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Abstract

The crossing graph G# of a partial cube G has the equivalence classes of
the Djoković-Winkler relation Θ as vertices, two Θ-classes being adjacent if
they appear on some common isometric cycle. The following question from [12,
Problem 7.3] is treated: Let G be a median graph and n ≥ 4. Does an induced
cycle Cn in G# necessarily force an induced cogwheel Mn in G? It is shown that
the answer is positive for n = 4, 5 and negative for n ≥ 6. On the other hand it
is proved that if G# contains an induced cycle Cn, n ≥ 4, then G contains some
induced cogwheel Mm, 4 ≤ m ≤ n. A refinement of the expansion procedure
for partial cubes is obtained along the way.
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1 Problem and results

Let G = (V,E) be a partial cube, that is, an isometric subgraph of some hypercube.
Equivalently, partial cubes are precisely isometric subgraphs of the d-dimensional
integer lattices Zd for some d ≥ 1, see [9]. The celebrated Djoković-Winkler relation
Θ [8, 19] partitions E into the so-called Θ-classes. Then the crossing graph G# of G
has its Θ-classes as vertices while two Θ-classes are adjacent if they appear on some
common isometric cycle.

The concept of the crossing graph was introduced (under the name incompati-
bility graph) by Bandelt and Dress in [2]. Bandelt and Chepoi proved in [1] that the
crossing graph of a median graph G is chordal if and only if G contains no convex
cogwheel. Crossings graphs were later implicitly considered in [14] and extensively
studied in [12] where it was proved among others that any graph is a crossing graph
of some median graph and that cogwheels Mn are the only partial cubes whose cross-
ing graphs are cycles. Additional results on crossing graphs were obtained in [3], for
instance, the crossing graph of a median graph G is the join of two graphs A and
B if and only if G is a Cartesian product graph. For an extension of the concept
of the crossing graph see [6] and for related concepts of the so called τ -graphs and
Θ-graphs see [5, 6, 10, 11, 18].

In this paper we consider the following question from [12, Problem 7.3]. Let G
be a median graph and n ≥ 4. Does an induced cycle Cn in G# necessarily force an
induced cogwheel Mn in G? We prove:

Theorem 1 Let G be a median graph. If G# contains an induced cycle Cn, n ≥ 4,
then G contains some induced cogwheel Mm, 4 ≤ m ≤ n.

Note that Theorem 1 does not extend to partial cubes as can be seen from Fig. 3,
see also [12, Theorem 5.4].

It need not be the case that the cogwheel guaranteed by Theorem 1 is Mn.
Indeed, let Mr,s, 3 ≤ r ≤ s, be the graph as shown in Fig. 1. Note that Mr,s is a
median graph and that Ms+2 is the largest induced cogwheel in Mr,s. On the other
hand, M#

r,s is obtained from the disjoint union of Cr+s and an additional vertex that
is adjacent to two vertices of the cycle at distance r. Therefore, M#

r,s contains an
induced Cr+s.

This example shows that the answer to [12, Problem 7.3] is in general negative
for cycles of length at least 6. It is positive thought for 4-cycles and 5-cycles as our
next result asserts.

Theorem 2 Let G be a median graph and n ∈ {4, 5}. If G# contains an induced
cycle Cn then G contains an induced cogwheel Mn.
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Figure 1: The graph Mr,s

Note that the converse of Theorem 2 does not hold, that is, an induced cogwheel
Mn, n ∈ {4, 5}, in a median graph G does not necessarily force an induced cycle
Cn in G#. To see this note that Mn isometrically embeds into Qn. Then Mn is
an induced subgraph of the median graph Qn, but Q#

n = Kn has only triangles as
induced cycles. With the same argument we infer that the converse of Theorem 1
also does not hold.

For a graph X we denote with E(X) the class of all partial cubes for which their
crossing graph is isomorphic to X:

E(X) = {G | G is partial cube with G# = X} .

While proving Theorem 1 we also obtain the following result that could be of inde-
pendent interest.

Theorem 3 Let G be a partial cube and X an induced subgraph of G#. Then G
can be obtained by an expansion procedure from some member of E(X).

This theorem can be considered as a refinement of Chepoi’s expansion theorem
which claims that any partial cube can be obtained by an expansion procedure from
the one vertex graph K1 [7].

In the next section we define the concepts used in this paper and recall some
known results. In the last section we give proofs of Theorems 1-3.

2 Definitions and preliminaries

The wheel Wn, n ≥ 3, consists of the n-cycle Cn together with an extra vertex joined
to all the vertices of the cycle. The cogwheel Mn is obtained from the wheel Wn by
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subdividing all the edges of the outer cycle. See Fig. 2 for W5 and M5. Cogwheels
are also known as bipartite wheels. The central vertex of Mn is the center of the
wheel and the edges incident with the center are the spokes of the wheel.

Figure 2: W5 and M5

Let u and v be vertices of a connected graph G. Then dG(u, v), or d(u, v)
for short, denotes the length of a shortest u, v-path in G. The interval I(u, v) is
the set of all vertices on shortest u, v-paths. A subgraph H of G is isometric if
dH(u, v) = dG(u, v) for all u, v ∈ V (H) and convex if I(u, v) ⊆ V (H) for any
u, v ∈ V (H).

A graph G is a partial cube if for some n, G is an isometric subgraph of the
n-cube Qn. A connected graph is a median graph if for every triple u, v, w of its
vertices |I(u, v) ∩ I(u,w) ∩ I(v, w)| = 1. Median graphs are partial cubes [16]. For
more information on median graphs see recent papers [4, 17] and references therein.

The Djoković-Winkler relation Θ [8, 19] is defined on the edge set of a graph G
in the following way. Edges e = xy and f = uv of G are in relation Θ if

d(x, u) + d(y, v) 6= d(x, v) + d(y, u) .

Let G be a partial cube and ab ∈ E(G). Winkler [19] proved that among bipartite
graphs Θ is transitive precisely for partial cubes. Hence in this case Θ is an equiv-
alence relation. For an edge ab of G set Wab = {w ∈ V | d(a,w) < d(b, w)} . Note
that if G is bipartite then V = Wab ∪Wba. If G is a partial cube then the Θ-class
containing ab consists of all edges that are incident with a vertex from Wab and a
vertex from Wba.

Let [G]Θ stands for the set of all Θ-classes of a partial cube G. Let E, F ∈ [G]Θ
and ee′ ∈ E, ff ′ ∈ F . Then E and F cross, E#GF , if

Wee′ ∩Wff ′ 6= ∅,Wee′ ∩Wf ′f 6= ∅,We′e ∩Wff ′ 6= ∅, and We′e ∩Wf ′f 6= ∅ .
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In [1, 2] the so-called splits {Wee′ ,We′e} and {Wff ′ ,Wf ′f} satisfying the above
condition are called incompatible. As noted above there is a bijective correspondence
between Θ-classes and splits of a partial cube.

The crossing relation can be described in several equivalent ways. We say that
Θ-classes E and F alternate on a cycle C if they both occur in C and we encounter
them alternately while walking along C.

Lemma 4 [12] Let G be a partial cube G and E, F ∈ [G]Θ. Then the following
statements are equivalent:

(i) E#GF .

(ii) E and F alternate on an isometric cycle of G.

(iii) E and F occur on an isometric cycle of G.

(iv) Each of the Θ-classes E and F appear exactly twice on a cycle of G and they
alternate.

For a partial cube G, the crossing graph G# of G has elements of [G]Θ as vertices,
two vertices E and F being adjacent if E#GF . See Fig. 3 for a partial cube G and
its crossing graph. The marked Θ-classes of G induce the outer 6-cycle of G# and
the remaining three classes the inner triangle.

G G
#

Figure 3: A partial cube and its crossing graph

An isometric cover G1, G2 of a connected graph G consists of two isometric
subgraphs G1 and G2 of G such that G = G1 ∪ G2 and G1 ∩ G2 6= ∅. Let G̃1

and G̃2 be isomorphic copies of G1 and G2, respectively. For any vertex u ∈ Gi,
1 ≤ i ≤ 2, let ũi be the corresponding vertex in G̃i. The expansion of G with respect
to G1, G2 is the graph G̃ obtained from the disjoint union of G̃1 and G̃2, where for
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any u ∈ G1 ∩G2 the vertices ũ1 and ũ2 are joined by an edge. A contraction is the
reverse operation to the expansion.

The expansion is called convex if vertices of G1 ∩G2 induce a convex subgraph
of G. Mulder [15, 16] proved that a graph is a median graph if and only if it can be
obtained from K1 by a sequence of convex expansions.

3 Proofs

Let G̃ be the expansion of a partial cube G with respect to an isometric cover G1, G2

and let G0 be the intersection of the cover. For an edge e of G \ E(G0) let ẽ be
the corresponding edge of G̃, while for an edge e of G0 we will denote the two
corresponding edges of G̃ with ẽ1 and ẽ2, where ẽ1 ∈ G̃1 and ẽ2 ∈ G̃2.

Let E ∈ [G]Θ. Then E expands to the Θ-class Ẽ of G̃ with E ⊆ Ẽ. Note that
if E ∩ G0 = ∅ then E = Ẽ. Otherwise, |Ẽ| = |E| + 2|E ∩ G0|. More precisely, the
following part of the folklore result holds.

Lemma 5 Let G̃ be the expansion of a partial cube G with respect to the cover
G1, G2 and let G0 = G1 ∩G2. Then

Ẽ = E ∪e∈E∩G0 {ẽ1, ẽ2} .

For our purposes we specialize [13, Lemma 6.4] to partial cubes as follows.

Lemma 6 Let G be a partial cube, F ∈ [G]Θ, and C an isometric cycle of G. Then
one of the following holds:

(1) C ∩ F = ∅; or

(2) C meets F in two opposite edges.

Lemma 7 Let G̃ be an expansion of a partial cube G and let E, F ∈ [G]Θ. Then
E#GF if and only if Ẽ#

G̃
F̃ .

Proof. Let G̃ be the expansion of G with respect to the cover G1, G2 and let
G0 = G1 ∩G2.

Suppose first E#GF . By Lemma 4 we may assume that E and F appear exactly
twice on a cycle C of G and they alternate.

Assume C is completely contained in one of the parts of the cover, say G1. Then
C expands to the cycle C̃ that is isomorphic to C and lies completely in G̃1. Then
Ẽ#

G̃
F̃ by Lemma 5.

Assume C ∩ (G1 \G2) 6= ∅ and C ∩ (G2 \G1) 6= ∅. We construct a cycle C̃ of G̃
as follows. Start at any vertex x of G1 \G2 and follow C until a vertex y is reached
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such that the next vertex of C, call it z, belongs to G2 \G1. Then the first part of C̃
will consist of the vertices from x̃1 to ỹ1 followed with ỹ2 and z̃2. Now follow C from
z to w, where w is the last vertex after z that belongs to G2. Append to the before
constructed beginning of C̃ the vertices between z̃2 and w̃2 and add also the vertex
w̃1. Proceed in the same manner until we return to x in C. In this way C̃ consists
of copies of all the edges from C together with some extra edges that all belong to
the new Θ-class of G̃. By Lemma 5, C̃ contains precisely two edges from Ẽ and two
edges from F̃ and they alternate on C̃. Therefore also in this case Ẽ#

G̃
F̃ .

Conversely, assume Ẽ#
G̃
F̃ . Then Ẽ and F̃ appear on some isometric cycle C

of G̃ and they alternate. By Lemma 6 cycle C meets the new Θ-class of G̃ in two
opposite edges. When we contract G̃ to G, E and F appear on cycle C ′, where
|C ′| = |C̃| − 2 and they still alternate on C̃. Therefore E#GF . ¤

Corollary 8 Let G̃ be an expansion of a partial cube G. Then G̃# is obtained from
the disjoint union of G# and a vertex x, where x is adjacent to some vertices of G#.

We are now in a position to prove Theorem 3. Let F1, . . . , Fk ∈ [G]Θ be the
classes that correspond to the vertices of X. Contract all the Θ-classes from [G]Θ \
{F1, . . . , Fk} in some order. Let H be the obtained graph. Then Corollary 8 implies
that H# = X, that is, H ∈ E(X). Therefore, G can be obtained from H ∈ E(X) by
an expansion procedure and Theorem 3 is proved.

We next prove Theorem 1 and for this sake recall the following result.

Theorem 9 [12, Theorem 5.3] For any n ≥ 4, E(Cn) = {Mn}.

Let F1, . . . , Fn ∈ [G]Θ be the vertices of an induced cycle of G# on at least four
vertices. Contract all the other Θ-classes of G. Then Corollary 8 and Theorem 9
imply that the obtained graph is a cogwheel with at least four spokes. Consider now
the sequence of expansions that reverse the performed sequence of contractions and
let H be a graph obtained during this sequence. We claim that H̃ contains some
cogwheel provided that H does it.

Let M be a cogwheel of H. Note that M exists at the beginning of the expansion
procedure by the above argument. If M is completely contained in one part of the
isometric cover of H, then a copy of M is clearly contained in H̃.

Assume in the rest that M is contained in H1 \H2 and in H1 \H2, where H1, H2

is the isometric cover of H. Hence M is also contained in H0 = H1 ∩H2. Suppose
the center x of M lies in H1 \ H2. Let u be a vertex of M from H2 \ H1 with
d(x, u) = 2. Clearly such a vertex exists since otherwise M is completely contained
in one part of the isometric cover of H. Let w ∈ M be a common neighbor of x
and u. Then w ∈ H0. The other common neighbor w′ of u and x must also lie in
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H0. Since d(w,w′) = 2 this implies that H0 is not convex which is not possible.
Therefore, x ∈ H0.

We next claim that H0 contains at least two non-neighboring spokes of M .
Let u be a vertex of M with d(x, u) = 2 and u ∈ H0. Let w and w′ be the

neighbors of u in M . Then it is not possible that w ∈ H1 \H2 and w′ ∈ H2 \H1 (or
vice verse), for otherwise H0 is not convex.

Let xu1 and xu2 be spokes of M , where u1 ∈ H1 \H2 and u2 ∈ H2 \H1. Note
that such spokes exist by the convexity of H0 and the assumption that M intersects
H1\H2 as well as H2\H1. The spokes xu1 and xu2 are not neighboring, for otherwise
the common neighbor of u1 and u2 would lie in H0 which would again violate the
convexity of H0. Following the spokes from xu1 to xu2 along M in one direction
gives a spoke xw1 with w1 ∈ H0, while following the spokes from xu1 to xu2 along
M in the other direction gives another spoke xw2 with w2 ∈ H0. Then xw1 and xw2

are the claimed non-neighboring spokes of H0.
Hence H0 contains the center x and at least two non-neighboring spokes of M .

Therefore, H̃1 contains a cogwheel Mr whose spokes are the expanded spokes of
M from H1 together with a new spoke x̃1x̃2. Similarly, the spokes of M from H2

together with the spoke x̃1x̃2 yield another cogwheel Ms in H̃, more precisely in
H̃2. Finally, as the spokes xu1 and xu2 of M are not adjacent, 4 ≤ r, s ≤ n, hence
Theorem 1 is proved.

It remains to verify Theorem 2. Note that by the above considerations, an M4

from H either remains unchanged while expanding to H̃ or expands to two copies
of M4 in H̃. Similarly, an M5 from H either remains unchanged while expanding to
H̃ or expands to one M4 and one M5 in H̃. In any case, a cogwheel Mn, n ∈ {4, 5},
from H leads to at least one Mn in H̃.
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[5] B. Brešar and T. Kraner Šumenjak, Θ-graphs of partial cubes and strong edge
colorings, Ars Combin., to appear.

8
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[10] S. Klavžar and M. Kovše, Partial cubes and their τ -graphs, European J. Com-
bin., in press.
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[13] S. Klavžar and S. Shpectorov, Tribes of cubic partial cubes, submitted.

[14] F. R. McMorris, H. M. Mulder and F. R. Roberts, The median procedure on
median graphs, Discrete Appl. Math. 84 (1998) 165–181.

[15] H. M. Mulder, The structure of median graphs, Discrete Math. 24 (1978) 197–
204.

[16] H. M. Mulder, The Interval Function of a Graph, Math. Centre Tracts 132,
Mathemtatisch Centrum, Amsterdam, 1980.

[17] I. Peterin, A characterization of planar median graphs, Discuss. Math. Graph
Theory 26 (2006) 41–48.

[18] A. Vesel, Characterization of resonance graphs of catacondensed hexagonal
graphs, MATCH Commun. Math. Comput. Chem. 53 (2005) 195–208.

[19] P. Winkler, Isometric embeddings in products of complete graphs, Discrete
Appl. Math. 7 (1984) 221–225.

9


