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Abstract

A graph is called uniform central (UC) if all its central vertices have
the same set of eccentric vertices. It is proved that if G is a UC graph
with radius at least 3, then substituting a central vertex u of G with an
arbitrary graph H and connecting the vertices of H to all neighbors of u
(in @), yields a UC graph again. This construction extends several earlier
ones and enables a simple argument for the fact that for any » > 2 and any
r+1 < d < 2r, there exists a non-trivial UC graph G with rad(G) = r and
diam(G) = d. Embeddings of graphs into UC graphs are also considered.
It is shown that if G is an arbitrary graph with at least one edge then
at most three additional vertices suffice to embed G into an r-UC graph
with » > 2. Tt is also proved that Pj is the only UC graph among almost
self-centered graphs.

Keywords: radius; diameter; uniform central graph; (almost) self-centered graph;
central appendage number

AMS Subj. Class.: 05C12, 05C75, 90B80

1 Introduction

Graphs considered in this paper are finite, simple and connected. If G is a graph,

then the distance dg(u,v) (or d(u,v) for short if the graph is clear from the
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context) between vertices u and v is the standard shortest-path distance. The
eccentricity eccg(u) (or ecc(u) for short) of the vertex u is max{dg(u,z) : x €
V(G)}. The minimum eccentricity and the maximum eccentricity over all vertices
of G, respectively, are its radius rad(G) and its diameter diam(G). The center
C(G) of G is the set of vertices of minimum eccentricity, its elements being called
central vertices.

Central vertices are important in location theory because when assigning re-
sources to facilities it is often desirable that the resources are located such that
eccentricities of related vertices are as small (or, sometimes also as large) as possi-
ble. In the extreme case when every vertex is central, that is, when C'(G) = V(G)
holds, G is called a self-centered graph [3, 4, 15, 20]. If C(G) # V(G), then G
contains at least two non-central vertices; graphs with exactly two non-central
vertices were introduced in [17] and named almost self-centered (ASC) graphs.
Further properties of these graphs were determined in [1, 16]. On the other ex-
treme one finds the so-called almost-peripheral (AP) graphs that were introduced
in [18] as the graphs in which all but one vertex are peripheral, see also [16]. (A
vertex is peripheral if its eccentricity is maximum.) We point out that recently a
measure of non-self-centrality was introduced in [22], where ASC graphs and AP
graphs (as well as a newly introduced weakly AP graphs) play a significant role as
extremal graphs. For some recent studies of the (average) eccentricity of graphs
we refer to [5, 8, 10, 11, 13, 14] while for an additional role of the eccentricity in
network theory see [2, 19, 21].

Sometimes it is desirable that the central vertices of a graph are indistinguish-
able because in such a network selecting randomly one of the central vertices for
a location of a resource makes an optimal choice. A natural way how to give a
meaning to “indistinguishable” was proposed in [6] as follows. If G is a graph
and u € V(G), then let Ecc(u) = {z : d(u,z) = ecc(u)}; we say that Ecc(u) is
the periphery of u in G. The graph G is a uniform central graph, UC graph for
short, if u,v € C(G) implies that Ecc(u) = Ecc(v). In words, a graph is a UC
graph if all its central vertices have the same periphery. If rad(G) = r, then we
will say that G is an r-UC graph. If |C(G)| = 1, that is, when G has a unique



central vertex, then G is trivially a UC graph. We will therefore call such graphs
trivial UC' graphs.

Clearly, no self-centered graph on at least two vertices is a UC graph. The
variety of UC graphs among the almost-self centered graphs is only a fraction

larger as the next result asserts.

Proposition 1.1 Let G be an ASC graph. Then G is a UC graph if and only if
G — Pg.

Proof. By an r-ASC graph we mean an ASC graph of radius r.

Assume first that G is an r-ASC graph, r > 2. Assume further that G is a UC
graph and suppose that |V(G)| > 4. Let u and v be the two non-central vertices
of G. Then dg(u,v) =7+ 1 > 3. Let P be a shortest u, v-path, and let x and y
be the neighbors of u and v on P, respectively. Then z,y € C(G) and because
dg(u,v) > 3, we infer that x # y. But then clearly 2 and y do not have the same
periphery. So |V(G)| < 3 must hold and hence we are left with G = P3 which is
a 1-ASC graph, a contradiction with the assumption r > 2.

Let now G be a 1-ASC graph. According to [17], G must be isomorphic
to K, — e, that is, to the complete graph K, with one edge removed. Now,
K3 — e = P;, while K,, —e, n >4, is not a UC graph. U

The rest of the paper is organized as follows. In the next section we give a
construction of UC central graphs and apply it to show that for any r > 2 and
any r + 1 < d < 2r, there exists a non-trivial -UC graph G with diam(G) = d.
This result has been first proved in [7], the advantage of our construction is its
simplicity. Then, in Section 3, we show that the construction from the previous
section covers several earlier ones, for instance a couple of results from [12] on
the so-called central appendage number of a graph. We also consider minimal
embeddings of graphs into UC graphs and prove that any graph can be embedded
into an r-UC graph, r > 2, with the addition of at most three vertices.



2 Constructing UC graphs

Let G and H be graphs and let u € V(G). Then the graph G ®,, H is obtained
from G by replacing the vertex u with the graph H and joining all the vertices
of H with all the neighbors of u (in G). In other words, G ®,, H is obtained from
the disjoint union of G — {u} and H by making a join between H and the open
neighborhood N(u) of w in G. Using this operation, we can construct many UC

graphs as follows.

Theorem 2.1 Let G be an r-UC graph, r > 3, and let H be an arbitrary graph.
Ifue C(G) and X = G ®, H, then X is an r-UC graph with C(X) = (C(G) —
{u}) UV (H). Moreover, rad(X) = rad(G) and diam(X) = diam(G).

Proof. We start with the following:

Claim A: The vertices in H are not capable of shortening the shortest paths in

G.
Let P be a shortest path in X with |P| > 3. Note first that P cannot lie

completely in H. Indeed, for otherwise P is not a shortest path because |P| > 3
and the first and the last vertex of P are adjacent to (at least one) common
vertex in N(u). Hence we may assume without loss of generality that the first
vertex from V(P) N V(H) has a neighbor 2/ in N(u). If P contains another
vertex of H, then, 2’ being adjacent to another vertex of V(P) NV (H), we see
again that P is not a shortest path. We have thus proved that if |P| > 3, then
IV(P)NV(H)| < 1. So let P be a shortest path in X and 2 € V(P)NV (H). By
the above, x is on P adjacent to 2/, 2" € N(u). But then the 2’ — z — z” subpath
of P can be replaced with 2/ — u — 2" to obtain a path in G of the same length.
Claim A is proved.

Consider now the eccentricity of a typical vertex x of X. Suppose first that
x € C(GQ). (Clearly, as x is a vertex of X, we have x # w.) Let y € V(G). If
dx(x,y) < dg(x,y) would hold, then by Claim A a shortest z,y-path P would
necessarily contain exactly one vertex from H, but then an z, y-path in G would

exist of the same length as P. Indeed, just replace the vertex of P from H



with u. It follows that dx(z,y) = dg(x,y) holds for any vertex y € V(G). In
addition, dx(x,y) = dg(x,u) holds for any vertex y € V(H). It follows that
eccx () = eccg(x) = r.

Consider next the situation when x € V(H). Note that then dx(z,y) < 2
holds for any vertex y € V(H), y # x. Furthermore, if y € V(G), then dx(z,y) =
dg(u,y) < r, where the last inequality holds since u € C(G). Moreover, since
rad(G) = r, we find that also in this case eccx(x) = r.

Assume finally that z € V(G) — C(G). Then there exists a vertex y € V(G)
such that dg(z,y) > r. But then, using Claim A again, also dx(z,y) > r and so
x ¢ C(X). We conclude that C(X) = (C(G) —{u}) UV (H).

Note that above arguments in particular imply that rad(X) = rad(G) and
diam(X) = diam(G).

It remains to prove that X is a UC graph. If z € C(G), then u is not in the
periphery of = (cf. [6, Theorem 3]), and consequently no vertex of H is in the
periphery of x. It follows that x has the same periphery in X as in G. Let now
x € V(H). Then no vertex y € V(H) is in periphery of z since dx(z,y) < 2 and
r > 3. But then the periphery of x in X is the same as the periphery of u in G.
We conclude that all the vertices from C(X) = (C(G) — {u}) U V(H) have the
same periphery. O

Note that Theorem 2.1 enables us to transform a trivial »-UC graph into a
non-trivial one by choosing an H with |V (H)| > 1.

The reason that we have defined G ®, H such that the vertex u is removed
is that in the case when |C'(G)| = 1, the constructed graph X = G ®, H has the
property C'(X) = V(H). This will be useful to us in the sequel. On the other
hand, the construction can be made a bit simpler by adding H to G without
removing a vertex of G. Also in this case the conclusion holds, more precisely,

we have the following:

Corollary 2.2 Let G be an r-UC graph, r > 3, let H be an arbitrary graph, and
let w e C(G). Let X be the graph obtained from the disjoint union of G and H
by making a join between H and the open neighborhood of u in G. Then X is an
r-UC graph with C(X) = C(G) UV (H).
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Proof. Let H = H U K;. Then X is isomorphic to G ®, H' because the vertex
of K7 plays the role of u. By Theorem 2.1 the conclusion follows. O

As observed in [6], all 1-UC graphs are trivial UC-graphs. But as soon r > 2,
there exist non-trivial r-UC graphs for any possible diameter, that is, for any
diameter between r + 1 and 2r. This result was first proved by Choi and Guan
in [7] in order to demonstrate that a conjecture from [6] asserting that an r-UC
graph has diameter at least r 4+ [(r 4+ 1)/2] does not hold.

Let us briefly describe the construction of Choi and Guan. For given radius r
and diameter d, where r < d < 2r, set m = d—r. Start with the cycle Cy,,. Then
take 4m disjoint paths of length » — 1 and respectively identify an end-vertex of
each with a vertex of Cy,,. Let X be the set of 4m vertices of degree 1 in the so
far constructed graph. Finally add two more vertices a and b, and add the edge
between them as well as all edges between a and b and the vertices from X.

Using Theorem 2.1 we now reprove the above result since our construction is

simpler and the result is stronger.

Theorem 2.3 For anyr > 2 and any r + 1 < d < 2r there exists a non-trivial
r-UC graph G with diam(G) = d. Moreover, if r > 3, and H is an arbitrary
graph, then G can be selected such that H is an induced subgraph of G.

Proof. Let )5 be the graph obtained from the 3-cube ()3 by removing one of
its vertices. Then it is straightforward to verify that ()5 ®, K5 is a non-trivial
2-UC graph of diameter 3, where u is the center of ()5, and that P; ®, K> is a
non-trivial 2-UC graph of diameter 4, where u is the center of Ps. In the rest of
the proof we may hence assume that r» > 3.

Let G, pq0, 7> 3,1 < £ <1, be the graph constructed as follows. Take 2¢ 4 2
disjoint paths of length r, select one end-vertex in each of them, and identify
these vertices. In other words, the graph so far is obtained from Kj oo by
subdividing » — 1 times each of its edges. Finally, connect the pendant vertices
of this temporary graph such that they induce a path. The graph G, 4, is
schematically presented in Fig. 1, where the notation for its vertices to be used

in the sequel is also introduced.
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Figure 1: The graph G, ,1¢

To shorten the notation set G = G, ,4, for the rest of the proof. We claim
that diam(G) =r+/{. For 1 <i < j <2042, let C;; be the following cycle of G:

Ci,j UGy ULygy e ooy Upgy Up ity - o oy Up gy Up—1 45+ -+, UL,5, Up,1 -

The longest of these cycles is C ap49, its length is 2(k +¢) + 1. Since each pair of
vertices x,y of G lies on some cycle Cj ;, we infer that dg(z,y) < d¢, 2,y < k+L.

Moreover,

de(Ur—(r—0),15 Ur2041) = da(Ur——p),1,%0,1) + di(Uo,1, Up2041)

= (r—(r—=¥0))+r=r+¢,

which proves that diam(G) = r + /.

It is straightforward to see that the vertex vertex wg; is the unique central
vertex of G = G, ,4¢. Consequently, G, ., is a trivial 7-UC graph. Using Theo-
rem 2.1 we can construct a non-trivial 7-UC graph G, ,4,®,, H which contains H
as an induced subgraph. Finally, diam(G, ¢ ®, H) = diam(G, ,4¢) =7+ (. O



3 Earlier constructions and embeddings into UC
graphs

Note that Theorem 2.1 does not hold for r = 2. Consider for instance P which
is a trivial 2-UC graph, and denote with w its central vertex. Then the graph
P; ®, K, is not a 2-UC graph, the reason being that the vertices of K, (two
independent vertices) are pairwise peripheral in Ps ®, K». On the other hand,
the construction works also for r = 2 if the graph H is complete. Then P; ®, K,
is a 2-UC graph. We also note that the the 2-UC graph )5 ®, K> from the proof
of Theorem 2.3 is the graph from [6, Fig. 1].

In [12] the central appendage number A, (G) of a graph G was introduced as
the smallest number of vertices to be added to GG such that the resulting graph H
is a UC graph with C(H) = V(G). It was proved that for any connected graph
G of order at least two, 4 < Ay, (G) < 6. Moreover, Ay (G) = 4 if and only if G
is a complete graph, while for any non-complete graph G, A,(G) = 6 holds. To
prove that if G is an arbitrary graph on at least two vertices, then A,,(G) < 6
holds, Gu actually considered

X=P®,G,

where u is the center of P;. As Theorem 2.1 implies, X is then a 3-UC graph
with C(X) = C(G) as required. Moreover, Gu also considered

Y =55 ®y Ky,

where u is the center of Ps. Then by the discussion in the first paragraph of this
section, Y is a 2-UC graph with K, as its center.

The requirement that C(H) = C(G) can be relaxed by changing the condition
that V(G) is the center of the UC graph that contains G to the condition that G
is an induced subgraph of it. Hence we set gucg(G) to be the smallest number of
vertices to be added to G such that the resulting graph H is an r-UC graph for

some r > 2, that is,
Aveg(G) = min{|V(H)| — [V(G)| : G induced in H, H r-UC graph,r > 2} .
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We impose the latter technical condition (that is, r > 2) to avoid trivialities. For
instance, if G contains a vertex x adjacent to all other vertices, then attaching to

x a pendant vertex yields a 1-UC graph. For this new graph invariant we have:

Theorem 3.1 IfG is an arbitrary graph with at least one edge, then ﬁucg(G) <3.

Moreover, the bound is sharp.

Proof. Let uv be an edge of G. Let H be the graph obtained from G by adding the
vertices x, y, z, the edges ux, xy, yz, and the edges {zw : w € V(G),dg(w,u) >
2}. Tt is now straightforward to check that eccy(x) = 2 while eccy(w) > 3 holds
for any vertex w # x. This means that H is a 2-UC graph and so ﬁucg(G) <3.
To demonstrate that the bound is sharp we are going to prove that A\ucg(K n) =
3 holds for any n > 2. Since K, is self-centered, ﬁucg(Kn) > 1. If we add a new
vertex and connect it to at least one vertex of K, we obtain a graph of radius
1. Therefore, Eucg(Kn) > 2. Assume now that Eucg(Kn) = 2 holds and let H
be an r-UC graph, r > 2, with the vertex set V(H) = V(G) U {z,y}. Suppose
first that = and y both have a neighbor in K,,, say 2’ and v/, respectively. Note
first that o’ # 4/, for otherwise rad(H) = 1. From the same reason, 'y ¢ E(H)
and zy' ¢ E(H). But now dg(z,y) = 3, x € Ecc(y'), and = ¢ Ecc(z’), which
is not possible since z/,y’ € C(H). It remains to consider the case that = has a
neighbor in K, say 2/, while y does not have a neighbor in K,. Then clearly
xy € E(H). But now 2/ and x must lie in C'(H) and since y is in the periphery of
2’ but not in the periphery of x, we conclude that this case is also impossible. It
follows that ﬁucg(Kn) > 3 and hence by the first paragraph /Alucg(Kn) = 3. The
bound is thus sharp. O

Note that the graph H from the proof of Theorem 3.1 which demonstrates
that Eucg(G) < 3 holds for any graph G has a unique central vertex x. Hence H
is a trivial UC graph. One might prefer that the super graph of G would be a
non-trivial UC graph. In the case that H is an r-UC graph with » > 3, then in
view of Theorem 2.1, a non-trivial UC-graph can be constructed with the addition
of a single additional vertex. In general, however, we leave the investigation of

such embeddings for future research.



4 Concluding remarks

In Section 3 we have considered embeddings of graphs into UC graphs in view
of the least number of vertices required to be added to a given graph in order
to turn into an UC graph. This definition is in lines with several earlier related
investigations; the central appendage number [12] was our primary motivation,
but see also [9, 17, 18] where the same approach has been followed. On the other
hand, adding few additional vertices might require that a lot of edges must be

added. Hence we pose the following:

Problem 4.1 Study the problem of determining the least number of edges which
need to be added to a given graph in order the obtained graph is an UP graph.
In particular, compare the efficiency of such embeddings with the ones from Sec-

tion 3.

Note that the embedding concept from the above problem is well-defined since
in the worst case we end up with a complete graph on the same vertex set.

The graph H from the proof of Theorem 3.1 which demonstrates that fAlucg(G) <
3 holds for any graph G has a unique central vertex x. Hence H is a trivial UC
graph. One might prefer that the super graph of G' would be a non-trivial UC

graph. Hence we pose:

Problem 4.2 Prove a general upper bound on the number of vertices needed to
be added to an arbitrary graph such that the obtained graph is a non-trivial UC
graph.
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