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Abstract

A graph is called uniform central (UC) if all its central vertices have
the same set of eccentric vertices. It is proved that if G is a UC graph
with radius at least 3, then substituting a central vertex u of G with an
arbitrary graph H and connecting the vertices of H to all neighbors of u
(in G), yields a UC graph again. This construction extends several earlier
ones and enables a simple argument for the fact that for any r ≥ 2 and any
r+1 ≤ d ≤ 2r, there exists a non-trivial UC graph G with rad(G) = r and
diam(G) = d. Embeddings of graphs into UC graphs are also considered.
It is shown that if G is an arbitrary graph with at least one edge then
at most three additional vertices suffice to embed G into an r-UC graph
with r ≥ 2. It is also proved that P3 is the only UC graph among almost
self-centered graphs.
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1 Introduction

Graphs considered in this paper are finite, simple and connected. If G is a graph,

then the distance dG(u, v) (or d(u, v) for short if the graph is clear from the
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context) between vertices u and v is the standard shortest-path distance. The

eccentricity eccG(u) (or ecc(u) for short) of the vertex u is max{dG(u, x) : x ∈

V (G)}. The minimum eccentricity and the maximum eccentricity over all vertices

of G, respectively, are its radius rad(G) and its diameter diam(G). The center

C(G) of G is the set of vertices of minimum eccentricity, its elements being called

central vertices.

Central vertices are important in location theory because when assigning re-

sources to facilities it is often desirable that the resources are located such that

eccentricities of related vertices are as small (or, sometimes also as large) as possi-

ble. In the extreme case when every vertex is central, that is, when C(G) = V (G)

holds, G is called a self-centered graph [3, 4, 15, 20]. If C(G) 6= V (G), then G

contains at least two non-central vertices; graphs with exactly two non-central

vertices were introduced in [17] and named almost self-centered (ASC) graphs.

Further properties of these graphs were determined in [1, 16]. On the other ex-

treme one finds the so-called almost-peripheral (AP) graphs that were introduced

in [18] as the graphs in which all but one vertex are peripheral, see also [16]. (A

vertex is peripheral if its eccentricity is maximum.) We point out that recently a

measure of non-self-centrality was introduced in [22], where ASC graphs and AP

graphs (as well as a newly introduced weakly AP graphs) play a significant role as

extremal graphs. For some recent studies of the (average) eccentricity of graphs

we refer to [5, 8, 10, 11, 13, 14] while for an additional role of the eccentricity in

network theory see [2, 19, 21].

Sometimes it is desirable that the central vertices of a graph are indistinguish-

able because in such a network selecting randomly one of the central vertices for

a location of a resource makes an optimal choice. A natural way how to give a

meaning to “indistinguishable” was proposed in [6] as follows. If G is a graph

and u ∈ V (G), then let Ecc(u) = {x : d(u, x) = ecc(u)}; we say that Ecc(u) is

the periphery of u in G. The graph G is a uniform central graph, UC graph for

short, if u, v ∈ C(G) implies that Ecc(u) = Ecc(v). In words, a graph is a UC

graph if all its central vertices have the same periphery. If rad(G) = r, then we

will say that G is an r-UC graph. If |C(G)| = 1, that is, when G has a unique
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central vertex, then G is trivially a UC graph. We will therefore call such graphs

trivial UC graphs.

Clearly, no self-centered graph on at least two vertices is a UC graph. The

variety of UC graphs among the almost-self centered graphs is only a fraction

larger as the next result asserts.

Proposition 1.1 Let G be an ASC graph. Then G is a UC graph if and only if

G = P3.

Proof. By an r-ASC graph we mean an ASC graph of radius r.

Assume first that G is an r-ASC graph, r ≥ 2. Assume further that G is a UC

graph and suppose that |V (G)| ≥ 4. Let u and v be the two non-central vertices

of G. Then dG(u, v) = r + 1 ≥ 3. Let P be a shortest u, v-path, and let x and y

be the neighbors of u and v on P , respectively. Then x, y ∈ C(G) and because

dG(u, v) ≥ 3, we infer that x 6= y. But then clearly x and y do not have the same

periphery. So |V (G)| ≤ 3 must hold and hence we are left with G = P3 which is

a 1-ASC graph, a contradiction with the assumption r ≥ 2.

Let now G be a 1-ASC graph. According to [17], G must be isomorphic

to Kn − e, that is, to the complete graph Kn with one edge removed. Now,

K3 − e = P3, while Kn − e, n ≥ 4, is not a UC graph. �

The rest of the paper is organized as follows. In the next section we give a

construction of UC central graphs and apply it to show that for any r ≥ 2 and

any r + 1 ≤ d ≤ 2r, there exists a non-trivial r-UC graph G with diam(G) = d.

This result has been first proved in [7], the advantage of our construction is its

simplicity. Then, in Section 3, we show that the construction from the previous

section covers several earlier ones, for instance a couple of results from [12] on

the so-called central appendage number of a graph. We also consider minimal

embeddings of graphs into UC graphs and prove that any graph can be embedded

into an r-UC graph, r ≥ 2, with the addition of at most three vertices.
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2 Constructing UC graphs

Let G and H be graphs and let u ∈ V (G). Then the graph G ⊗u H is obtained

from G by replacing the vertex u with the graph H and joining all the vertices

of H with all the neighbors of u (in G). In other words, G⊗u H is obtained from

the disjoint union of G− {u} and H by making a join between H and the open

neighborhood N(u) of u in G. Using this operation, we can construct many UC

graphs as follows.

Theorem 2.1 Let G be an r-UC graph, r ≥ 3, and let H be an arbitrary graph.

If u ∈ C(G) and X = G⊗u H, then X is an r-UC graph with C(X) = (C(G)−

{u}) ∪ V (H). Moreover, rad(X) = rad(G) and diam(X) = diam(G).

Proof. We start with the following:

Claim A: The vertices in H are not capable of shortening the shortest paths in

G.

Let P be a shortest path in X with |P | ≥ 3. Note first that P cannot lie

completely in H . Indeed, for otherwise P is not a shortest path because |P | ≥ 3

and the first and the last vertex of P are adjacent to (at least one) common

vertex in N(u). Hence we may assume without loss of generality that the first

vertex from V (P ) ∩ V (H) has a neighbor x′ in N(u). If P contains another

vertex of H , then, x′ being adjacent to another vertex of V (P ) ∩ V (H), we see

again that P is not a shortest path. We have thus proved that if |P | ≥ 3, then

|V (P )∩ V (H)| ≤ 1. So let P be a shortest path in X and x ∈ V (P )∩ V (H). By

the above, x is on P adjacent to x′, x′′ ∈ N(u). But then the x′ −x−x′′ subpath

of P can be replaced with x′ − u− x′′ to obtain a path in G of the same length.

Claim A is proved.

Consider now the eccentricity of a typical vertex x of X . Suppose first that

x ∈ C(G). (Clearly, as x is a vertex of X , we have x 6= u.) Let y ∈ V (G). If

dX(x, y) < dG(x, y) would hold, then by Claim A a shortest x, y-path P would

necessarily contain exactly one vertex from H , but then an x, y-path in G would

exist of the same length as P . Indeed, just replace the vertex of P from H
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with u. It follows that dX(x, y) = dG(x, y) holds for any vertex y ∈ V (G). In

addition, dX(x, y) = dG(x, u) holds for any vertex y ∈ V (H). It follows that

eccX(x) = eccG(x) = r.

Consider next the situation when x ∈ V (H). Note that then dX(x, y) ≤ 2

holds for any vertex y ∈ V (H), y 6= x. Furthermore, if y ∈ V (G), then dX(x, y) =

dG(u, y) ≤ r, where the last inequality holds since u ∈ C(G). Moreover, since

rad(G) = r, we find that also in this case eccX(x) = r.

Assume finally that x ∈ V (G)− C(G). Then there exists a vertex y ∈ V (G)

such that dG(x, y) > r. But then, using Claim A again, also dX(x, y) > r and so

x /∈ C(X). We conclude that C(X) = (C(G)− {u}) ∪ V (H).

Note that above arguments in particular imply that rad(X) = rad(G) and

diam(X) = diam(G).

It remains to prove that X is a UC graph. If x ∈ C(G), then u is not in the

periphery of x (cf. [6, Theorem 3]), and consequently no vertex of H is in the

periphery of x. It follows that x has the same periphery in X as in G. Let now

x ∈ V (H). Then no vertex y ∈ V (H) is in periphery of x since dX(x, y) ≤ 2 and

r ≥ 3. But then the periphery of x in X is the same as the periphery of u in G.

We conclude that all the vertices from C(X) = (C(G) − {u}) ∪ V (H) have the

same periphery. �

Note that Theorem 2.1 enables us to transform a trivial r-UC graph into a

non-trivial one by choosing an H with |V (H)| > 1.

The reason that we have defined G ⊗u H such that the vertex u is removed

is that in the case when |C(G)| = 1, the constructed graph X = G⊗u H has the

property C(X) = V (H). This will be useful to us in the sequel. On the other

hand, the construction can be made a bit simpler by adding H to G without

removing a vertex of G. Also in this case the conclusion holds, more precisely,

we have the following:

Corollary 2.2 Let G be an r-UC graph, r ≥ 3, let H be an arbitrary graph, and

let u ∈ C(G). Let X be the graph obtained from the disjoint union of G and H

by making a join between H and the open neighborhood of u in G. Then X is an

r-UC graph with C(X) = C(G) ∪ V (H).
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Proof. Let H ′ = H ∪K1. Then X is isomorphic to G⊗u H
′ because the vertex

of K1 plays the role of u. By Theorem 2.1 the conclusion follows. �

As observed in [6], all 1-UC graphs are trivial UC-graphs. But as soon r ≥ 2,

there exist non-trivial r-UC graphs for any possible diameter, that is, for any

diameter between r + 1 and 2r. This result was first proved by Choi and Guan

in [7] in order to demonstrate that a conjecture from [6] asserting that an r-UC

graph has diameter at least r + ⌊(r + 1)/2⌋ does not hold.

Let us briefly describe the construction of Choi and Guan. For given radius r

and diameter d, where r < d ≤ 2r, set m = d−r. Start with the cycle C4m. Then

take 4m disjoint paths of length r − 1 and respectively identify an end-vertex of

each with a vertex of C4m. Let X be the set of 4m vertices of degree 1 in the so

far constructed graph. Finally add two more vertices a and b, and add the edge

between them as well as all edges between a and b and the vertices from X .

Using Theorem 2.1 we now reprove the above result since our construction is

simpler and the result is stronger.

Theorem 2.3 For any r ≥ 2 and any r + 1 ≤ d ≤ 2r there exists a non-trivial

r-UC graph G with diam(G) = d. Moreover, if r ≥ 3, and H is an arbitrary

graph, then G can be selected such that H is an induced subgraph of G.

Proof. Let Q−

3 be the graph obtained from the 3-cube Q3 by removing one of

its vertices. Then it is straightforward to verify that Q−

3 ⊗u K2 is a non-trivial

2-UC graph of diameter 3, where u is the center of Q−

3 , and that P5 ⊗u K2 is a

non-trivial 2-UC graph of diameter 4, where u is the center of P5. In the rest of

the proof we may hence assume that r ≥ 3.

Let Gr,r+ℓ, r ≥ 3, 1 ≤ ℓ ≤ r, be the graph constructed as follows. Take 2ℓ+2

disjoint paths of length r, select one end-vertex in each of them, and identify

these vertices. In other words, the graph so far is obtained from K1,2ℓ+2 by

subdividing r − 1 times each of its edges. Finally, connect the pendant vertices

of this temporary graph such that they induce a path. The graph Gr,r+ℓ is

schematically presented in Fig. 1, where the notation for its vertices to be used

in the sequel is also introduced.
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ur,2ℓ+1

u1,2ℓ+2 u2,2ℓ+2 ur−1,2ℓ+2

ur,2ℓ+2

Figure 1: The graph Gr,r+ℓ

To shorten the notation set G = Gr,r+ℓ for the rest of the proof. We claim

that diam(G) = r+ ℓ. For 1 ≤ i < j ≤ 2ℓ+2, let Cij be the following cycle of G:

Ci,j : u0,i, u1,i, . . . , ur,i, ur,i+1, . . . , ur,j, ur−1,j, . . . , u1,j, u0,1 .

The longest of these cycles is C1,2ℓ+2, its length is 2(k+ ℓ) + 1. Since each pair of

vertices x, y of G lies on some cycle Ci,j, we infer that dG(x, y) ≤ dCi,j
x, y ≤ k+ℓ.

Moreover,

dG(ur−(r−ℓ),1, ur,2ℓ+1) = dG(ur−(r−ℓ),1, u0,1) + dG(u0,1, ur,2ℓ+1)

= (r − (r − ℓ)) + r = r + ℓ ,

which proves that diam(G) = r + ℓ.

It is straightforward to see that the vertex vertex u0,1 is the unique central

vertex of G = Gr,r+ℓ. Consequently, Gr,r+ℓ is a trivial r-UC graph. Using Theo-

rem 2.1 we can construct a non-trivial r-UC graph Gr,r+ℓ⊗uH which contains H

as an induced subgraph. Finally, diam(Gr,r+ℓ ⊗u H) = diam(Gr,r+ℓ) = r + ℓ. �
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3 Earlier constructions and embeddings into UC

graphs

Note that Theorem 2.1 does not hold for r = 2. Consider for instance P5 which

is a trivial 2-UC graph, and denote with u its central vertex. Then the graph

P5 ⊗u K2 is not a 2-UC graph, the reason being that the vertices of K2 (two

independent vertices) are pairwise peripheral in P5 ⊗u K2. On the other hand,

the construction works also for r = 2 if the graph H is complete. Then P5 ⊗u Kn

is a 2-UC graph. We also note that the the 2-UC graph Q−

3 ⊗uK2 from the proof

of Theorem 2.3 is the graph from [6, Fig. 1].

In [12] the central appendage number Aucg(G) of a graph G was introduced as

the smallest number of vertices to be added to G such that the resulting graph H

is a UC graph with C(H) = V (G). It was proved that for any connected graph

G of order at least two, 4 ≤ Aucg(G) ≤ 6. Moreover, Aucg(G) = 4 if and only if G

is a complete graph, while for any non-complete graph G, Aucg(G) = 6 holds. To

prove that if G is an arbitrary graph on at least two vertices, then Aucg(G) ≤ 6

holds, Gu actually considered

X = P7 ⊗u G ,

where u is the center of P7. As Theorem 2.1 implies, X is then a 3-UC graph

with C(X) = C(G) as required. Moreover, Gu also considered

Y = P5 ⊗u Kn ,

where u is the center of P5. Then by the discussion in the first paragraph of this

section, Y is a 2-UC graph with Kn as its center.

The requirement that C(H) = C(G) can be relaxed by changing the condition

that V (G) is the center of the UC graph that contains G to the condition that G

is an induced subgraph of it. Hence we set Âucg(G) to be the smallest number of

vertices to be added to G such that the resulting graph H is an r-UC graph for

some r ≥ 2, that is,

Âucg(G) = min{|V (H)| − |V (G)| : G induced in H,H r-UC graph, r ≥ 2} .
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We impose the latter technical condition (that is, r ≥ 2) to avoid trivialities. For

instance, if G contains a vertex x adjacent to all other vertices, then attaching to

x a pendant vertex yields a 1-UC graph. For this new graph invariant we have:

Theorem 3.1 If G is an arbitrary graph with at least one edge, then Âucg(G) ≤ 3.

Moreover, the bound is sharp.

Proof. Let uv be an edge ofG. LetH be the graph obtained fromG by adding the

vertices x, y, z, the edges ux, xy, yz, and the edges {xw : w ∈ V (G), dG(w, u) ≥

2}. It is now straightforward to check that eccH(x) = 2 while eccH(w) ≥ 3 holds

for any vertex w 6= x. This means that H is a 2-UC graph and so Âucg(G) ≤ 3.

To demonstrate that the bound is sharp we are going to prove that Âucg(Kn) =

3 holds for any n ≥ 2. Since Kn is self-centered, Âucg(Kn) ≥ 1. If we add a new

vertex and connect it to at least one vertex of Kn, we obtain a graph of radius

1. Therefore, Âucg(Kn) ≥ 2. Assume now that Âucg(Kn) = 2 holds and let H

be an r-UC graph, r ≥ 2, with the vertex set V (H) = V (G) ∪ {x, y}. Suppose

first that x and y both have a neighbor in Kn, say x′ and y′, respectively. Note

first that x′ 6= y′, for otherwise rad(H) = 1. From the same reason, x′y /∈ E(H)

and xy′ /∈ E(H). But now dH(x, y) = 3, x ∈ Ecc(y′), and x /∈ Ecc(x′), which

is not possible since x′, y′ ∈ C(H). It remains to consider the case that x has a

neighbor in Kn, say x′, while y does not have a neighbor in Kn. Then clearly

xy ∈ E(H). But now x′ and x must lie in C(H) and since y is in the periphery of

x′ but not in the periphery of x, we conclude that this case is also impossible. It

follows that Âucg(Kn) ≥ 3 and hence by the first paragraph Âucg(Kn) = 3. The

bound is thus sharp. �

Note that the graph H from the proof of Theorem 3.1 which demonstrates

that Âucg(G) ≤ 3 holds for any graph G has a unique central vertex x. Hence H

is a trivial UC graph. One might prefer that the super graph of G would be a

non-trivial UC graph. In the case that H is an r-UC graph with r ≥ 3, then in

view of Theorem 2.1, a non-trivial UC-graph can be constructed with the addition

of a single additional vertex. In general, however, we leave the investigation of

such embeddings for future research.
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4 Concluding remarks

In Section 3 we have considered embeddings of graphs into UC graphs in view

of the least number of vertices required to be added to a given graph in order

to turn into an UC graph. This definition is in lines with several earlier related

investigations; the central appendage number [12] was our primary motivation,

but see also [9, 17, 18] where the same approach has been followed. On the other

hand, adding few additional vertices might require that a lot of edges must be

added. Hence we pose the following:

Problem 4.1 Study the problem of determining the least number of edges which

need to be added to a given graph in order the obtained graph is an UP graph.

In particular, compare the efficiency of such embeddings with the ones from Sec-

tion 3.

Note that the embedding concept from the above problem is well-defined since

in the worst case we end up with a complete graph on the same vertex set.

The graphH from the proof of Theorem 3.1 which demonstrates that Âucg(G) ≤

3 holds for any graph G has a unique central vertex x. Hence H is a trivial UC

graph. One might prefer that the super graph of G would be a non-trivial UC

graph. Hence we pose:

Problem 4.2 Prove a general upper bound on the number of vertices needed to

be added to an arbitrary graph such that the obtained graph is a non-trivial UC

graph.
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