V (G�H) → {0, 1, . . . , km − 1} is a bijection.

Note that the label of an edge of a G-layer of G�H is equal to k times the label of its projection onto G. On the
other hand, edges in H-layers of G�H receive the same labels as in H. Clearly, edges of distinct �-classes get distinct
labels, while edges of the same �-class get the same label. �

For n� i�0, the extended Fibonacci cubes �i
n were introduced in [24] as the following partial cubes. �i

i = Qi and
�i

i+1 = Qi+1, while for n� i + 2, the vertex set V i
n of �i

n is defined recursively with V i
n+2 = 0V i

n+1 ∪ 10V i
n . In [13] it

is observed that �i
n = �n−i�Qi holds for n� i�0. Hence, combining this fact with Theorem 3.6 and Proposition 3.3

we also get

Corollary 3.7. For every n� i�0, the extended Fibonacci cube �i
n is a �-graceful partial cube.
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Fig. 4. Non-consistent �-graceful labeling of C16.

4. Consistent �-graceful labelings

In the previous section we have observed a connection between �-graceful labelings and representations of integers
in the Fibonacci number system. In this section we extend this correspondence to more �-graceful labelings, in fact,
it seems that there is such a correspondence in most of the cases.

Let f be a �-graceful labeling of a partial cube G. We say that f is a consistent �-graceful labeling if for every edges
xy and uv of G with xy�uv the following condition is fulfilled

d(x, u) < d(x, v) ⇒ f (x) + f (v) = f (y) + f (u).

Graphs in all the preceding figures are labeled with consistent �-graceful labelings; in particular, the labelings of
Fibonacci cubes are such. Non-consistent �-graceful labelings seem to be rather rare, Fig. 4 shows such a labeling of
C16. On the other hand the proof of Proposition 3.5 gives a consistent labeling of C16. Note also that every graceful
labeling of a tree is a consistent �-graceful labeling, where the consistency condition is trivially fulfilled.

Let G be a partial cube with k �-classes and let g be an isometric embedding of G into Qk . For a vertex x of G we
will write g(x) = g1(x)g2(x) . . . gk(x). Since Qk is vertex transitive we may choose arbitrarily a vertex x ∈ V (G)

such that g(x) = 00 . . . 0 =: 0k .

Theorem 4.1. Let f be a consistent �-graceful labeling of a partial cube G with k �-classes. Let g be an isometric
embedding of G into Qk with g(f −1(0)) = 0k . Then there exist integers b1, . . . , bk , |bi | < |V (G)|, such that for any
x ∈ V (G),

f (x) =
k∑

i=1

gi(x)bi .

Proof. Let E1, E2, . . . , Ek be the �-classes of G and let xiyi ∈ Ei , 1� i�k. Then we may without loss of generality
assume that gi(xi) �= gi(yi) and that gi(xi) = 1 and gi(yi) = 0. Then we define

bi = f (xi) − f (yi).

Let uv be an arbitrary edge of Ei , and let u be the vertex gi(u)=1. Then d(xi, u) < d(xi, v) and hence by the consistency
condition, f (xi) + f (v) = f (yi) + f (u), that is, f (xi) − f (yi) = f (u) − f (v). It follows that bi is well-defined.

Let x be an arbitrary vertex of G. We must show that f (x) = ∑k
i=1 gi(x)bi . Let w be the vertex with f (w) = 0. If

x =w, then since g(f −1(0))=0k we have f (x)=∑k
i=1 0 ·bi =0. Otherwise let w =w0, w1, . . . , wd =x be a shortest

w, x-path in G. Since f (x) = f (wd) and f (w0) = 0 we have

f (x) =
d∑

i=1

(f (wi) − f (wi−1)).

By the definition of the bi’s, f (wi) − f (wi−1) = bj , where gj (wi) = 1 and gj (wi−1) = 0. Note that gj (x) = 1 if and
only if there is an index 1 < i�d , such that gj (wi) = 1 and gj (wi−1) = 0. Hence, f (x) = ∑k

j=1gj (x)bj . �
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From a different perspective, Theorem 4.1 says that integers from 0 up to n − 1 can be represented in a special
number system with integers b1, . . . , bn as base numbers, where −n < bi < n, such that |b1|, . . . , |bn| are pairwise
distinct positive integers. This gives the following related problem.

The number system problem: Given a set S of n binary k-tuples, can we find a number system with integers b1, . . . , bk

as base numbers, where −n < bi < n and |b1|, . . . , |bn| are pairwise distinct positive integers, such that{
k∑

i=1

xibi; x = (x1, . . . , xk) ∈ S

}
= {0, 1, . . . , n − 1}.

The problem need not have a positive solution. For instance, for the set of triples {000, 011, 110, 101} no such number
system exists. Indeed, there are only three distinct absolute values available for the bases 1, 2 and 3, and clearly one
of the base numbers must be +3. Hence the other two must be −1 and −2 otherwise we get over range. But then the
remaining label is −1 + (−2) = −3.

On the other hand if G is a partial cube with a consistent �-graceful labeling, Theorem 4.1 ensures such a solution.
More precisely, we infer

Corollary 4.2. Let G be a partial cube. Then G has a consistent �-graceful labeling if and only there exists an isometric
embedding g of G into Qk such that for the set of k-tuples {g(u); u ∈ V (G)} the number system problem has a solution.
Moreover, in the solution the �-classes are labeled with the absolute values of base numbers.

5. Concluding remarks

The results of the previous sections lead to the following

Question 5.1. Is every partial cube �-graceful?

Note that an affirmative answer to the question in particular solves the Ringel–Kotzig conjecture, so it seems easier
to search for a possible example of a partial cube that is not �-graceful.

It may also be interesting (in particular, if the question has an affirmative answer) how many different such labelings
exist for particular graphs. Let f : V (G) → {0, 1, . . . , n−1} be a �-graceful labeling of a partial cube G on n vertices.
Let f̄ : V (G) → {0, 1, . . . , n − 1} be a labeling defined with f̄ (u) = n − 1 − f (u). It is clear that f̄ is a �-graceful
labeling of G. Let, in addition, � : V (G) → V (G) be an automorphism of G. Then also f ◦ � is a �-graceful labeling
of G. We say that f, f̄ , and f ◦ � are equivalent �-graceful labelings of G. It seems an interesting problem to describe
the partial cubes with only one non-equivalent �-graceful labeling. C4 is a trivial example of such a graph. Another
partial cube with only one non-equivalent �-graceful labeling is the bipartite wheel BW5. It is shown on Fig. 5, together
with its �-graceful labeling.
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Fig. 5. �-graceful labeling of BW5.
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That BW5 has only the �-graceful labeling from Fig. 5 was checked by a computer program. The program found
20 solutions, however they can all be obtained from the above by the action of the dihedral group D5 (which is the
automorphism group of BW5) and the complementation operation.

Let f be a �-graceful labeling of a partial cube G. If the labels of �-classes form a sequence 1, 2, . . . , k, where k
is the number of �-classes of G, we say that f is a strongly �-graceful labeling and that G is a strongly �-graceful
partial cube. For instance, the labeling of the left-hand side partial cube from Fig. 1 is strongly �-graceful.

Clearly, graceful trees, �-graceful trees and strongly �-graceful trees are the same concepts. However, not all partial
cubes are strongly �-graceful. For instance, we have checked by a computer search that none of the cycles C6, C8, and
C14 is strongly �-graceful. On the other hand, C4 is strongly �-graceful as well as are C10, C12, C16, and C18. For
instance, the following respective labelings of these cycles are strongly �-graceful:

0, 1, 3, 7, 4, 9, 8, 6, 2, 5,

0, 1, 3, 7, 2, 5, 11, 10, 8, 4, 9, 6,

0, 1, 4, 2, 9, 5, 11, 6, 14, 15, 12, 10, 3, 7, 13, 8,

0, 1, 4, 2, 11, 3, 9, 5, 10, 17, 16, 13, 15, 6, 14, 8, 12, 7.

Hence another interesting problem is to characterize strongly �-graceful even cycles.
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