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Abstract: Vizing’s conjecture from 1968 asserts that the domination
number of the Cartesian product of two graphs is at least as large as
the product of their domination numbers. In this paper we survey the
approaches to this central conjecture from domination theory and give
some new results along the way. For instance, several new properties
of a minimal counterexample to the conjecture are obtained and a lower
bound for the domination number is proved for products of claw-free
graphs with arbitrary graphs. Open problems, questions and related
conjectures are discussed throughout the paper. � 2011 Wiley Periodicals, Inc. J

Graph Theory 69: 46–76, 2012
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1. INTRODUCTION

Vertex connectivity, matching number, chromatic number, crossing number, genus,
and independence number are but a few examples of graph invariants. An important
problem to be solved in understanding a graph invariant is “how it behaves” on graph
products. Because of how the product relates to the two factors, it seems reasonable
to think that the value of the invariant on the product of two graphs G and H will,
in some consistent way, relate to its value—and perhaps that of other invariants—on
G and H. In 1996 Nowakowski and Rall [39] explored this relationship for twelve
independence, coloring and domination invariants on ten associative graph products
whose edge structure depends on that of both factors.

For some invariants and products, this relationship is known and easy to verify. An
example of this situation is that the chromatic number of the Cartesian product of two
graphs is the maximum of their chromatic numbers. In some cases, for example the
independence number of the direct product, there are proven bounds, but in general
no exact formula is known in terms of the independence numbers of the two factor
graphs. For still other invariants the invariant has a conjectured behavior, but the issue
is far from being settled. This is the situation for the domination number on a Cartesian
product. The following conjecture was made by V. G. Vizing in 1968, after being posed
by him as a problem in [43]:

Conjecture 1.1 (Vizing [44]). For every pair of finite graphs G and H,

�(G�H)≥�(G)�(H). (1)

As usual, � stands for the domination number, and G�H stands for the Cartesian
product of graphs G and H.

Vizing’s conjecture is arguably the main open problem in the area of domination
theory. In this paper we present a survey of what is known about attacks on Vizing’s
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conjecture and give some new results. We say that a graph G satisfies Vizing’s conjecture
if inequality (1) holds for every graph H.

The most successful attack in proving that the conjecture holds in special cases has
been the idea of partitioning a graph into subgraphs of a particular type, as initiated
by Barcalkin and German [4]. Their approach gives a large class of graphs, we call
them BG-graphs, which satisfy Vizing’s conjecture. Their fundamental contribution,
its consequences, and independent rediscoveries are presented in Section 2.

The class of BG-graphs has been expanded in two different ways. The first class
is the one of Type X graphs as introduced in [25]; the second was recently proposed
in [10]. These two classes are presented in Sections 3 and 4, respectively. The second
approach implies, among others, that chordal graphs satisfy Vizing’s conjecture, a result
first proved in [2].

In 2000, Clark and Suen [15] made a breakthrough by proving, using what we call the
double projection approach, that �(G�H)≥ 1

2�(G)�(H) for all graphs G and H. Aharoni
and Szabó [2] applied the approach to settle the conjecture for chordal graphs. In this
paper we use the double projection approach to prove that for a claw-free graph G and
any graph H without isolated vertices, �(G�H)≥ 1

2�(G)(�(H)+1), where � stands for
the independence number. (Note that �(G)≥�(G) holds for any graph G.) Moreover, if
H has large enough order, this bound can be improved. The double projection approach
is treated in Section 5.

We follow with a section on possible minimal counterexamples to the conjecture.
Among other properties we prove that a minimal counterexample G is edge-critical,
that every vertex of G belongs to a minimum dominating set, and that the domination
number decreases in any graph formed by identifying arbitrary vertices u and v of G.

Then, in Section 7, several additional approaches to the conjecture are briefly
described, while Section 8 gives Vizing-type theorems for related domination invari-
ants. For instance, a version of Vizing’s conjecture is true for the fractional domination
number. We conclude the paper with several stronger and weaker conjectures than
Vizing’s conjecture.

In the rest of this section definitions are given. Let G= (V(G),E(G)) be a finite,
simple graph. For subsets of vertices, A and B, we say that B dominates A if A⊆N[B];
that is, if each vertex of A is in B or is adjacent to some vertex of B. When A and
B are disjoint and B dominates A, then we will say that B externally dominates A.
The domination number of G is the smallest cardinality, denoted �(G), of a set that
dominates V(G). If D dominates V(G), we will also say that D dominates the graph G
and that D is a dominating set of G. For a survey on domination, see for example [30].

Any dominating set of G must intersect every closed neighborhood in G. Thus, the
domination number of G is at least as large as the cardinality of any set X ⊆V(G)
having the property that for distinct x1 and x2 in X, N[x1]∩N[x2]=∅. Such a set X is
called a 2-packing, and the maximum cardinality of a 2-packing in G is denoted �(G)
and is called the 2-packing number of G. The smallest cardinality of a dominating set
that is also independent is denoted i(G), and the vertex independence number of G is
the maximum cardinality, �(G), of an independent set of vertices in G. For convenience
of notation we will write |G| to denote the number of vertices in G, and g∈G to mean
that g is a vertex of G.

If G is not a complete graph, then for any pair of vertices g1 and g2 that
are not adjacent in G, it is clear that �(G)−1≤�(G+g1g2)≤�(G). If G has the
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property that �(G)−1=�(G+g1g2) for every such pair of nonadjacent vertices, then
G is edge-critical with respect to domination (or edge-critical for brevity). We will see
in Observation 2.1 that to prove Vizing’s conjecture, it suffices to show the inequality
is true whenever one of the two graphs is edge-critical.

The Cartesian product G�H of graphs G and H is the graph whose vertex set is
V(G)×V(H). Two vertices (g1,h1) and (g2,h2) are adjacent in G�H if either g1 =g2
and h1h2 is an edge in H or h1 =h2 and g1g2 is an edge in G. For a vertex g of G, the
subgraph of G�H induced by the set {(g,h)|h∈H} is called an H-fiber and is denoted
by gH. Similarly, for h∈H, the G-fiber, Gh, is the subgraph induced by {(g,h)|g∈G}.
We will have occasion to use the fiber notation Gh and gH to refer instead to the set of
vertices in these subgraphs; the meaning will be clear from the context. It is clear that
all G-fibers are isomorphic to G and all H-fibers are isomorphic to H.

We will have need of projection maps from the Cartesian product G�H to one of
the factors G or H or to a fiber. The projection to H is the map pH :V(G�H)→V(H)
defined by pH(g,h)=h. For a specified vertex x of G, the projection to the H-fiber, xH,
is the function that maps a vertex (g,h) to (x,h). Projections to G or to a G-fiber have
the obvious meaning.

2. DECOMPOSABLE GRAPHS

One of the first results that shows the truth of Vizing’s conjecture for a class of graphs
is due to Barcalkin and German [4]. Their theorem about the so-called decomposable
graphs is still one of the nicest partial results on the conjecture.

Let G be a graph with domination number k. If the vertex set of G can be covered
by k complete subgraphs (cliques, for short), then G is called a decomposable graph.
Barcalkin and German proved that every decomposable graph satisfies Vizing’s conjec-
ture. They also noticed that the class of graphs that satisfy Vizing’s conjecture can
always be extended by using the following basic fact.

Observation 2.1. Let G be a graph that satisfies Vizing’s conjecture, and let G′
be a spanning subgraph of G such that �(G′)=�(G). Then G′ also satisfies Vizing’s
conjecture.

Indeed, if H is any graph, then

�(G′)�(H)=�(G)�(H)≤�(G�H)≤�(G′�H).

The last inequality holds since G′�H is a spanning subgraph of G�H.
Hence the theorem of Barcalkin and German states:

Theorem 2.2 (Barcalkin and German [4]). If a graph G is a spanning subgraph of
a decomposable graph G′ such that �(G)=�(G′), then for every graph H, �(G�H)≥
�(G)�(H).

Theorem 2.2 is not difficult to prove if one observes a nice feature of the partition
of decomposable graphs related to the external domination of cliques.

Let G be a decomposable graph with �(G)=k, and let C={C1, . . . ,Ck} be a partition
of V(G) into cliques. Suppose that one wants to externally dominate a union of �<k
cliques from C; that is, given Ci1 , . . . ,Ci� ∈C one looks for a (smallest) set of vertices
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in G−(Ci1 ∪·· ·∪Ci�) that dominates Ci1 ∪·· ·∪Ci� . Select and fix such a set D, and let
Cj1 , . . . ,Cjt be the cliques from C that have a nonempty intersection with D. Then we
claim that

t∑
m=1

(|Cjm ∩D|−1)≥�. (2)

In words, the sum of the number of “additional” vertices (that is, the surplus to 1 of
the number of vertices from D) in cliques Cjm is at least the number of cliques that are
externally dominated. Indeed, if the left-hand side of inequality (2) were less than �,
then the �+ t cliques from C would be dominated by fewer than �+ t vertices. Since
the remaining cliques can be dominated by k−(�+ t) vertices (each clique by one of
its vertices), this implies the contradiction �(G)<k.

Proof of Theorem 2.2. By Observation 2.1 we may assume that G is a decompos-
able graph. Consider the Cartesian product G�H, where G is a decomposable graph
with �(G)=k. Let D be a minimum dominating set of G�H. The main idea of the
proof is that each vertex from D will get a label from 1 to k, and for each label i, the
projection to H of the vertices from D that are labeled i, is a dominating set of H. This
clearly implies |D|≥k�(H), and G satisfies the conjecture.

Let C1, . . . ,Ck be a partition of V(G) into cliques. For each h∈V(H) and i, 1≤ i≤k,
we call Ch

i =V(Ci)×{h} a G-cell. (See Fig. 1 where the corresponding partition of
G�H is shown, and the cell Ch

i is shaded.)
The following simple labeling rule (SLR) is used: if a G-cell Ch

i contains a vertex
from D, then one of the vertices from D∩Ch

i gets the label i. Hence in the projection,
h will also get the label i. Note that we have not yet determined the remaining labels
if there is more than one vertex in D∩Ch

i .
Fix an arbitrary vertex h∈V(H). We need to prove that for an arbitrary i, 1≤ i≤k,

there exists a vertex from D, labeled by i, that is projected to the neighborhood
of h. There are two cases. First, if there exists a vertex of D in V(Ci)×N[h], then by
SLR, there will be a vertex in the neighborhood of h to which the label i is projected,
and so this case is settled.

The second case is that there is no vertex from D in V(Ci)×N[h], and we call such
Ch

i a missing G-cell for h. Let Ch
i1

, . . . ,Ch
i�

be the missing G-cells for h. Note that, by

definition, the missing G-cells for h are dominated entirely within the G-fiber, Gh. Hence

FIGURE 1. The partition of G�H into G-cells.
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FIGURE 2. Two graphs that are not BG-graphs.

there are vertices in D∩Gh that dominate Ch
i1

∪·· ·∪Ch
i�

. Let Ch
j1

, . . . ,Ch
jt

be the G-cells

in Gh that intersect D. Since Gh is isomorphic to G, we infer by inequality (2) that

t∑
m=1

(|Ch
jm ∩D|−1)≥�.

Thus there are enough additional vertices in D∩Gh (that have not already been labeled
by SLR), so that for each missing G-cell Ch

i , the label i can be given to one of the
vertices in Ch

jm
∩D, where |Ch

jm
∩D|≥2. Hence in this case the label i will be projected

to h. This concludes the proof of Theorem 2.2. �

A graph G satisfying the hypothesis of Theorem 2.2 was said by Barcalkin and
German to belong to the A-class; we call such a graph a BG-graph. Several common
graphs are BG-graphs, including trees, any graph with domination number 2, cycles,
and any graph having a 2-packing of cardinality equal to its domination number.

The truth of the conjecture for a graph having a 2-packing of cardinality equal to its
domination number was independently obtained in [34] while in [18] it was done for
cycles. Also, Vizing’s conjecture was proved for graphs with a certain vertex-partition
property by Faudree, Schelp and Shreve [19] and by Chen, Piotrowski and Shreve [12].
It was shown in [23] that the first class is a proper subclass of the BG-graphs while
the second is the same as the class of BG-graphs.

On the other hand, any bipartite graph B with �(B)<|B| /2, that is edge-critical, is
not a BG-graph. An example of such a bipartite graph is B2 of Figure 2, formed by
removing the edges of 3 vertex-disjoint 4-cycles from K6,6. The nonbipartite graph B1
is not edge-critical, but a short analysis shows it also is not a BG-graph.

3. THE ONE-HALF ARGUMENT AND TYPE X GRAPHS

In 1995, Hartnell and Rall [25] found a method of partitioning V(G) that is somewhat
different from that of Barcalkin and German. They termed the class of graphs having
such a partition, Type X . Any decomposable graph is of Type X . The proof of the
main theorem regarding these graphs uses the simple fact that a connected graph of
order at least 2 has a domination number that is at most one-half its order. The proof
technique is best illustrated by using a specific example, the graph G in Figure 3.
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C

S

C1

2

FIGURE 3. Graph G for one-half argument example.

Note first that �(G)=3. We shall consider V(G) as being partitioned into three parts,
two of which induce cliques and the other induces a star. Let C1 ={r,s}, C2 ={a,b,c}
and S={u,v,w}. Note that both the star S and the clique C2 contain a vertex whose
neighborhood is entirely contained in its own part, whereas both vertices of C1 have a
neighbor outside of C1.

Let H be any graph and consider any dominating set D of G�H. We will show that
|D|≥3�(H); more precisely, we will find three disjoint sets in D each with cardinality
at least �(H). We start by designating a vertex x from each of the three parts of V(G),
and constructing a so-called missing fiber list Lx.

Suppose D∩ vH does not dominate vH. Let Lv be the set of all the vertices h in H
such that (v,h) is not dominated by D∩ vH. We call Lv the missing fiber list for the
H-fiber vH. In a similar manner make a missing fiber list Lb for the H-fiber bH.

Fix a vertex, say r, of the clique C1, and project all the elements of D∩ sH onto rH.
Let X represent the set of vertices in rH which were already in D, together with those
that are images of this projection. The set of all vertices h in H such that (r,h) is not
dominated by X is the missing fiber list, Lr, for C1. Of course, some of these missing
fiber lists may be empty. The key idea is to find replacements for the vertices on these
lists in the uH-, wH-, aH-, and cH-fibers.

By the nature of S noted above, if h∈Lv then at least one of (u,h), (w,h) is in D.
Similarly, if h∈Lb, then at least one of (a,h), (c,h) is in D. However, these vertices
also dominate (s,h) or (r,h) (within the Gh-fiber). In showing that D contains at least
3�(H) vertices we must be careful not to count any members of D twice.

Now project the vertices in D∩ uH onto wH. Let F denote the subgraph of wH induced
by the resulting set of vertices from D∩ wH together with the image of this projection
of D∩ uH.

Consider any k∈Lr.
Assume first that (w,k) /∈F. This implies that k /∈Lv and that both of (a,k) and (c,k)

are in D to dominate (s,k) and (r,k). Thus, one of these can be counted for the missing
fiber list in C1 and the other for the missing fiber list Lb, if necessary.

Now assume that (w,k) is an isolated vertex in F and that both of (u,k) and (w,k)
belong to D. If k∈Lb, then the nature of C2 noted above implies there are at least
three members of D in the Gk-fiber. In particular, at least one of (a,k) or (c,k) is in D.
Hence, (u,k) can be counted for the missing fiber list Lr and (w,k) for the missing
fiber list Lv if necessary (i.e. if k∈Lv).

Next we assume that (w,k) is an isolated vertex in F and that only one of (u,k) or
(w,k) is in D. Suppose that (u,k)∈D. Since D dominates (r,k) it follows that (c,k)∈D.
In addition, since (w,k) must be dominated by D from within the Gk-fiber, we may

Journal of Graph Theory DOI 10.1002/jgt



VIZING’S CONJECTURE: A SURVEY AND RECENT RESULTS 53

conclude that either (v,k)∈D or (a,k)∈D. In this case we have at least three vertices
from D in Gk. Hence we will be able to count one of these for missing fiber k in C1
and still have two members of D in case k is in Lv or in Lb. The case when (w,k)∈D
is handled in a similar manner.

Finally, we assume that (w,k) is a vertex in a component K of order two or more
in F. Since the complement of a minimal dominating set is also a dominating set, K
has two disjoint dominating sets A1 and A2. The vertices in A1 can be counted towards
dominating vH and those in A2 can be counted towards dominating rH.

This counting gives |D|≥3�(H)=�(G)�(H). Thus G satisfies Vizing’s conjecture.
In the proof of [25, Theorem 3.1] that the graphs of Type X satisfy Vizing’s conjec-

ture, a similar method of partitioning and the one-half argument were used as for G in
the above example. Here is the formal definition of Type X graphs.

Consider a graph G with �(G)=n=k+ t+m+1 and such that V(G) can be parti-
tioned into S∪SC∪BC∪C, where S=S1 ∪·· ·∪Sk, BC=B1 ∪·· ·∪Bt, and C=C1 ∪·· ·∪
Cm. Each of SC,B1, . . . ,Bt,C1, . . . ,Cm induces a clique. Every vertex of SC (special
clique) has at least one neighbor outside SC, whereas each of B1, . . . ,Bt (the buffer
cliques), say Bi, has at least one vertex, say bi, which has no neighbors outside Bi.
Each Si ∈{S1, . . . ,Sk} is “star-like” in that it contains a star centered at a vertex vi
which is adjacent to each vertex in Ti =Si −{vi}. The vertex vi has no neighbors
besides those in Ti. Although other pairs of vertices in Ti may be adjacent (and
hence Si does not necessarily induce a star), Si does not induce a clique nor can
more edges be added in the subgraph induced by Si without lowering the domina-
tion number of G. Furthermore, there are no edges between vertices in S and vertices
in C.

It should be noted that a graph of Type X need not have a clique having the properties
of SC, and any of t, m or k is allowed to be 0. However, if such an SC is not in G,
then �(G)=n=k+ t+m. Also, if SC is not present and BC is empty, but S as well as
C are not empty, then the graph is disconnected. SC cannot be the only one of these
which is nonempty, since by definition its vertices must have neighbors outside SC.

Theorem 3.1 (Hartnell and Rall [25]). Let G′ be a spanning subgraph of a graph G
of Type X such that �(G′)=�(G). Then G′ satisfies Vizing’s conjecture.

The same authors showed that any graph whose domination number is one more
than its 2-packing number is of Type X , thus establishing the following corollary to
Theorem 3.1.

Corollary 3.2 (Hartnell and Rall [25]). If G is a graph and �(G)=�(G)+1, then G
satisfies Vizing’s conjecture.

A. Extending the One-Half Argument

Our purpose in the remainder of this section is to generalize the above reasoning.
Whereas the one-half argument essentially “shared” vertices from one copy of a graph
between two copies, one can consider the situation where these vertices may be needed
in three different copies. We do this with an example.

Consider the graph G in Figure 4. We observe that �(G)=5, and the 2-packing
number of G is 3. Also, G is not of Type X . We show that G satisfies Vizing’s
conjecture.
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FIGURE 4. The graph G.

We first establish a lemma that will be needed in the argument.

Lemma 3.3. Let G be a connected graph of order n≥2 and assume that V(G)=
V1 ∪V2 ∪W where no vertex in V1 is adjacent to any vertex in V2. For i=1,2 let �i(G)
denote the minimum cardinality of a set of vertices of G that dominates Vi, and let
�(G) denote the domination number of G. Then,

�1(G)+�2(G)+�(G)≤n.

Proof. We prove the statement for trees. The lemma will follow in general since
these three numbers �1(G),�2(G),�(G) are no larger than the corresponding numbers
for any spanning tree of G.

The statement clearly holds for the only tree of order 2. Assume the result holds
for all nontrivial trees of order at most k and let T be any tree of order k+1. Let
V(T)=V1 ∪V2 ∪W and assume no vertex in V1 is adjacent to any vertex in V2. The
result clearly holds if T is a star. Otherwise, let v be a vertex of degree one at the end
of a longest path in T and let w be its unique neighbor. Let R denote the other degree
one neighbors (if any) of w. Let T ′ be the tree T −({v,w}∪R).

By induction �1(T ′)+�2(T ′)+�(T ′)≤|T ′|, where we are assuming V(T ′) inherits the
partition from that of V(T). It is clear that �(T)≤�(T ′)+1. If R=∅, then at most one
of V1,V2 intersects {v,w}. On the other hand, if R �=∅, then |T|≥|T ′|+3 and since w
dominates R∪{v}, it follows immediately that

�1(T)+�2(T)+�(T)≤�1(T ′)+�2(T ′)+�(T ′)+3. �

We will now show that the graph G from Figure 4 satisfies Vizing’s conjecture. To
that end, let H be an arbitrary graph and let D be a minimum dominating set of the
Cartesian product G�H. For an arbitrary vertex g of G we denote the intersection of
D with the fiber gH by Dg. Label the vertices of G and select pairs of its vertices as
shown in Figure 5.

While D dominates all of G�H, to show that �(G�H)≥�(G)�(H) we will show that
|D|≥5�(H) to dominate rH∪ sH∪ tH∪ vH∪ wH.

First we note that if each of Dr, Ds, Dt, Dv and Dw contains at least �(H) vertices,
then |D|≥5�(H).

Thus, we assume this is not the case. We associate the color 1 (respectively, 2, 3, 4, 5)
with the H-fiber rH (respectively, sH, tH, vH, wH). We will color each vertex of H with
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FIGURE 5. Labeled graph G.

a subset of {1,2,3,4,5} in such a way that the subset of V(H) colored i dominates H for
each 1≤ i≤5. The subset assigned to each vertex will accumulate during the course of
the argument below. As these assignments are made, the total number of assignments
will not exceed |D|. We begin by assigning color 1 (respectively, 2, 3, 4 or 5) to each
vertex h for which (r,h) belongs to Dr (respectively, (s,h)∈Ds, (t,h)∈Dt, (v,h)∈Dv,
(w,h)∈Dw).

We say that a vertex h of H is on the missing fiber list at r if the vertex (r,h) is not
dominated by Dr. Denote this missing fiber list by Lr. Note that if h∈Lr, then at least
one of (y,h) and (z,h) is in D. Similarly, let Ls and Lt be the missing fiber lists at s
and t, respectively.

Let fX denote the map from Dy to zH given by fX(y,h)= (z,h) and let D′
z denote Dz ∪

fX(Dy). In an analogous way we form D′
u,D′

v,D′
w and D′

x by doing similar projections
of the subset of D in the H-fibers located at clear vertices within B1 ×V(H),D1 ×
V(H),D2 ×V(H), and B2 ×V(H) onto the H-fibers specified by the solid vertices. Let
us say that a vertex h from H has weight 1 in B1 if exactly one of (a,h) or (u,h) is in D.
If both of these vertices are in D we say h has weight 2 in B1. The weight of h in each
of D1,D2,B2 and X is defined in a similar way.

As we did above for r,s and t, we define missing fiber lists Lv and Lw. However,
here we say for example, that h∈Lv if (v,h) is not dominated by D′

v (instead of, if
(v,h) is not dominated by Dv). We are not concerned with missing fiber lists at u,x
and z. Rather, the focus is on the connected components of the subgraphs induced by
D′

u, D′
x and D′

z.
Each such component is an isolated vertex or has order at least two. In the case

where one of these components has order at least two the complement of a minimal
dominating set is also a dominating set. We will make use of the fact that such a
component has two disjoint dominating sets.

Consider a component C in the subgraph induced by D′
u. If C has order at least two,

then choose a minimal dominating set A of C. Assign color 2 to any vertex k for which
(u,k)∈A and assign color 4 to k if (u,k)∈C−A. If C has order 1, say C={(u,k)}, then
there are two possibilities. If k has weight two in B1, then assign colors 2 and 4 to k.
Finally, assume k has weight one in B1. We observe that k cannot be on the missing
fiber lists at both s and v because D dominates both of (a,k) and (u,k) (in fact, at least
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one of (s,k), (b,k), (v,k) is in D). If k∈Ls, assign color 2 to k; if k∈Lv, assign color 4
to k. The components of the subgraph induced by D′

x are handled in a similar manner.
We now make the important observation that if a vertex h is on the missing fiber

list at s, then color 2 has been assigned to h or to a neighbor of h. Thus, the vertices
having color 2 in their list dominate H. The same is true for the vertices having color 3
in their list. Also, if a vertex k is on the missing fiber list Lv and (u,k)∈D′

u, then either
k or one of its neighbors has been assigned the color 4. Furthermore, if vertex k is in
Lv and (u,k) /∈D′

u, then (w,k)∈D, and hence neither k nor any of its neighbors in H
belongs to Lw. Similar statements hold in regard to such a vertex of H relative to Lw.

Suppose that k∈Lv and color 4 has not yet been assigned to k or one of its neighbors.
Then (u,k) /∈D′

u and (w,k)∈D. Assume that (z,k) /∈D′
z. Then k /∈Lr for otherwise the

vertex (r,k) would not be dominated. Now we ask which vertex dominates (b,k). It can
be neither (y,k) nor (z,k) because (z,k) /∈D′

z. Similarly, since (u,k) /∈D′
u it is also not

dominated by (u,k) or (a,k). Hence (b,k) must be dominated by (c,k). Then both (c,k)
and (w,k) are in D and we may assign color 4 to k. The same can be done for color 5. If
some vertex k is not dominated by a vertex assigned color 4 or 5 then (z,k)∈D′

z. Note
also that (z,k)∈D′

z when k∈Lr. We therefore only need to deal with the vertices in D′
z.

Consider a component C={(z,k)} of order one in D′
z. There are three cases to

handle: k is in both, neither or exactly one of Lv,Lw. Suppose that k∈Lv ∩Lw. Since
D dominates both (v,k) and (w,k) this implies that k has weight at least one in both
of B1 and B2. As noted above, either k or one of its neighbors in H has been assigned
color 4. The same is true about color 5. Thus we can assign color 1 to k.

Assume next that k /∈Lv ∪Lw. In this case we assign color 1 to k.
Finally, assume that k belongs to exactly one of the two missing fiber lists Lv and Lw.

Without lost of generality we suppose that k∈Lv and k is not in Lw. From the previous
observation we may assume that (u,k) /∈D′

u. As noted above this implies that (w,k)
belongs to D and neither k nor any of its neighbors in H belongs to Lw. If k /∈Lr,
assign color 4 to k. If, on the other hand, k belongs to Lr, then because D dominates
both of (y,k) and (z,k) it follows that (c,k) is also in D or k has weight two in X. In
both instances we assign colors 1 and 4 to k.

We are thus led to the final case in which we consider a component C in D′
z of order

at least two. Let (z,h)∈C. As with a component of order one, we have already handled
the situation in which h∈Lv ∩Lw (from B1 and B2). Place (z,h) in V1 if h∈Lv −Lw
and place (z,h) in V2 if h∈Lw −Lv. Let W =C−(V1 ∪V2). By our observation above
no vertex of V1 is adjacent to any vertex of V2. We apply Lemma 3.3 and infer
that there exist subsets A1,A2 and A of C such that Ai dominates Vi, for 1≤ i≤2, A
dominates C and |A1|+|A2|+|A|≤|C|. These subsets of C need not be disjoint. If
(z,h)∈A1, assign color 4 to h. If (z,h)∈A2, assign color 5 to h. Finally assign color
1 to any h for which (z,h)∈A. We have assigned |A1|+|A2|+|A| colors which is at
most |C|.

It now follows that the set of vertices having color 1 (respectively, 4 or 5) domi-
nates H. Combining this with our earlier conclusion about colors 2 and 3 we have
shown

�(G�H)=|D|≥5�(H)=�(G)�(H).

It is unclear how far the above idea can be pushed.
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4. FAIR RECEPTION

Recently Brešar and Rall [10] introduced the notion of a fair reception in a graph. It
uses an approach similar to that of Barcalkin and German, by partitioning a graph into
subgraphs that enjoy a condition like that in inequality (2). Yet the partition is more
general, since arbitrary subgraphs (not only cliques) are allowed in the partition, and
also there can be a special, external part Z.

Let {S1, . . . ,Sk} be a collection of pairwise disjoint sets of vertices from a graph G
with S=S1 ∪·· ·∪Sk, and let Z =V(G)−S. We say that S1, . . . ,Sk form a fair reception
of size k if for any integer �,1≤�≤k, and any choice of � sets Si1 , . . . ,Si� from the
collection, the following holds: if D externally dominates Si1 ∪·· ·∪Si� then

|D∩Z|+ ∑
j,Sj∩D�=∅

(|Sj ∩D|−1)≥�. (3)

That is, on the left-hand side we count all the vertices of D that are not in S, and for
vertices of D that are in some Sj, we count all but one from D∩Sj.

In any graph, any nonempty subset of the vertex set forms a fair reception of size 1.
Another example is obtained by taking a 2-packing and letting each set Si consist of
exactly one vertex of the 2-packing. Hence in any graph G there is a fair reception of
size �(G).

Given a graph G, the largest k such that there exists a fair reception of size k in G
is denoted by �F(G), and is called the fair domination number of G. For instance in
C5 we can let S1 be a single vertex and the vertices in its antipodal edge be S2, and
obtain a fair reception of size 2. Thus �F(C5)=2=�(C5). We have the following basic
observation about the fair domination number.

Proposition 4.1 (Brešar and Rall [10]). For any graph G, �(G)≤�F(G)≤�(G).

Proof. The first inequality has been established above. Suppose there is a graph G
such that r=�(G)<�F(G)=k. Let A be a minimum dominating set, and assume that
the sets S1, . . . ,Sk with Z =V(G)−S form a fair reception of size k in G. Since r<k,
the set A must be disjoint from at least one of these sets. Assume that A∩Si =∅ for
1≤ i≤ t and that A∩Sj �=∅ for t+1≤ j≤k.

The set A externally dominates S1 ∪·· ·∪St and so it follows from the definition of
fair reception that

t ≤ |A∩Z|+ ∑
j,Sj∩A �=∅

(|Sj ∩A|−1)

= |A∩Z|+
k∑

j=t+1
|Sj ∩A|−(k− t)

= |A|−k+ t.

This immediately implies that k≤|A|, which is a contradiction. �

If the partition of V(G) into �F(G) sets (and an eventual set Z) obeys condition (3),
then similar arguments as in Theorem 2.2 can be used to deduce the following result.
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Theorem 4.2 (Brešar and Rall [10]). For all graphs G and H,

�(G�H)≥max{�(G)�F(H),�F(G)�(H)}.
An application to Vizing’s conjecture is seen in the following obvious corollary.

Corollary 4.3 (Brešar and Rall [10]). If G is a graph with �F(G)=�(G), then G satis-
fies Vizing’s conjecture.

It is also easy to see the following fact.

Proposition 4.4 (Brešar and Rall [10]). Let G be a decomposable graph. Then a
partition of the vertex set into �(G) cliques yields a fair reception of G of size �(G) (in
which S equals V(G)).

Note that a family of sets that forms a fair reception in a graph G also forms a fair
reception in any spanning subgraph of G. Hence by the above proposition, the class of
graphs G with �(G)=�F(G) contains the class of BG-graphs as well. Thus, Theorem 4.2
is a generalization of the result by Barcalkin and German. The same authors [10] also
constructed an infinite family of graphs whose fair domination number and domination
number are equal but which are not covered by the Type X results.

The fair domination number of a graph is related to the invariant �i introduced by
Aharoni and Szabó [2]. Let �i(G) denote the maximum, over all independent sets M in
G, of the smallest cardinality of a set D that dominates M (i.e. such that M ⊆N[D]).

Proposition 4.5 (Brešar and Rall [10]). For any graph G, �F(G)≥�i(G).

Proof. It is easy to see that we may assume G has no isolated vertices. Let I be
an independent set of vertices in G that requires k=�i(G) vertices to dominate, and
suppose that A={x1, . . . ,xk} dominates I. Because G has no isolated vertices we may
assume that A externally dominates I. Let the sets S1, . . . ,Sk be a partition of I such that
Si ⊆N(xi). We claim that S1, . . . ,Sk form a fair reception in G. To (externally) dominate
any subfamily of � of these sets, one needs at least � vertices (all of which are in Z,
hence (3) will be satisfied). Indeed, otherwise we easily infer that I can be dominated
by fewer than k vertices, which is a contradiction. Thus �F(G)≥k=�i(G). �

As a corollary, we obtain the result of Aharoni and Szabó [2]:

Theorem 4.6 (Aharoni and Szabó [2]). For any G and H, �(G�H)≥�i(G)�(H).

Aharoni, Berger and Ziv [1] showed that �i and � agree on chordal graphs. Thus:

Corollary 4.7 (Aharoni and Szabó [2]). Chordal graphs satisfy Vizing’s conjecture.

Unfortunately, �i(G) can be arbitrarily smaller than �(G), though it is at least �(G).

Question 4.8. What other classes of graphs satisfy �=�i?

The relationship between �F(G) and �(G) is murkier. We verified recently, using
a computer check of all appropriate partitions, that for the graph G from Figure 3,
�F(G)=�(G)−1. Note that G satisfies Vizing’s conjecture since it is of type X .
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The following natural questions regarding the fair domination number are unresolved:

Question 4.9. Is there a general lower bound for �F(G) in terms of �(G)? For example,
is �F(G)≥�(G)−1 for every connected graph G? Does there exist a constant c>1/
2 such that �F(G)≥c�(G) for every graph G? Such a constant would imply (using
Theorem 4.2) that

�(G�H)≥c�(G)�(H),

for every G and H, an improvement over Theorem 5.1.

5. THE DOUBLE-PROJECTION ARGUMENT

In attacking Vizing’s conjecture, the following question is quite natural. Is there a
constant c>0 such that

�(G�H)≥c�(G)�(H)?

And, of course, hoping that the inequality with c=1 could eventually be proved, the
question was stated explicitly in [23]. It was answered in the affirmative by Clark and
Suen in [15]. We next describe their idea that nicely incorporates the product structure
of G�H.

Let H be a graph with �(H)=k and let {h1, . . . ,hk} be a minimum dominating set
of H. Consider a partition {�1, . . . ,�k} of V(H) chosen so that hi ∈�i and �i ⊆N[hi] for
each i. Let Gi =V(G)×�i. For a vertex g of G the set of vertices {g}×�i is called an
H-cell, see Figure 6.

Let D be a minimum dominating set of G�H. For i=1, . . . ,k, let ni be the number
of H-cells in Gi such that all vertices from the H-cell are dominated by D from within
the corresponding H-fiber. Then, considering the projection pG(D∩Gi), it follows that
|D∩Gi|+ni ≥�(G) and thus

|D|+
k∑

i=1
ni ≥�(G)�(H). (4)

FIGURE 6. Clark-Suen partition.
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On the other hand, the projection pH(D∩ gH) gives �(H)≤|D∩ gH|+(k−mg), where
mg denotes the number of cells in gH that are dominated by D from within gH.
Consequently, mg ≤|D∩ gH|. Hence,

|D|≥ ∑
g∈G

mg. (5)

Since the H-cells were counted in two ways, that is,
∑k

i=1 ni =
∑

g∈G mg, the inequalities
(4) and (5) give:

Theorem 5.1 (Clark and Suen [15]). For all graphs G and H,

�(G�H)≥ 1
2�(G)�(H).

The factor 1 /2 of Theorem 5.1 comes from the double counting of the vertices
of the minimum dominating set D. Aharoni and Szabó [2] modified this approach to
establish their result about chordal graphs (Corollary 4.7). Recently Suen and Tarr [40]
announced the following improvement of Theorem 5.1:

�(G�H)≥ 1
2�(G)�(H)+ 1

2 min{�(G),�(H)}.
Yet another recent improvement of Theorem 5.1 is due to Wu [45]. A Roman domination
of a graph G is a labeling of its vertices with labels from {0,1,2} such that if a vertex
is labeled with 0 then it has a neighbor labeled with 2. The Roman domination number
�R(G) is the minimum weight of a Roman domination. Note that �R(G)≤2�(G). Hence
the following announced inequality from [45]

�R(G�H)≥�(G)�(H)

is indeed an extension of Theorem 5.1.

A. Claw-Free Graphs

We next demonstrate how Clark and Suen’s approach can be applied to claw-free
graphs.

Theorem 5.2. Let G be a claw-free graph. Then for any graph H without isolated
vertices,

�(G�H)≥ 1
2�(G)(�(H)+1).

Proof. Let A={g1, . . . ,g�(G)} be a maximum independent set of G, and let
{h1, . . . ,h�(H)} be a minimum dominating set of H. Let �={�1, . . . ,��(H)} be a
corresponding partition of V(H), where hj ∈�j and �j ⊆N[hj], j=1, . . . ,�(H).

Let D be a minimum dominating set of G�H. Let xi =|D∩ giH|, 1≤ i≤�(G). For
1≤ i≤�(G) and 1≤ j≤�(H), set di,j =1 if all the vertices of {gi}×�j are dominated
within the fiber giH, and set di,j =0 otherwise.

Note first that xi ≥
∑�(H)

j=1 di,j. Indeed, if this was not the case, we could form a
dominating set of H with cardinality smaller than �(H) by adding to pH(D∩ giH) all
vertices hj such that di,j =0.
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Let I ={i1, . . . , ir} be the set of indices i, 1≤ i≤�(G), such that xi =0. Note that it is
possible that I =∅. Note also that

�(G)∑
i=1

xi ≥�(G)−r.

Let Bj = (V(G)−A)×�j. Consider the vertices of {gi}×�j. If di,j =0, then at least
one of them is not dominated from giH, and since A is independent, this vertex must
be dominated by some vertex from Bj. Moreover, if i∈ I, then every vertex of {gi}×�j
is dominated from Bj. Now, a vertex from Bj can dominate at most two vertices from
A×V(H) since G is claw-free and A is an independent set. Therefore,

�(H)∑
j=1

|D∩Bj| ≥ 1

2

(∑
i /∈I

�(H)∑
j=1

(1−di,j)+
∑
i∈I

|H|
)

= 1

2

(
(�(G)−r)�(H)−∑

i /∈I

�(H)∑
j=1

di,j +r|H|
)

.

Recall that xi ≥
∑�(H)

j=1 di,j and since for all i∈ I, di,j =0, then

∑
i /∈I

�(H)∑
j=1

di,j =
�(G)∑
i=1

�(H)∑
j=1

di,j ≤
�(G)∑
i=1

xi.

Now, using the above three inequalities, we get

|D| =
�(H)∑
j=1

|D∩Bj|+
�(G)∑
i=1

xi

≥ 1

2

(
(�(G)−r)�(H)−

�(G)∑
i=1

xi +r|H|
)

+
�(G)∑
i=1

xi

= 1

2
(�(G)−r)�(H)+ r

2
|H|+ 1

2

�(G)∑
i=1

xi

≥ 1

2
(�(G)−r)�(H)+ r

2
|H|+ 1

2
(�(G)−r)

= 1

2
�(G)(�(H)+1)+ r

2
(|H|−�(H)−1).

Since H has no isolated vertices, we have |H|≥�(H)+1 and the proof is complete. �

Since �(G)≤�(G) holds for any graph G, we immediately get:

Corollary 5.3. Let G be a claw-free graph. Then for any graph H without isolated
vertices,

�(G�H)≥ 1
2�(G)(�(H)+1).
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FIGURE 7. A claw-free graph with �(G)=2�(G).

Corollary 5.3 does not follow from Theorem 4.6. This can be seen, for instance, by
letting G be the so-called cocktail party graph formed by removing a perfect matching
from K2n for n≥2. Then G is claw-free, �(G)=2 and �i(G)=1. Letting H =K2, we
get �(G�K2)=2= 1

2�(G)(�(K2)+1), but �i(G)�(K2)=1. Note too that Theorem 5.2
implies that a graph G satisfies Vizing’s conjecture whenever it is claw-free and satisfies
�(G)=2�(G). An infinite family of such graphs may be constructed following the
example of Figure 7.

In many cases we can slightly extend Theorem 5.2 as follows.

Theorem 5.4. Let G be a claw-free graph. Let H be a graph without isolated vertices
for which |H|≥�(H)+�(H)+2. Then

�(G�H)≥ 1
2�(G)(�(H)+2).

In particular, �(G�H)≥ 1
2�(G)(�(H)+2).

Proof. Define A={g1, . . . ,g�(G)}, {h1, . . . ,h�(H)}, D, xi, di,j, and I, where |I|=r≥0,
as in the proof of Theorem 5.2. In addition, let I′ be the set of indices i, 1≤ i≤�(G),
such that xi =1. Set |I′|=s. With this new notation we have:

�(G)∑
i=1

xi ≥2(�(G)−r−s)+s. (6)

The number of vertices in A×V(H) that are not dominated from within H-fibers is
at least

∑
i /∈(I∪I′)

�(H)∑
j=1

(1−di,j)+
∑
i∈I

|H|+∑
i∈I′

(|H|−�(H)−1)

because within an H-fiber a vertex dominates at most �(H)+1 vertices. Therefore,

�(H)∑
j=1

|D∩Bj| ≥ 1

2

( ∑
i /∈(I∪I′)

�(H)∑
j=1

(1−di,j)+
∑
i∈I

|H|+∑
i∈I′

(|H|−�(H)−1)

)

= 1

2

(
(�(G)−r−s)�(H)− ∑

i /∈(I∪I′)

�(H)∑
j=1

di,j+r|H|+s(|H|−�(H)−1)

)
. (7)
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Note again that xi ≥
∑�(H)

j=1 di,j. Since in addition di,j =0 for all i∈ I, and di,j ≥0 for
all i∈ I′, we infer

�(H)∑
j=1

∑
i /∈(I∪I′)

di,j =
�(H)∑
j=1

�(G)∑
i=1

di,j −
�(H)∑
j=1

∑
i∈I′

di,j ≤
�(G)∑
i=1

xi.

Therefore, combining the above inequality with (7) and (6), we obtain

|D| =
�(H)∑
j=1

|D∩Bj|+
�(G)∑
i=1

xi

≥ 1

2

(
(�(G)−r−s

)
�(H)−

�(G)∑
i=1

xi +r|H|+s(|H|−�(H)−1)

)
+

�(G)∑
i=1

xi

≥ 1

2
(�(G)−r−s)�(H)+ 1

2

�(G)∑
i=1

xi + r

2
|H|+ s

2
(|H|−�(H)−1)

≥ 1

2
(�(G)−r−s)�(H)+(�(G)−r−s)+ s

2
+ r

2
|H|+ s

2
(|H|−�(H)−1)

= 1

2
�(G)(�(H)+2)+ r

2
(|H|−�(H)−2)+ s

2
(|H|−�(H)−�(H)−2),

and the proof is complete. �

6. PROPERTIES OF A MINIMAL COUNTEREXAMPLE

A natural way to prove or disprove a conjecture in graph theory is to check for the
existence of a minimal counterexample. Suppose Vizing’s conjecture is false. Then,
there exists a graph G such that for some graph H, �(G�H)<�(G)�(H). From among
all such graphs, G, choose one of smallest order. We call such a graph a minimal
counterexample.

In this section we add to the list of properties that must be satisfied by any minimal
counterexample. As a consequence it might be possible to find such a counterexample
or to prove that Vizing’s conjecture is actually true for any graph satisfying all such
conditions. In the latter case the truth of the conjecture is established.

It is immediate that a minimal counterexample is connected. We may also assume
that a minimal counterexample is edge-critical with respect to domination (see
Observation 2.1). (For more information on edge-critical graphs see the survey [41].)

Suppose that u and v are distinct vertices in a graph G. Denote by Guv the graph
formed by identifying vertices u and v in G and then removing any parallel edges. For
reference purposes let w be the vertex in the identification of u and v. (If e=uv∈E(G),
then Guv is the usual graph obtained from G by contracting the edge e.) It is clear
from the definition that �(Guv)≤�(G). It is also easy to see that �(Guv�H)≤�(G�H)
for any graph H. Indeed, if D is a minimum dominating set of G�H, then

D′ = (D−(uH ∪ vH))∪{(w,h)|(u,h)∈D or (v,h)∈D}
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dominates Guv�H. Using this, we can now establish another property of any minimal
counterexample. Burton and Sumner [11] call graphs with this property totally dot-
critical.

Theorem 6.1. If G is a minimal counterexample to Vizing’s conjecture, then for every
pair of distinct vertices u and v of G, �(Guv)<�(G).

Proof. Let H be a graph such that �(G�H)<�(G)�(H), and let u and v be distinct
vertices of G. Then, Guv satisfies Vizing’s conjecture. It follows that

�(Guv)�(H)≤�(Guv�H)≤�(G�H)<�(G)�(H).

The conclusion of the theorem follows. �

Cycles of order 3n+1 satisfy the conclusion of Theorem 6.1 as does any graph
formed from a connected graph by adding a single leaf adjacent to each vertex.

Problem 6.2. Characterize the graphs G such that for every pair of distinct vertices
u and v in G, �(Guv)<�(G).

Among the consequences of Theorem 6.1, it follows that a minimal counterexample
cannot have a vertex adjacent to two or more vertices of degree one, nor can any vertex
have two neighbors, each of degree two, that are adjacent to each other. In addition,
we also have the following corollary.

Corollary 6.3. If G is a minimal counterexample to Vizing’s conjecture, then for any
vertex u of G, there exists a minimum dominating set D that contains u. Moreover, for
any edge uv in G, there exists a minimum dominating set D such that either both u and
v are in D, or u is in D and one of u or v is the only vertex not dominated by D−{u}.

Proof. Let u and v be any two adjacent vertices of G, denote by w the vertex of Guv
obtained by the identification of u and v. Consider a minimum dominating set D′ of Guv.
If the added vertex w is in D′, let D= (D′−{w})∪{u,v}; otherwise let D=D′ ∪{u}.
In both cases, it is easy to check that D dominates G. Moreover, |D|=|D′|+1, and
since �(G)>�(Guv)=|D′|, we deduce that D is a minimum dominating set of G that
contains u.

Now, in the first case, D contains both u and v. In the second case, all the vertices in
G except possibly u or v are dominated by D−{u}. Furthermore, D′ contains a neighbor
x of w, which is a neighbor of u or v in G. So, one of u or v is the only vertex not
dominated by D−{u}. �

The property given in the corollary should be considered in relation to the study
of the set of vertices belonging to all, to some, or to no minimum dominating sets
started by Mynhardt [38]. This study followed the initiative by Hammer et al. for stable
sets [22].

In 2004 Sun [42] proved that:

Theorem 6.4 (Sun [42]). Every graph G such that �(G)=3 satisfies Vizing’s conjec-
ture.
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(The paper [5] proved that the inequality in Vizing’s conjecture holds if both factors
have domination number 3.) This, together with the fact that any graph with domina-
tion number at most 2 is a BG-graph, implies that any G with �(G)≤3 satisfies the
conjecture.

There are various relationships that exist between the classes of graphs that have
been shown to satisfy Vizing’s conjecture. For example, every BG-graph and every
graph G with �(G)≤�(G)+1 is of Type X . Also, �(G)=�i(G)=�F(G) if G is chordal.

By combining results from the first part of this survey together with those derived
in this section, we see that any minimal counterexample G must satisfy all of the
following conditions.

• �(G)≥4;
• G is not of Type X ;
• �F(G)<�(G);
• G is edge-critical and �(Guv)<�(G) for all pairs of vertices u,v in G;
• Every vertex of G belongs to a minimum dominating set.

It is not hard to construct a graph that satisfies all of the above conditions, except
possibly that �F(G)<�(G) (the invariant �F is often difficult to compute). Indeed, this
is how we produced the graph G in Figure 4. We observe that �(G)=5, the 2-packing
number of G is 3 (implying that G is not of Type X ), and G is edge-critical. We also
think that �F(G)<5, although we were not able to verify it. Hence, according to the
list of conditions above, G is a possible candidate for a counterexample to Vizing’s
conjecture. As shown in Section 3, this is not the case.

7. ADDITIONAL APPROACHES

A. Attachable Sets

Suppose that a graph G1 has a subset S1 of vertices such that for every graph H it
is the case that |D|≥�(G1)�(H) whenever D is a subset of V(G1�H) that dominates
(V(G1)−S1)×V(H). Then clearly G1 satisfies Vizing’s conjecture. In this case S1 is
called an attachable set of G1. For example, Hartnell and Rall showed in [24] that any
independent set of vertices in C5 is an attachable set. In fact, the following result is
proved.

Theorem 7.1 (Hartnell and Rall [24]). Cycles of the form C3k and C3k+2 have
attachable sets. No cycle of the form C3k+1 has an attachable set.

Another way to get a graph G′ with an attachable set is to start with any graph
G that satisfies the conjecture and any vertex v of G that belongs to some minimum
dominating set of G. Construct G′ by adding to G a new vertex v′, the edge vv′,
and any additional subset of edges that join v′ to neighbors of v in G. Then {v′} is
an attachable set of G′. If v′w∈E(G′) such that w �=v and w belongs to a minimum
dominating set of G, then the edge vv′ can be removed from G′. The set {v′} is
attachable in the resulting graph. See [24] for additional details. This provides,
for example, another way to see that complete bipartite graphs satisfy Vizing’s
conjecture.

Journal of Graph Theory DOI 10.1002/jgt



66 JOURNAL OF GRAPH THEORY

The use of graphs with attachable sets is illustrated by the following construction.
Suppose Si is an attachable set of Gi for i=1,2. Let G be the graph built from the
disjoint union of G1 and G2 by adding any subset of the edges that join a vertex in S1
with a vertex in S2. It is easy to show that G satisfies Vizing’s conjecture, and, in fact,
that S1 ∪S2 is an attachable set of G.

B. Degree Conditions on Pairs of Graphs

Recall that one says that a graph G satisfies Vizing’s conjecture if inequality (1) holds
for every graph H. The majority of known results on the conjecture gives classes of
graph that satisfy the conjecture. Alternatively, one could also try to prove that the
inequality holds for given pairs of graphs, an approach followed by Clark, Ismail and
Suen in [13]. We give two of their results.

Theorem 7.2 (Clark et al. [13]). Let G and H be d-regular graphs where d≤3 or
d≥27. Then �(G�H)≥�(G)�(H).

A natural question arising from the above theorem is:

Question 7.3. Can one prove that all cubic graphs satisfy Vizing’s conjecture?

Theorem 7.4 (Clark et al. [13]). Let G and H be graphs of order at most n, and let
�(G),�(H)≥√

n lnn. Then �(G�H)≥�(G)�(H).

The approach used in [13] is the following. Clearly,

�(G�H)≥
⌈ |G�H|

�(G�H)+1

⌉
.

Suppose we have a general upper bound on the domination number of an arbitrary graph
in terms of its number of vertices, minimum and maximum degree, and that the product
of such upper bounds for G and H is bounded above by |G�H| / (�(G�H)+1)�. Then
the inequality in Vizing’s conjecture holds for the pair G,H. Upper bounds applied in
this approach are the following well known bound due to Arnautov [3]

�(G)≤n
1+ ln(�+1)

�+1

and its extension from [14].

C. Pairs that Attain Equality

The reason that Vizing’s conjecture is so difficult lies also in the fact that it is hard to
determine or bound the domination number of a graph, especially if it is not very small.
As a consequence it is very difficult to verify that a counterexample has been found.
Perhaps surprisingly, many classes of pairs of graphs for which the equality is achieved
in (1) have been discovered; the complete list of these classes can be found in [23]. Let
us just mention the following easy example. Let G be the corona of a graph G′ (that is,
the graph obtained from G′ by attaching a leaf to each of its vertices), and let H be the
4-cycle with a and c as nonadjacent vertices. Then D={(x,a)|x∈G′}∪{(y,c)|y∈G−G′}
is a dominating set of G�H with |D|=|G|. It is easy to see that D is a minimum
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dominating set of G�H and that �(G)=|G| /2. Hence we have �(G�C4)=�(G)�(C4).
Additional results regarding equality in (1) can be found in [35].

On the other hand, there are graphs for which equality is never achieved in (1) as
soon as the other factor is nontrivial [26, 27, 35]. For instance, any tree that has a vertex
adjacent to at least two leaves has this property.

8. VIZING-TYPE THEOREMS FOR RELATED DOMINATION

INVARIANTS

In this section, we survey versions of Vizing’s conjecture for various domination-type
invariants, including fractional, total, independent, and integer domination. In particular,
Theorem 5.1 can be generalized in several ways.

A. Fractional Domination

A function f :V(G)→ [0,1] defined on the vertices of a graph G is called a fractional-
dominating function if the sum of its function values over any closed neighborhood is
at least 1. The weight of a fractional-dominating function is the sum of its function
values over all vertices. The fractional domination number of G, denoted �f (G), is the
minimum weight of a fractional-dominating function. Note that the characteristic func-
tion of a dominating set of G is a fractional-dominating function, and so �f (G)≤�(G).
The fractional version of Vizing’s Conjecture was established by Fisher, Ryan, Domke,
and Majumdar [21].

Theorem 8.1 (Fisher et al. [21]). For any graphs G and H, �f (G�H)≥�f (G)�f (H).

In 2001, Brešar [5] gave a straightforward proof of the related result, originally
proved by Fisher:

Theorem 8.2 (Fisher [20]). If G and H are connected graphs, then

�(G�H)≥�f (G)�(H).

This theorem shows that Vizing’s conjecture is satisfied by graphs (e.g. trees, strongly
chordal) for which the fractional domination number and domination number are equal.

The proof technique of [5] involved the following concept. Let f be a function that
assigns to each vertex v of G a subset (possibly empty) of V(H). For each vertex
v∈V(G) we require [ ⋃

u∈f (v)
NH[u]

]
∪
[ ⋃

z∈NG(v)
f (z)

]
=V(H). (8)

It is clear how each such function f corresponds to a dominating set of G�H (one forms
a dominating set for G�H by taking the union of all subsets of the form {v}×f (v)),
and conversely. The graph domination number of G with respect to H, denoted �H(G),
is defined by

�H(G)=min
f

{ ∑
v∈V(G)

|f (v)|
}

,
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where the minimum is taken over all functions f as defined above and satisfying
equation (8).

Observation 8.3 (Brešar [5]). A graph G satisfies Vizing’s conjecture if and only if

�H(G)≥�(G)�(H)

for all graphs H.

B. Total Domination

A total dominating set of a graph G with no isolated vertex is a set S of vertices of
G such that every vertex is adjacent to a vertex in S. The total domination number
of G, denoted by �t(G), is the minimum cardinality of a total dominating set. It was
conjectured in [31] that the product of the total domination numbers of two graphs
without isolated vertices is bounded above by twice the total domination number of
their Cartesian product. This conjecture was solved by Ho [33].

Theorem 8.4 (Ho [32]). For any graphs G and H without isolated vertices,
�t(G�H)≥ 1

2�t(G)�t(H).

In the case when at least one of G or H is a nontrivial tree, those graphs for which
�t(G�H)= 1

2�t(G)�t(H) are characterized in [31].

Theorem 8.5 (Henning and Rall [31]). Let G be a nontrivial tree and H any graph
without isolated vertices. Then, �t(G�H)= 1

2�t(G)�t(H) if and only if �t(G)=2�(G) and
H consists of disjoint copies of K2.

It remains, however, an open problem to characterize the graphs G and H that achieve
equality in the bound of Theorem 8.4.

Brešar et al. [8] established the following result on the total domination number of
the Cartesian product G�H.

Theorem 8.6 (Brešar et al. [8]). For any graphs G and H without isolated vertices,

�t(G�H)≥max{�t(G)�(H),�t(H)�(G)}.

C. Integer Domination

For k≥1, a function f :V(G)→{0,1, . . . ,k} defined on the vertices of a graph G is
called a {k}-dominating function, abbreviated kDF, if the sum of its function values
over any closed neighborhood is at least k [16]. The weight of a kDF is the sum
of its function values over all vertices. The {k}-domination number, denoted �{k}(G),
of G is the minimum weight of a kDF. Note that the characteristic function of a
dominating set of G is a {1}-dominating function, and so �{1}(G)=�(G). This type of
domination is referred to as integer domination. It and fractional domination are related
as follows.

Theorem 8.7 (Domke et al. [16]). For any graph G, �f (G)=mink∈N �{k}(G) /k.

The simplest version of Vizing’s conjecture �{k}(G�H)≥�{k}(G)�{k}(H) for {k}-
domination is trivially false, failing even for G=H =K1. Rather, the natural version is
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obtained from normalizing the invariant by dividing it by k. Rearranged, this conjec-
ture is:

Conjecture 8.8 (Hou and Lu [33]). For any k≥1 and graphs G and H,

�{k}(G�H)≥ 1

k
�{k}(G)�{k}(H).

A couple of partial results are known:

Theorem 8.9 (Brešar et al. [7]). For any graphs G and H,

�{k}(G�H)≥ 1

k(k+1)
�{k}(G)�{k}(H).

It is not difficult to see that for any graph G, �{k}(G)≤k�(G). In the following theorem
we use the function � defined by

�(G,H)=min{|H|(k�(G)−�{k}(G)), |G|(k�(H)−�{k}(H))}.

Note that �(G,H) vanishes when �{k}(G)=k�(G), which is true, for example, if
�(G)=�(G).

Theorem 8.10 (Brešar et al. [7]). For any graphs G and H,

2k�{k}(G�H)+k�(G,H)≥�{k}(G)�{k}(H).

When k=1, Theorems 8.9 and 8.10 simplify to �(G�H)≥ 1
2�(G)�(H), which is

Theorem 5.1. The following questions from [7] remained unresolved, even though the
second one is very weak:

Question 8.11. Is it true that for any graphs G and H, �{2}(G�H)≥�(G)�(H)? Failing
which, is there some k such that �{k}(G�H)≥�(G)�(H) for any pair of graphs G and H?

Theorem 8.4 can be extended to integer total domination. For k≥1 an integer, a
function f :V(G)→{0,1, . . . ,k} is a total {k}-dominating function, abbreviated TkDF,
if the sum of its function values over any open neighborhood is at least k. The total
{k}-domination number, denoted �{k}

t (G), of G is the minimum weight of a TkDF. Note
that the characteristic function of a total dominating set of G is a total {1}-dominating
function, and so �{1}

t (G)=�t(G). Total {k}-domination is also referred to as integer total
domination.

The following version of Vizing’s conjecture for the total {k}-domination number
holds:

Theorem 8.12 (Li and Hou [36]). For k≥1 an integer, and for any graphs G and H
without isolated vertices,

�{k}
t (G�H)≥ 1

k(k+1)
�{k}

t (G)�{k}
t (H).

When k=1, Theorem 8.12 gives Theorem 8.4.
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D. Paired-Domination

A matching in a graph G is a set of independent edges in G. A perfect matching M
in G is a matching in G such that every vertex of G is incident to an edge of M.
A paired-dominating set, abbreviated PDS, of a graph G is a dominating set S of G such
that the subgraph G[S] induced by S contains a perfect matching M (not necessarily
induced). Every graph without isolated vertices has a PDS since the end-vertices of
any maximal matching form such a set. The paired-domination number of G, denoted
by �pr(G), is the minimum cardinality of a PDS; see [28, 29].

A version of Vizing’s Conjecture for the paired-domination number is studied in [8].
For this purpose, recall that for k≥2, a k-packing in a graph G was defined by Meir
and Moon [37] as a set S of vertices of G that are pairwise at distance greater than
k apart, i.e. if u,v∈S, then dG(u,v)>k. The k-packing number of G, denote �k(G), is
the maximum cardinality of a k-packing in G. We have written �2 as �. Brešar et al.
[8] observed that it is not true that for every pair of graphs G and H, �pr(G�H)≥
max{�pr(G)�(H),�pr(H)�(G)}. For example, let G be the graph obtained from K4 by
attaching to each vertex a leaf and let H =C9. Then, �(G)=4 and �pr(H)=6, whence
�pr(G�H)≤22<24=�pr(G)�(H). However, they observed that the 3-packing number
related to the paired-domination number plays a similar role as the packing number
related to the usual domination number.

Theorem 8.13 (Brešar et al. [8]). For any graphs G and H without isolated vertices,

�pr(G�H)≥max{�pr(G)�3(H),�pr(H)�3(G)}.
It was shown in [8] that every nontrivial tree T has �pr(T)=2�3(T). Hence we have

the following corollary of Theorem 8.13.

Theorem 8.14 (Brešar et al. [8]). Let T be a nontrivial tree and H any graph without
isolated vertices. Then,

�pr(T�H)≥ 1
2�pr(T)�pr(H),

and this bound is sharp.

We remark that it is not true in general that for any graphs G and H without
isolated vertices, �pr(G�H)≥2�(G)�(H). For example, letting G=H =P4, we have
that �pr(G�H)=6 while �(P4)=2, and so �pr(G�H)<2�(G)�(H). On the other hand:

Theorem 8.15 (Brešar et al. [8]). For any graphs G and H without isolated vertices,

�pr(G�H)≥2�3(G)�3(H).

E. Upper Domination

The maximum cardinality of a minimal dominating set in a graph G is the upper
domination number of G, denoted by �(G). In 1996, Nowakowski and Rall [39] made
the natural Vizing-like conjecture for the upper domination of Cartesian products of
graphs. A proof was found by Brešar.

Theorem 8.16 (Brešar [6]). For any graphs G and H, �(G�H)≥�(G)�(H).
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The maximum cardinality of a minimal total dominating set of G is the upper
total domination number of G, denoted by �t(G). A Vizing-like bound for the
upper total domination number of Cartesian products of graphs was established by
Dorbec et al. [17].

Theorem 8.17 (Dorbec et al. [17]). Let G and H be connected graphs of order at
least 3 with �t(G)≥�t(H). Then,

�t(G�H)≥ 1
2�t(G)(�t(H)+1),

and this bound is sharp.

9. STRONGER AND WEAKER CONJECTURES

In this section we give several conjectures and questions. Some of them are stronger
than Vizing’s conjecture meaning an affirmative answer would imply the conjecture,
while others would follow from the truth of Vizing’s conjecture.

A. The bg-Conjecture

The clique cover number �(G) of a graph G is the minimum number of complete
subgraphs of G that cover V(G). Note that �(G)=�(G), and �(G)≤�(G) since a
dominating set for G can be formed by choosing a single vertex from each of the �(G)
cliques that belong to the cover. Barcalkin and German’s [4] decomposable graphs are
those with �(G)=�(G). Denote by E(G) the collection of all edge-critical graphs, G′,
such that G is a spanning subgraph of G′ and �(G′)=�(G). Theorem 2.2 can now be
stated using these invariants.

Theorem 9.1. If there exists a graph G′ ∈E(G) such that �(G′)=�(G), then for every
graph H, �(G�H)≥�(G)�(H).

Of course, not all graphs satisfy the hypothesis of Theorem 2.2, but it suggests
another conjecture whose truth would imply Vizing’s conjecture. Let bg(G) denote the
minimum value of �(G′), where the minimum is taken over all G′ ∈E(G). Clearly, for
any graph G, �(G)≤bg(G), and G satisfies the hypothesis of Theorem 2.2 if and only
if these two invariants have the same value.

If we could show that �(G�H)≥�(G)bg(H), then Vizing’s conjecture would follow.
This inequality is not true, in general. This can be seen by letting G=B1 and H =B2
from Figure 2; �(B1)=3, bg(B1)=4, �(B2)=4 and bg(B2)=6. The set ({a,b,c,d}×
{1,7})∪({e, f ,g,h}×{2,8}) dominates B1�B2 and thus, �(B1�B2)≤16<�(B1)bg(B2).

However, the truth of the following conjecture would also establish Vizing’s conjec-
ture.

Conjecture 9.2. For any pair of graphs G and H,

�(G�H)≥min{bg(G)�(H),bg(H)�(G)}.
The same graph B2 as above could possibly produce a counterexample to

Conjecture 9.2 if one can show that �(B2�B2) is less than 24.
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B. Rainbow Domination

Let G be a graph and let f be a function that assigns to each vertex a set of colors chosen
from the set {1, . . . ,k}; that is, f :V(G)→P({1, . . . ,k}). If for each vertex v∈V(G) such
that f (v)=∅, we have ⋃

u∈N(v)
f (u)={1, . . . ,k},

then f is called a k-rainbow dominating function (kRDF) of G. The weight, w(f ), of a
function f is defined as w(f )=∑v∈V(G) |f (v)|. Given a graph G, the minimum weight of
a kRDF is called the k-rainbow domination number of G, which we denote by �rk(G).
(A 1RDF is just a dominating set.)

Rainbow domination in a graph G has a natural connection with the study of
�(G�Kk). It is easy to verify the following equality.

Observation 9.3 (Brešar et al. [9]). For k≥1 and for any graph G, �rk(G)=
�(G�Kk).

The introduction of rainbow domination was motivated by the study of paired-
domination in Cartesian products of graphs, where certain upper bounds can be
expressed in terms of rainbow domination. The following innocent question posed in
[9] remains open.

Question 9.4. Is it true that for any graphs G and H, �r2(G�H)≥�(G)�(H)?

Since 2�(G�H)≥�r2(G�H), this conjecture is stronger than the result of Clark and
Suen (Theorem 5.1), and since �r2(G�H)≥�(G�H) it is a consequence of Vizing’s
conjecture. Even if �r2 is replaced by �rk for an arbitrary k in Question 9.4, we do not
know how to prove the resulting inequality.

C. Independent Domination

There are a number of possible inequalities similar to Vizing’s conjecture for indepen-
dent domination number. Several stronger ones are false:

Observation 9.5. There exist nontrivial graphs G and H such that i(G�H)<i(G)�(H).

Proof. Let G be the graph of order 11 that is constructed from K3 by adding 2
leaves adjacent to one vertex x of K3, 3 leaves adjacent to a second vertex y of K3 and
3 leaves adjacent to the third vertex z of K3. It is clear that i(G)=6. Let H =G; then
�(H)=2= i(H). However, i(G�H)=11. �

This pair of graphs also shows that there are graphs with �(G�H)<i(G)�(H), and
i(G�H)<i(G)i(H). Nevertheless, here is a related conjecture.

Conjecture 9.6. For all graphs G and H,

�(G�H)≥min{i(G)�(H), i(H)�(G)}.
The truth of Conjecture 9.6 would imply Vizing’s conjecture. On the other hand, the

following conjecture

i(G�H)≥�(G)�(H)
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is a consequence of Vizing’s conjecture. Perhaps this could be proven without first
proving Vizing’s conjecture.

D. Partition Conjecture

Vizing’s conjecture would follow from the following conjecture.

Conjecture 9.7. For any graph G, there exists a partition of V(G) into �(G) sets
A1, . . . ,A�(G) such that for any graph H, there is a minimum dominating set, D, of G�H
such that the projection pH(D∩(Ai ×V(H))) dominates H for all i, 1≤ i≤�(G).

10. CONCLUSION—WORK IN PROGRESS

Vizing’s conjecture is that the domination number of the Cartesian product of graphs G
and H is at least as large as the product of their domination numbers. Starting with the
paper of Barcalkin and German [4], the inequality has been proven for all H and several
families of G that admit a suitable partition, such as chordal graphs. In a different
direction, a relaxed inequality was proven for all pairs by Clark and Suen [15]. In
contrast, several similar bounds were established for other, related graph invariants. In
this paper we provided additional properties of a minimal counterexample, if it exists,
and improved bounds on claw-free graphs.

A common thread running through almost all the progress is to bound the size of
a dominating set of G�H by partitioning it or projecting it and thereby relating it to
dominating sets of G and H. It is unclear whether this approach will be able to prove
the conjecture. On the other hand, a few researchers suspect that it might not be true
after all, and base their doubt on the fact that the conjectured inequality is proven sharp
for several rather different families of pairs of graphs (so there “should” also be pairs of
graphs which contradict the conjecture...). Indeed, forty years later, Vizing’s conjecture
remains unresolved. Even partial results have proven difficult. It will be interesting to
see what the next decades will bring.
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