Induced cycles in crossing graphs of median graphs

Sandi Klavžar*
Department of Mathematics and Computer Science
PeF, University of Maribor
Koroška cesta 160, 2000 Maribor, Slovenia sandi.klavzar@uni-mb.si
Matjaž Kovše
Institute of Mathematics, Physics and Mechanics
Jadranska 19, 1000 Ljubljana, Slovenia
matjaz.kovse@uni-mb.si

December 28, 2006

Abstract

The crossing graph $G^{\#}$ of a partial cube G has the equivalence classes of the Djoković-Winkler relation Θ as vertices, two Θ-classes being adjacent if they appear on some common isometric cycle. The following question from [12, Problem 7.3] is treated: Let G be a median graph and $n \geq 4$. Does an induced cycle C_{n} in $G^{\#}$ necessarily force an induced cogwheel M_{n} in G ? It is shown that the answer is positive for $n=4,5$ and negative for $n \geq 6$. On the other hand it is proved that if $G^{\#}$ contains an induced cycle $C_{n}, n \geq 4$, then G contains some induced cogwheel $M_{m}, 4 \leq m \leq n$. A refinement of the expansion procedure for partial cubes is obtained along the way.

Key words: partial cube, median graph, crossing graph, cogwheel, (convex) expansion

AMS subject classification (2000): 05C75, 05C12, 05C38

[^0]
1 Problem and results

Let $G=(V, E)$ be a partial cube, that is, an isometric subgraph of some hypercube. Equivalently, partial cubes are precisely isometric subgraphs of the d-dimensional integer lattices \mathbb{Z}^{d} for some $d \geq 1$, see [9]. The celebrated Djoković-Winkler relation $\Theta[8,19]$ partitions E into the so-called Θ-classes. Then the crossing graph $G^{\#}$ of G has its Θ-classes as vertices while two Θ-classes are adjacent if they appear on some common isometric cycle.

The concept of the crossing graph was introduced (under the name incompatibility graph) by Bandelt and Dress in [2]. Bandelt and Chepoi proved in [1] that the crossing graph of a median graph G is chordal if and only if G contains no convex cogwheel. Crossings graphs were later implicitly considered in [14] and extensively studied in [12] where it was proved among others that any graph is a crossing graph of some median graph and that cogwheels M_{n} are the only partial cubes whose crossing graphs are cycles. Additional results on crossing graphs were obtained in [3], for instance, the crossing graph of a median graph G is the join of two graphs A and B if and only if G is a Cartesian product graph. For an extension of the concept of the crossing graph see [6] and for related concepts of the so called τ-graphs and Θ-graphs see $[5,6,10,11,18]$.

In this paper we consider the following question from [12, Problem 7.3]. Let G be a median graph and $n \geq 4$. Does an induced cycle C_{n} in $G^{\#}$ necessarily force an induced cogwheel M_{n} in G ? We prove:

Theorem 1 Let G be a median graph. If $G^{\#}$ contains an induced cycle $C_{n}, n \geq 4$, then G contains some induced cogwheel $M_{m}, 4 \leq m \leq n$.

Note that Theorem 1 does not extend to partial cubes as can be seen from Fig. 3, see also [12, Theorem 5.4].

It need not be the case that the cogwheel guaranteed by Theorem 1 is M_{n}. Indeed, let $M_{r, s}, 3 \leq r \leq s$, be the graph as shown in Fig. 1. Note that $M_{r, s}$ is a median graph and that M_{s+2} is the largest induced cogwheel in $M_{r, s}$. On the other hand, $M_{r, s}^{\#}$ is obtained from the disjoint union of C_{r+s} and an additional vertex that is adjacent to two vertices of the cycle at distance r. Therefore, $M_{r, s}^{\#}$ contains an induced C_{r+s}.

This example shows that the answer to [12, Problem 7.3] is in general negative for cycles of length at least 6 . It is positive thought for 4 -cycles and 5 -cycles as our next result asserts.

Theorem 2 Let G be a median graph and $n \in\{4,5\}$. If $G^{\#}$ contains an induced cycle C_{n} then G contains an induced cogwheel M_{n}.

Figure 1: The graph $M_{r, s}$

Note that the converse of Theorem 2 does not hold, that is, an induced cogwheel $M_{n}, n \in\{4,5\}$, in a median graph G does not necessarily force an induced cycle C_{n} in $G^{\#}$. To see this note that M_{n} isometrically embeds into Q_{n}. Then M_{n} is an induced subgraph of the median graph Q_{n}, but $Q_{n}^{\#}=K_{n}$ has only triangles as induced cycles. With the same argument we infer that the converse of Theorem 1 also does not hold.

For a graph X we denote with $\mathcal{E}(X)$ the class of all partial cubes for which their crossing graph is isomorphic to X :

$$
\mathcal{E}(X)=\left\{G \mid G \text { is partial cube with } G^{\#}=X\right\} .
$$

While proving Theorem 1 we also obtain the following result that could be of independent interest.

Theorem 3 Let G be a partial cube and X an induced subgraph of $G^{\#}$. Then G can be obtained by an expansion procedure from some member of $\mathcal{E}(X)$.

This theorem can be considered as a refinement of Chepoi's expansion theorem which claims that any partial cube can be obtained by an expansion procedure from the one vertex graph $K_{1}[7]$.

In the next section we define the concepts used in this paper and recall some known results. In the last section we give proofs of Theorems 1-3.

2 Definitions and preliminaries

The wheel $W_{n}, n \geq 3$, consists of the n-cycle C_{n} together with an extra vertex joined to all the vertices of the cycle. The cogwheel M_{n} is obtained from the wheel W_{n} by
subdividing all the edges of the outer cycle. See Fig. 2 for W_{5} and M_{5}. Cogwheels are also known as bipartite wheels. The central vertex of M_{n} is the center of the wheel and the edges incident with the center are the spokes of the wheel.

Figure 2: W_{5} and M_{5}
Let u and v be vertices of a connected graph G. Then $d_{G}(u, v)$, or $d(u, v)$ for short, denotes the length of a shortest u, v-path in G. The interval $I(u, v)$ is the set of all vertices on shortest u, v-paths. A subgraph H of G is isometric if $d_{H}(u, v)=d_{G}(u, v)$ for all $u, v \in V(H)$ and convex if $I(u, v) \subseteq V(H)$ for any $u, v \in V(H)$.

A graph G is a partial cube if for some n, G is an isometric subgraph of the n-cube Q_{n}. A connected graph is a median graph if for every triple u, v, w of its vertices $|I(u, v) \cap I(u, w) \cap I(v, w)|=1$. Median graphs are partial cubes [16]. For more information on median graphs see recent papers [4, 17] and references therein.

The Djoković-Winkler relation $\Theta[8,19]$ is defined on the edge set of a graph G in the following way. Edges $e=x y$ and $f=u v$ of G are in relation Θ if

$$
d(x, u)+d(y, v) \neq d(x, v)+d(y, u)
$$

Let G be a partial cube and $a b \in E(G)$. Winkler [19] proved that among bipartite graphs Θ is transitive precisely for partial cubes. Hence in this case Θ is an equivalence relation. For an edge $a b$ of G set $W_{a b}=\{w \in V \mid d(a, w)<d(b, w)\}$. Note that if G is bipartite then $V=W_{a b} \cup W_{b a}$. If G is a partial cube then the Θ-class containing $a b$ consists of all edges that are incident with a vertex from $W_{a b}$ and a vertex from $W_{b a}$.

Let $[G]_{\Theta}$ stands for the set of all Θ-classes of a partial cube G. Let $E, F \in[G]_{\Theta}$ and $e e^{\prime} \in E, f f^{\prime} \in F$. Then E and F cross, $E \#_{G} F$, if

$$
W_{e e^{\prime}} \cap W_{f f^{\prime}} \neq \emptyset, W_{e e^{\prime}} \cap W_{f^{\prime} f} \neq \emptyset, W_{e^{\prime} e} \cap W_{f f^{\prime}} \neq \emptyset, \text { and } W_{e^{\prime} e} \cap W_{f^{\prime} f} \neq \emptyset
$$

In $[1,2]$ the so-called splits $\left\{W_{e e^{\prime}}, W_{e^{\prime} e}\right\}$ and $\left\{W_{f f^{\prime}}, W_{f^{\prime} f}\right\}$ satisfying the above condition are called incompatible. As noted above there is a bijective correspondence between Θ-classes and splits of a partial cube.

The crossing relation can be described in several equivalent ways. We say that Θ-classes E and F alternate on a cycle C if they both occur in C and we encounter them alternately while walking along C.

Lemma 4 [12] Let G be a partial cube G and $E, F \in[G]_{\Theta}$. Then the following statements are equivalent:
(i) $E \#{ }_{G} F$.
(ii) E and F alternate on an isometric cycle of G.
(iii) E and F occur on an isometric cycle of G.
(iv) Each of the Θ-classes E and F appear exactly twice on a cycle of G and they alternate.

For a partial cube G, the crossing graph $G^{\#}$ of G has elements of $[G]_{\Theta}$ as vertices, two vertices E and F being adjacent if $E \#_{G} F$. See Fig. 3 for a partial cube G and its crossing graph. The marked Θ-classes of G induce the outer 6 -cycle of $G^{\#}$ and the remaining three classes the inner triangle.

G

$G^{\#}$

Figure 3: A partial cube and its crossing graph
An isometric cover G_{1}, G_{2} of a connected graph G consists of two isometric subgraphs G_{1} and G_{2} of G such that $G=G_{1} \cup G_{2}$ and $G_{1} \cap G_{2} \neq \emptyset$. Let \widetilde{G}_{1} and \widetilde{G}_{2} be isomorphic copies of G_{1} and G_{2}, respectively. For any vertex $u \in G_{i}$, $1 \leq i \leq 2$, let \widetilde{u}_{i} be the corresponding vertex in \widetilde{G}_{i}. The expansion of G with respect to G_{1}, G_{2} is the graph \widetilde{G} obtained from the disjoint union of \widetilde{G}_{1} and \widetilde{G}_{2}, where for
any $u \in G_{1} \cap G_{2}$ the vertices \widetilde{u}_{1} and \widetilde{u}_{2} are joined by an edge. A contraction is the reverse operation to the expansion.

The expansion is called convex if vertices of $G_{1} \cap G_{2}$ induce a convex subgraph of G. Mulder $[15,16]$ proved that a graph is a median graph if and only if it can be obtained from K_{1} by a sequence of convex expansions.

3 Proofs

Let \widetilde{G} be the expansion of a partial cube G with respect to an isometric cover G_{1}, G_{2} and let G_{0} be the intersection of the cover. For an edge e of $G \backslash E\left(G_{0}\right)$ let \widetilde{e} be the corresponding edge of \widetilde{G}, while for an edge e of G_{0} we will denote the two corresponding edges of \widetilde{G} with \widetilde{e}_{1} and \widetilde{e}_{2}, where $\widetilde{e}_{1} \in \widetilde{G}_{1}$ and $\widetilde{e}_{2} \in \widetilde{G}_{2}$.

Let $E \in[G]_{\Theta}$. Then E expands to the Θ-class \widetilde{E} of \widetilde{G} with $E \subseteq \widetilde{E}$. Note that if $E \cap G_{0}=\emptyset$ then $E=\widetilde{E}$. Otherwise, $|\widetilde{E}|=|E|+2\left|E \cap G_{0}\right|$. More precisely, the following part of the folklore result holds.

Lemma 5 Let \widetilde{G} be the expansion of a partial cube G with respect to the cover G_{1}, G_{2} and let $G_{0}=G_{1} \cap G_{2}$. Then

$$
\widetilde{E}=E \cup_{e \in E \cap G_{0}}\left\{\widetilde{e}_{1}, \widetilde{e}_{2}\right\}
$$

For our purposes we specialize [13, Lemma 6.4] to partial cubes as follows.
Lemma 6 Let G be a partial cube, $F \in[G]_{\Theta}$, and C an isometric cycle of G. Then one of the following holds:
(1) $C \cap F=\emptyset$; or
(2) C meets F in two opposite edges.

Lemma 7 Let \widetilde{G} be an expansion of a partial cube G and let $E, F \in[G]_{\Theta}$. Then $E \#_{G} F$ if and only if $\widetilde{E} \#_{\widetilde{G}} \widetilde{F}$.

Proof. Let \widetilde{G} be the expansion of G with respect to the cover G_{1}, G_{2} and let $G_{0}=G_{1} \cap G_{2}$.

Suppose first $E \#_{G} F$. By Lemma 4 we may assume that E and F appear exactly twice on a cycle C of G and they alternate.

Assume C is completely contained in one of the parts of the cover, say ${\underset{G}{1}}_{1}$. Then C expands to the cycle \widetilde{C} that is isomorphic to C and lies completely in \widetilde{G}_{1}. Then $\widetilde{E} \#_{\widetilde{G}} \widetilde{F}$ by Lemma 5 .

Assume $C \cap\left(G_{1} \backslash G_{2}\right) \neq \emptyset$ and $C \cap\left(G_{2} \backslash G_{1}\right) \neq \emptyset$. We construct a cycle \widetilde{C} of \widetilde{G} as follows. Start at any vertex x of $G_{1} \backslash G_{2}$ and follow C until a vertex y is reached
such that the next vertex of C, call it z, belongs to $G_{2} \backslash G_{1}$. Then the first part of \widetilde{C} will consist of the vertices from \widetilde{x}_{1} to \widetilde{y}_{1} followed with \widetilde{y}_{2} and \widetilde{z}_{2}. Now follow C from z to w, where w is the last vertex after z that belongs to G_{2}. Append to the before constructed beginning of \widetilde{C} the vertices between \widetilde{z}_{2} and \widetilde{w}_{2} and add also the vertex \widetilde{w}_{1}. Proceed in the same manner until we return to x in C. In this way \widetilde{C} consists of copies of all the edges from C together with some extra edges that all belong to the new Θ-class of \widetilde{G}. By Lemma $5, \widetilde{C}$ contains precisely two edges from \widetilde{E} and two edges from \widetilde{F} and they alternate on \widetilde{C}. Therefore also in this case $\widetilde{E} \#_{\widetilde{G}} \widetilde{F}$.

Conversely, assume $\widetilde{E} \#_{\widetilde{G}} \widetilde{F}$. Then \widetilde{E} and \widetilde{F} appear on some isometric cycle C of \widetilde{G} and they alternate. By Lemma 6 cycle C meets the new Θ-class of \widetilde{G} in two opposite edges. When we contract \widetilde{G} to G, E and F appear on cycle C^{\prime}, where $\left|C^{\prime}\right|=|\widetilde{C}|-2$ and they still alternate on \widetilde{C}. Therefore $E \#_{G} F$.

Corollary 8 Let \widetilde{G} be an expansion of a partial cube G. Then $\widetilde{G}^{\#}$ is obtained from the disjoint union of $G^{\#}$ and a vertex x, where x is adjacent to some vertices of $G^{\#}$.

We are now in a position to prove Theorem 3. Let $F_{1}, \ldots, F_{k} \in[G]_{\Theta}$ be the classes that correspond to the vertices of X. Contract all the Θ-classes from $[G]_{\Theta} \backslash$ $\left\{F_{1}, \ldots, F_{k}\right\}$ in some order. Let H be the obtained graph. Then Corollary 8 implies that $H^{\#}=X$, that is, $H \in \mathcal{E}(X)$. Therefore, G can be obtained from $H \in \mathcal{E}(X)$ by an expansion procedure and Theorem 3 is proved.

We next prove Theorem 1 and for this sake recall the following result.
Theorem 9 [12, Theorem 5.3] For any $n \geq 4, \mathcal{E}\left(C_{n}\right)=\left\{M_{n}\right\}$.
Let $F_{1}, \ldots, F_{n} \in[G]_{\Theta}$ be the vertices of an induced cycle of $G^{\#}$ on at least four vertices. Contract all the other Θ-classes of G. Then Corollary 8 and Theorem 9 imply that the obtained graph is a cogwheel with at least four spokes. Consider now the sequence of expansions that reverse the performed sequence of contractions and let H be a graph obtained during this sequence. We claim that \widetilde{H} contains some cogwheel provided that H does it.

Let M be a cogwheel of H. Note that M exists at the beginning of the expansion procedure by the above argument. If M is completely contained in one part of the isometric cover of H, then a copy of M is clearly contained in \widetilde{H}.

Assume in the rest that M is contained in $H_{1} \backslash H_{2}$ and in $H_{1} \backslash H_{2}$, where H_{1}, H_{2} is the isometric cover of H. Hence M is also contained in $H_{0}=H_{1} \cap H_{2}$. Suppose the center x of M lies in $H_{1} \backslash H_{2}$. Let u be a vertex of M from $H_{2} \backslash H_{1}$ with $d(x, u)=2$. Clearly such a vertex exists since otherwise M is completely contained in one part of the isometric cover of H. Let $w \in M$ be a common neighbor of x and u. Then $w \in H_{0}$. The other common neighbor w^{\prime} of u and x must also lie in
H_{0}. Since $d\left(w, w^{\prime}\right)=2$ this implies that H_{0} is not convex which is not possible. Therefore, $x \in H_{0}$.

We next claim that H_{0} contains at least two non-neighboring spokes of M.
Let u be a vertex of M with $d(x, u)=2$ and $u \in H_{0}$. Let w and w^{\prime} be the neighbors of u in M. Then it is not possible that $w \in H_{1} \backslash H_{2}$ and $w^{\prime} \in H_{2} \backslash H_{1}$ (or vice verse), for otherwise H_{0} is not convex.

Let $x u_{1}$ and $x u_{2}$ be spokes of M, where $u_{1} \in H_{1} \backslash H_{2}$ and $u_{2} \in H_{2} \backslash H_{1}$. Note that such spokes exist by the convexity of H_{0} and the assumption that M intersects $H_{1} \backslash H_{2}$ as well as $H_{2} \backslash H_{1}$. The spokes $x u_{1}$ and $x u_{2}$ are not neighboring, for otherwise the common neighbor of u_{1} and u_{2} would lie in H_{0} which would again violate the convexity of H_{0}. Following the spokes from $x u_{1}$ to $x u_{2}$ along M in one direction gives a spoke $x w_{1}$ with $w_{1} \in H_{0}$, while following the spokes from $x u_{1}$ to $x u_{2}$ along M in the other direction gives another spoke $x w_{2}$ with $w_{2} \in H_{0}$. Then $x w_{1}$ and $x w_{2}$ are the claimed non-neighboring spokes of H_{0}.

Hence H_{0} contains the center x and at least two non-neighboring spokes of M. Therefore, \widetilde{H}_{1} contains a cogwheel M_{r} whose spokes are the expanded spokes of M from H_{1} together with a new spoke $\widetilde{x}_{1} \widetilde{x}_{2}$. Similarly, the spokes of M from H_{2} together with the spoke $\widetilde{x}_{1} \widetilde{x}_{2}$ yield another cogwheel M_{s} in \widetilde{H}, more precisely in $\widetilde{H_{2}}$. Finally, as the spokes $x u_{1}$ and $x u_{2}$ of M are not adjacent, $4 \leq r, s \leq n$, hence Theorem 1 is proved.

It remains to verify Theorem 2 . Note that by the above considerations, an M_{4} from H either remains unchanged while expanding to \widetilde{H} or expands to two copies of M_{4} in \widetilde{H}. Similarly, an M_{5} from H either remains unchanged while expanding to \widetilde{H} or expands to one M_{4} and one M_{5} in \widetilde{H}. In any case, a cogwheel $M_{n}, n \in\{4,5\}$, from H leads to at least one M_{n} in \widetilde{H}.

References

[1] H.-J. Bandelt and V. Chepoi, Graphs of acyclic cubical complexes, European J. Combin. 17 (1996) 113-120.
[2] H.-J. Bandelt and A. W. M. Dress, A canonical decomposition theory for metrics on a finite set, Adv. Math. 92 (1992) 47-105.
[3] B. Brešar and S. Klavžar, Crossing graphs as joins of graphs and Cartesian products of median graphs, SIAM J. Discrete Math., in press.
[4] B. Brešar, S. Klavžar, R. Škrekovski, Roots of cube polynomials of median graphs, J. Graph Theory 52 (2006) 37-50.
[5] B. Brešar and T. Kraner Šumenjak, Θ-graphs of partial cubes and strong edge colorings, Ars Combin., to appear.
[6] B. Brešar and A. Tepeh Horvat, Crossing graphs of fiber-complemented graphs, submitted, 2006.
[7] V. D. Chepoi, d-Convexity and isometric subgraphs of Hamming graphs, Cybernetics, 1 (1988) 6-9.
[8] D. Djoković, Distance preserving subgraphs of hypercubes, J. Combin. Theory Ser. B 14 (1973) 263-267.
[9] D. Eppstein, The lattice dimension of a graph, European J. Combin. 26 (2005) 585-592.
[10] S. Klavžar and M. Kovše, Partial cubes and their τ-graphs, European J. Combin., in press.
[11] S. Klavžar and M. Kovše, On Θ-graphs of partial cubes, Discuss. Math. Graph Theory, to appear.
[12] S. Klavžar and H.M. Mulder, Partial cubes and crossing graphs, SIAM J. Discrete Math. 15 (2002) 235-251.
[13] S. Klavžar and S. Shpectorov, Tribes of cubic partial cubes, submitted.
[14] F. R. McMorris, H. M. Mulder and F. R. Roberts, The median procedure on median graphs, Discrete Appl. Math. 84 (1998) 165-181.
[15] H. M. Mulder, The structure of median graphs, Discrete Math. 24 (1978) 197204.
[16] H. M. Mulder, The Interval Function of a Graph, Math. Centre Tracts 132, Mathemtatisch Centrum, Amsterdam, 1980.
[17] I. Peterin, A characterization of planar median graphs, Discuss. Math. Graph Theory 26 (2006) 41-48.
[18] A. Vesel, Characterization of resonance graphs of catacondensed hexagonal graphs, MATCH Commun. Math. Comput. Chem. 53 (2005) 195-208.
[19] P. Winkler, Isometric embeddings in products of complete graphs, Discrete Appl. Math. 7 (1984) 221-225.

[^0]: *Supported by the Ministry of Science of Slovenia under the grant P1-0297. The author is also with the Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia.

