Induced cycles in crossing graphs of median graphs

Sandi Klavžar^{*} Department of Mathematics and Computer Science PeF, University of Maribor Koroška cesta 160, 2000 Maribor, Slovenia sandi.klavzar@uni-mb.si

Matjaž Kovše Institute of Mathematics, Physics and Mechanics Jadranska 19, 1000 Ljubljana, Slovenia matjaz.kovse@uni-mb.si

December 28, 2006

Abstract

The crossing graph $G^{\#}$ of a partial cube G has the equivalence classes of the Djoković-Winkler relation Θ as vertices, two Θ -classes being adjacent if they appear on some common isometric cycle. The following question from [12, Problem 7.3] is treated: Let G be a median graph and $n \geq 4$. Does an induced cycle C_n in $G^{\#}$ necessarily force an induced cogwheel M_n in G? It is shown that the answer is positive for n = 4, 5 and negative for $n \geq 6$. On the other hand it is proved that if $G^{\#}$ contains an induced cycle C_n , $n \geq 4$, then G contains some induced cogwheel M_m , $4 \leq m \leq n$. A refinement of the expansion procedure for partial cubes is obtained along the way.

Key words: partial cube, median graph, crossing graph, cogwheel, (convex) expansion

AMS subject classification (2000): 05C75, 05C12, 05C38

^{*}Supported by the Ministry of Science of Slovenia under the grant P1-0297. The author is also with the Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia.

1 Problem and results

Let G = (V, E) be a partial cube, that is, an isometric subgraph of some hypercube. Equivalently, partial cubes are precisely isometric subgraphs of the *d*-dimensional integer lattices \mathbb{Z}^d for some $d \ge 1$, see [9]. The celebrated Djoković-Winkler relation Θ [8, 19] partitions *E* into the so-called Θ -classes. Then the crossing graph $G^{\#}$ of *G* has its Θ -classes as vertices while two Θ -classes are adjacent if they appear on some common isometric cycle.

The concept of the crossing graph was introduced (under the name incompatibility graph) by Bandelt and Dress in [2]. Bandelt and Chepoi proved in [1] that the crossing graph of a median graph G is chordal if and only if G contains no convex cogwheel. Crossings graphs were later implicitly considered in [14] and extensively studied in [12] where it was proved among others that any graph is a crossing graph of some median graph and that cogwheels M_n are the only partial cubes whose crossing graphs are cycles. Additional results on crossing graphs were obtained in [3], for instance, the crossing graph of a median graph G is the join of two graphs A and B if and only if G is a Cartesian product graph. For an extension of the concept of the crossing graph see [6] and for related concepts of the so called τ -graphs and Θ -graphs see [5, 6, 10, 11, 18].

In this paper we consider the following question from [12, Problem 7.3]. Let G be a median graph and $n \ge 4$. Does an induced cycle C_n in $G^{\#}$ necessarily force an induced cogwheel M_n in G? We prove:

Theorem 1 Let G be a median graph. If $G^{\#}$ contains an induced cycle C_n , $n \ge 4$, then G contains some induced cogwheel M_m , $4 \le m \le n$.

Note that Theorem 1 does not extend to partial cubes as can be seen from Fig. 3, see also [12, Theorem 5.4].

It need not be the case that the cogwheel guaranteed by Theorem 1 is M_n . Indeed, let $M_{r,s}$, $3 \leq r \leq s$, be the graph as shown in Fig. 1. Note that $M_{r,s}$ is a median graph and that M_{s+2} is the largest induced cogwheel in $M_{r,s}$. On the other hand, $M_{r,s}^{\#}$ is obtained from the disjoint union of C_{r+s} and an additional vertex that is adjacent to two vertices of the cycle at distance r. Therefore, $M_{r,s}^{\#}$ contains an induced C_{r+s} .

This example shows that the answer to [12, Problem 7.3] is in general negative for cycles of length at least 6. It is positive thought for 4-cycles and 5-cycles as our next result asserts.

Theorem 2 Let G be a median graph and $n \in \{4, 5\}$. If $G^{\#}$ contains an induced cycle C_n then G contains an induced cogwheel M_n .

Figure 1: The graph $M_{r,s}$

Note that the converse of Theorem 2 does not hold, that is, an induced cogwheel M_n , $n \in \{4, 5\}$, in a median graph G does not necessarily force an induced cycle C_n in $G^{\#}$. To see this note that M_n isometrically embeds into Q_n . Then M_n is an induced subgraph of the median graph Q_n , but $Q_n^{\#} = K_n$ has only triangles as induced cycles. With the same argument we infer that the converse of Theorem 1 also does not hold.

For a graph X we denote with $\mathcal{E}(X)$ the class of all partial cubes for which their crossing graph is isomorphic to X:

 $\mathcal{E}(X) = \{ G \mid G \text{ is partial cube with } G^{\#} = X \}.$

While proving Theorem 1 we also obtain the following result that could be of independent interest.

Theorem 3 Let G be a partial cube and X an induced subgraph of $G^{\#}$. Then G can be obtained by an expansion procedure from some member of $\mathcal{E}(X)$.

This theorem can be considered as a refinement of Chepoi's expansion theorem which claims that any partial cube can be obtained by an expansion procedure from the one vertex graph K_1 [7].

In the next section we define the concepts used in this paper and recall some known results. In the last section we give proofs of Theorems 1-3.

2 Definitions and preliminaries

The wheel W_n , $n \ge 3$, consists of the *n*-cycle C_n together with an extra vertex joined to all the vertices of the cycle. The cogwheel M_n is obtained from the wheel W_n by

subdividing all the edges of the outer cycle. See Fig. 2 for W_5 and M_5 . Cogwheels are also known as bipartite wheels. The central vertex of M_n is the *center* of the wheel and the edges incident with the center are the *spokes* of the wheel.

Figure 2: W_5 and M_5

Let u and v be vertices of a connected graph G. Then $d_G(u, v)$, or d(u, v)for short, denotes the length of a shortest u, v-path in G. The *interval* I(u, v) is the set of all vertices on shortest u, v-paths. A subgraph H of G is *isometric* if $d_H(u, v) = d_G(u, v)$ for all $u, v \in V(H)$ and *convex* if $I(u, v) \subseteq V(H)$ for any $u, v \in V(H)$.

A graph G is a partial cube if for some n, G is an isometric subgraph of the n-cube Q_n . A connected graph is a median graph if for every triple u, v, w of its vertices $|I(u, v) \cap I(u, w) \cap I(v, w)| = 1$. Median graphs are partial cubes [16]. For more information on median graphs see recent papers [4, 17] and references therein.

The Djoković-Winkler relation Θ [8, 19] is defined on the edge set of a graph G in the following way. Edges e = xy and f = uv of G are in relation Θ if

$$d(x, u) + d(y, v) \neq d(x, v) + d(y, u).$$

Let G be a partial cube and $ab \in E(G)$. Winkler [19] proved that among bipartite graphs Θ is transitive precisely for partial cubes. Hence in this case Θ is an equivalence relation. For an edge ab of G set $W_{ab} = \{w \in V \mid d(a, w) < d(b, w)\}$. Note that if G is bipartite then $V = W_{ab} \cup W_{ba}$. If G is a partial cube then the Θ -class containing ab consists of all edges that are incident with a vertex from W_{ab} and a vertex from W_{ba} .

Let $[G]_{\Theta}$ stands for the set of all Θ -classes of a partial cube G. Let $E, F \in [G]_{\Theta}$ and $ee' \in E$, $ff' \in F$. Then E and F cross, $E \#_G F$, if

$$W_{ee'} \cap W_{ff'} \neq \emptyset, W_{ee'} \cap W_{f'f} \neq \emptyset, W_{e'e} \cap W_{ff'} \neq \emptyset, \text{ and } W_{e'e} \cap W_{f'f} \neq \emptyset.$$

In [1, 2] the so-called splits $\{W_{ee'}, W_{e'e}\}$ and $\{W_{ff'}, W_{f'f}\}$ satisfying the above condition are called *incompatible*. As noted above there is a bijective correspondence between Θ -classes and splits of a partial cube.

The crossing relation can be described in several equivalent ways. We say that Θ -classes E and F alternate on a cycle C if they both occur in C and we encounter them alternately while walking along C.

Lemma 4 [12] Let G be a partial cube G and $E, F \in [G]_{\Theta}$. Then the following statements are equivalent:

- (i) $E \#_G F$.
- (ii) E and F alternate on an isometric cycle of G.
- (iii) E and F occur on an isometric cycle of G.
- (iv) Each of the Θ -classes E and F appear exactly twice on a cycle of G and they alternate.

For a partial cube G, the crossing graph $G^{\#}$ of G has elements of $[G]_{\Theta}$ as vertices, two vertices E and F being adjacent if $E\#_G F$. See Fig. 3 for a partial cube G and its crossing graph. The marked Θ -classes of G induce the outer 6-cycle of $G^{\#}$ and the remaining three classes the inner triangle.

Figure 3: A partial cube and its crossing graph

An isometric cover G_1, G_2 of a connected graph G consists of two isometric subgraphs G_1 and G_2 of G such that $G = G_1 \cup G_2$ and $G_1 \cap G_2 \neq \emptyset$. Let \widetilde{G}_1 and \widetilde{G}_2 be isomorphic copies of G_1 and G_2 , respectively. For any vertex $u \in G_i$, $1 \leq i \leq 2$, let \widetilde{u}_i be the corresponding vertex in \widetilde{G}_i . The expansion of G with respect to G_1, G_2 is the graph \widetilde{G} obtained from the disjoint union of \widetilde{G}_1 and \widetilde{G}_2 , where for any $u \in G_1 \cap G_2$ the vertices \tilde{u}_1 and \tilde{u}_2 are joined by an edge. A *contraction* is the reverse operation to the expansion.

The expansion is called *convex* if vertices of $G_1 \cap G_2$ induce a convex subgraph of G. Mulder [15, 16] proved that a graph is a median graph if and only if it can be obtained from K_1 by a sequence of convex expansions.

3 Proofs

Let G be the expansion of a partial cube G with respect to an isometric cover G_1, G_2 and let G_0 be the intersection of the cover. For an edge e of $G \setminus E(G_0)$ let \tilde{e} be the corresponding edge of \tilde{G} , while for an edge e of G_0 we will denote the two corresponding edges of \tilde{G} with \tilde{e}_1 and \tilde{e}_2 , where $\tilde{e}_1 \in \tilde{G}_1$ and $\tilde{e}_2 \in \tilde{G}_2$.

Let $E \in [G]_{\Theta}$. Then E expands to the Θ -class \widetilde{E} of \widetilde{G} with $E \subseteq \widetilde{E}$. Note that if $E \cap G_0 = \emptyset$ then $E = \widetilde{E}$. Otherwise, $|\widetilde{E}| = |E| + 2|E \cap G_0|$. More precisely, the following part of the folklore result holds.

Lemma 5 Let \widetilde{G} be the expansion of a partial cube G with respect to the cover G_1, G_2 and let $G_0 = G_1 \cap G_2$. Then

$$E = E \cup_{e \in E \cap G_0} \{ \widetilde{e}_1, \widetilde{e}_2 \}.$$

For our purposes we specialize [13, Lemma 6.4] to partial cubes as follows.

Lemma 6 Let G be a partial cube, $F \in [G]_{\Theta}$, and C an isometric cycle of G. Then one of the following holds:

- (1) $C \cap F = \emptyset$; or
- (2) C meets F in two opposite edges.

Lemma 7 Let \widetilde{G} be an expansion of a partial cube G and let $E, F \in [G]_{\Theta}$. Then $E \#_G F$ if and only if $\widetilde{E} \#_{\widetilde{G}} \widetilde{F}$.

Proof. Let \widetilde{G} be the expansion of G with respect to the cover G_1, G_2 and let $G_0 = G_1 \cap G_2$.

Suppose first $E \#_G F$. By Lemma 4 we may assume that E and F appear exactly twice on a cycle C of G and they alternate.

Assume C is completely contained in one of the parts of the cover, say G_1 . Then C expands to the cycle \tilde{C} that is isomorphic to C and lies completely in \tilde{G}_1 . Then $\tilde{E} \#_{\tilde{C}} \tilde{F}$ by Lemma 5.

Assume $C \cap (G_1 \setminus G_2) \neq \emptyset$ and $C \cap (G_2 \setminus G_1) \neq \emptyset$. We construct a cycle \widetilde{C} of \widetilde{G} as follows. Start at any vertex x of $G_1 \setminus G_2$ and follow C until a vertex y is reached

such that the next vertex of C, call it z, belongs to $G_2 \setminus G_1$. Then the first part of \widehat{C} will consist of the vertices from \widetilde{x}_1 to \widetilde{y}_1 followed with \widetilde{y}_2 and \widetilde{z}_2 . Now follow C from z to w, where w is the last vertex after z that belongs to G_2 . Append to the before constructed beginning of \widetilde{C} the vertices between \widetilde{z}_2 and \widetilde{w}_2 and add also the vertex \widetilde{w}_1 . Proceed in the same manner until we return to x in C. In this way \widetilde{C} consists of copies of all the edges from C together with some extra edges that all belong to the new Θ -class of \widetilde{G} . By Lemma 5, \widetilde{C} contains precisely two edges from \widetilde{E} and two edges from \widetilde{F} and they alternate on \widetilde{C} . Therefore also in this case $\widetilde{E} \#_{\widetilde{G}} \widetilde{F}$.

Conversely, assume $\widetilde{E} \#_{\widetilde{G}} \widetilde{F}$. Then \widetilde{E} and \widetilde{F} appear on some isometric cycle C of \widetilde{G} and they alternate. By Lemma 6 cycle C meets the new Θ -class of \widetilde{G} in two opposite edges. When we contract \widetilde{G} to G, E and F appear on cycle C', where $|C'| = |\widetilde{C}| - 2$ and they still alternate on \widetilde{C} . Therefore $E \#_G F$.

Corollary 8 Let \tilde{G} be an expansion of a partial cube G. Then $\tilde{G}^{\#}$ is obtained from the disjoint union of $G^{\#}$ and a vertex x, where x is adjacent to some vertices of $G^{\#}$.

We are now in a position to prove Theorem 3. Let $F_1, \ldots, F_k \in [G]_{\Theta}$ be the classes that correspond to the vertices of X. Contract all the Θ -classes from $[G]_{\Theta} \setminus \{F_1, \ldots, F_k\}$ in some order. Let H be the obtained graph. Then Corollary 8 implies that $H^{\#} = X$, that is, $H \in \mathcal{E}(X)$. Therefore, G can be obtained from $H \in \mathcal{E}(X)$ by an expansion procedure and Theorem 3 is proved.

We next prove Theorem 1 and for this sake recall the following result.

Theorem 9 [12, Theorem 5.3] For any $n \ge 4$, $\mathcal{E}(C_n) = \{M_n\}$.

Let $F_1, \ldots, F_n \in [G]_{\Theta}$ be the vertices of an induced cycle of $G^{\#}$ on at least four vertices. Contract all the other Θ -classes of G. Then Corollary 8 and Theorem 9 imply that the obtained graph is a cogwheel with at least four spokes. Consider now the sequence of expansions that reverse the performed sequence of contractions and let H be a graph obtained during this sequence. We claim that \tilde{H} contains some cogwheel provided that H does it.

Let M be a cogwheel of H. Note that M exists at the beginning of the expansion procedure by the above argument. If M is completely contained in one part of the isometric cover of H, then a copy of M is clearly contained in \widetilde{H} .

Assume in the rest that M is contained in $H_1 \setminus H_2$ and in $H_1 \setminus H_2$, where H_1 , H_2 is the isometric cover of H. Hence M is also contained in $H_0 = H_1 \cap H_2$. Suppose the center x of M lies in $H_1 \setminus H_2$. Let u be a vertex of M from $H_2 \setminus H_1$ with d(x, u) = 2. Clearly such a vertex exists since otherwise M is completely contained in one part of the isometric cover of H. Let $w \in M$ be a common neighbor of xand u. Then $w \in H_0$. The other common neighbor w' of u and x must also lie in H_0 . Since d(w, w') = 2 this implies that H_0 is not convex which is not possible. Therefore, $x \in H_0$.

We next claim that H_0 contains at least two non-neighboring spokes of M.

Let u be a vertex of M with d(x, u) = 2 and $u \in H_0$. Let w and w' be the neighbors of u in M. Then it is not possible that $w \in H_1 \setminus H_2$ and $w' \in H_2 \setminus H_1$ (or vice verse), for otherwise H_0 is not convex.

Let xu_1 and xu_2 be spokes of M, where $u_1 \in H_1 \setminus H_2$ and $u_2 \in H_2 \setminus H_1$. Note that such spokes exist by the convexity of H_0 and the assumption that M intersects $H_1 \setminus H_2$ as well as $H_2 \setminus H_1$. The spokes xu_1 and xu_2 are not neighboring, for otherwise the common neighbor of u_1 and u_2 would lie in H_0 which would again violate the convexity of H_0 . Following the spokes from xu_1 to xu_2 along M in one direction gives a spoke xw_1 with $w_1 \in H_0$, while following the spokes from xu_1 to xu_2 along M in the other direction gives another spoke xw_2 with $w_2 \in H_0$. Then xw_1 and xw_2 are the claimed non-neighboring spokes of H_0 .

Hence H_0 contains the center x and at least two non-neighboring spokes of M. Therefore, $\widetilde{H_1}$ contains a cogwheel M_r whose spokes are the expanded spokes of M from H_1 together with a new spoke $\widetilde{x}_1\widetilde{x}_2$. Similarly, the spokes of M from H_2 together with the spoke $\widetilde{x}_1\widetilde{x}_2$ yield another cogwheel M_s in \widetilde{H} , more precisely in $\widetilde{H_2}$. Finally, as the spokes xu_1 and xu_2 of M are not adjacent, $4 \leq r, s \leq n$, hence Theorem 1 is proved.

It remains to verify Theorem 2. Note that by the above considerations, an M_4 from H either remains unchanged while expanding to \tilde{H} or expands to two copies of M_4 in \tilde{H} . Similarly, an M_5 from H either remains unchanged while expanding to \tilde{H} or expands to one M_4 and one M_5 in \tilde{H} . In any case, a cogwheel M_n , $n \in \{4, 5\}$, from H leads to at least one M_n in \tilde{H} .

References

- H.-J. Bandelt and V. Chepoi, Graphs of acyclic cubical complexes, European J. Combin. 17 (1996) 113–120.
- [2] H.-J. Bandelt and A. W. M. Dress, A canonical decomposition theory for metrics on a finite set, Adv. Math. 92 (1992) 47–105.
- [3] B. Brešar and S. Klavžar, Crossing graphs as joins of graphs and Cartesian products of median graphs, SIAM J. Discrete Math., in press.
- [4] B. Brešar, S. Klavžar, R. Škrekovski, Roots of cube polynomials of median graphs, J. Graph Theory 52 (2006) 37–50.
- [5] B. Brešar and T. Kraner Šumenjak, Θ-graphs of partial cubes and strong edge colorings, Ars Combin., to appear.

- [6] B. Brešar and A. Tepeh Horvat, Crossing graphs of fiber-complemented graphs, submitted, 2006.
- [7] V. D. Chepoi, d-Convexity and isometric subgraphs of Hamming graphs, Cybernetics, 1 (1988) 6–9.
- [8] D. Djoković, Distance preserving subgraphs of hypercubes, J. Combin. Theory Ser. B 14 (1973) 263–267.
- [9] D. Eppstein, The lattice dimension of a graph, European J. Combin. 26 (2005) 585–592.
- [10] S. Klavžar and M. Kovše, Partial cubes and their τ -graphs, European J. Combin., in press.
- [11] S. Klavžar and M. Kovše, On Θ -graphs of partial cubes, Discuss. Math. Graph Theory, to appear.
- [12] S. Klavžar and H.M. Mulder, Partial cubes and crossing graphs, SIAM J. Discrete Math. 15 (2002) 235–251.
- [13] S. Klavžar and S. Shpectorov, Tribes of cubic partial cubes, submitted.
- [14] F. R. McMorris, H. M. Mulder and F. R. Roberts, The median procedure on median graphs, Discrete Appl. Math. 84 (1998) 165–181.
- [15] H. M. Mulder, The structure of median graphs, Discrete Math. 24 (1978) 197– 204.
- [16] H. M. Mulder, The Interval Function of a Graph, Math. Centre Tracts 132, Mathematisch Centrum, Amsterdam, 1980.
- [17] I. Peterin, A characterization of planar median graphs, Discuss. Math. Graph Theory 26 (2006) 41–48.
- [18] A. Vesel, Characterization of resonance graphs of catacondensed hexagonal graphs, MATCH Commun. Math. Comput. Chem. 53 (2005) 195–208.
- [19] P. Winkler, Isometric embeddings in products of complete graphs, Discrete Appl. Math. 7 (1984) 221–225.